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A B S T R A C T

Composite pulses occupies an honorable place in the range of quantum control tech-
niques, and has an advantage among them to be suitable for robust, sensitive or any
high-precision manipulation of quantum systems. The goal is to expand the scope of
the methodology born in nuclear magnetic resonance, and modernize its applications.
We present the leverage of this flexible method in quantum computing, quantum sens-
ing, quantum information processing, and polarization optics. The latter point to the
existence of a quantum-classical analogy due to the underlying analogous mathemat-
ics.

The possibility to design robust quantum gates via broadband composite pulses
with ultrahigh-fidelity exceeding the quantum computation benchmark is remark-
able for quantum computing. Derivation of the narrowband and passband composite
pulses for quantum sensing applications imposes the use of SU(2) and novel regu-
larization approaches of optimization. Interestingly, composite pulses is also capable
of robust transitions of ultrasmall probability, and can have potential applications to
deterministic single-photon emission and the DLCZ protocol well-known in quantum
information processing. Another modification leads to ultrarobust and ultrasensitive
quantum controls of transition probability via composite pulses, which may have es-
sential applications for creation of ultrabroadband and ultranarrowband conversion
efficiency polarization half-wave plates. Also the similar optimization method can be
applied to design ultrarobust Z quantum gates, equivalent to polarization π rotators
in polarization optics. Composite pulses parameters can be utilised for construction
of broadband composite nonreciprocal polarization wave plates and optical isolators.

We cover a wide range of research disciplines and provide a deep and broad under-
standing of the interdisciplinarity, flexibility and possibilities of the technique. In this
sense, composite pulses is powerful and has great prospects.
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1
I N T R O D U C T I O N

1.1 quantum coherent control techniques

A huge variety of quantum control techniques are used in many areas of physics
to manipulate the physical system. Among them few are appreciable as resonant
excitation, adiabatic passage, shaped pulses, optimal control theory, Composite Pulses
(CPs). It is also entertaining that they can be adapted to obtain new control methods
such as composite adiabatic passage and shortcut to adiabaticity. In general, coherent
control techniques differ from each other by the choice of targeted cost parameters,
hence, the resulting quality indicators are different.

1.2 rotations on the bloch sphere

The propagator of a coherently driven qubit is the solution of the Schrödinger equa-
tion,

ih̄∂tU(t, ti) = Ĥ(t)U(t, ti), (1.1)

subject to the initial condition U(ti, ti) = Î, the identity matrix. If the Hamiltonian
is Hermitian, the propagator is unitary. If the Hamiltonian is also traceless, then the
propagator has the SU(2) symmetry and can be represented as

U0 =

 a b

−b∗ a∗

 , (1.2)

where a and b are the complex-valued Cayley-Klein parameters satisfying |a|2 + |b|2 =

1. A traceless Hermitian Hamiltonian has the form Ĥ(t) = 1
2 h̄[Ω(t) cos(ϕ)σ̂x +

Ω(t) sin(ϕ)σ̂y + ∆σ̂z], where Ω(t) (assumed real and positive) is the Rabi frequency
quantifying the coupling, ϕ is its phase, and ∆ is the field-system detuning.

On exact resonance (∆ = 0) and for ϕ = 0, we have a = cos(A/2), b = −i sin(A/2),
where A is the temporal pulse area A =

∫ t f
ti

Ω(t)dt. For a system starting in state |1⟩,
the single-pulse transition probability is p = |b|2 = sin2(A/2).

1



2 introduction

1.2.1 Rotation gate

Each pulse in a Composite Pulse (CP) sequence is considered resonant and hence it
generates the propagator

U(A, ϕ) =

 cos(A/2) −ieiϕ sin(A/2)

−ie−iϕ sin(A/2) cos(A/2)

 , (1.3)

where ϕ is the phase of the coupling.
Our objective is to construct the qubit rotation gate R̂y(θ) = ei(θ/2)σ̂y , where θ is the

rotation angle and σ̂y is the Pauli’s y matrix. In matrix form,

Ry(θ) =

 cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

 . (1.4)

The X or NOT gate is defined as

X =

 0 1

−1 0

 . (1.5)

We shall use the following form of the Hadamard gate (known as pseudo-
Hadamard form),

H = Ry(π/2) = ei(π/4)σ̂y = 1√
2

 1 1

−1 1

 . (1.6)

A single resonant pulse of temporal area A = θϵ = θ(1+ ϵ) produces the propagator
R̂(θϵ) = ei[θ(1+ϵ)/2]σ̂y = R̂(θ)[1+O(ϵ)], i.e. it is accurate up to zeroth order O(ϵ0) in the
pulse area error ϵ. Our approach is to replace the single θ pulse with a CP sequence
of pulses of appropriate pulse areas and phases, such that the overall propagator
produces the rotation gate (1.4) with an error of higher order, i.e. R̂(θ)[1 + O(ϵn+1)].
Then we say that the corresponding composite rotation gate is accurate up to, and
including, order O(ϵn).



1.3 composite pulses in nuclear magnetic resonance 3

1.2.2 Phase-shift gate

A phase-shift gate (up to a global phase factor) is defined as

F(ϕ) = Rz(ϕ) =

 e−iϕ/2 0

0 eiϕ/2

 :=

 1 0

0 eiϕ

 . (1.7)

It cannot be obtained via a single theta pulse (5.1), and thus requires a circuit with
two or more θ = π rotation gates

F(ϕ) = U(π, ν + π − ϕ/2)U(π, ν) = U(π, ν)U(π, ν + π + ϕ/2). (1.8)

1.3 composite pulses in nuclear magnetic resonance

CPs have been developed in Nuclear Magnetic Resonance (NMR) in the 1980s. How-
ever, similar ideas have been introduced in Polarization Optics (PO) much earlier,
in the 1940s [1–4]: by stacking several ordinary wave plates at specific angles with
respect to their fast polarization axes one can design either achromatic (broadband)
polarization retarders and rotators or (narrowband) polarization filters [1–10]. In the
last two decades, CPs have spread out to most experimental Quantum Information
(QI) platforms far beyond NMR. Applications include qubit control in trapped ions
[11–18], neutral atoms [19], doped solids [20–22], quantum dots [23–28], and NV cen-
ters in diamond [29], high-accuracy optical clocks [30], cold-atoms interferometry [31–
33], optically dense atomic ensembles [34], magnetometry [35], optomechanics [36],
etc.

CPs are classified in NMR by Wimperis [37] into broadband, narrowband and pass-
band classes, where he defined 1st type and 2nd type of pulses BB1, NB1, PB1 and BB2,
NB2, PB2 respectively.

BB1 and BB2 pulses follow

BB1(θ) : (π)ϕ1(2π)ϕ2(π)ϕ1(θ)0, (1.9)

with ϕ1 = arccos (−θ/4π) and ϕ2 = 3ϕ1,

BB2(θ) : (π)π/2(2π)ϕ2(π)π/2(θ)0, (1.10)

with ϕ2 = 3π/2 + θ/4.
NB1 and NB2 pulses follow

NB1(θ) : (π)ϕ1(2π)ϕ2(π)ϕ1(θ)0, (1.11)
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with ϕ1 = arccos (−θ/4π) and ϕ2 = −ϕ1,

NB2(θ) : (π)π/2(2π)ϕ2(π)π/2(θ)0, (1.12)

with ϕ2 = 3π/2 − θ/4.
NB1 and NB2 pulses follow

PB1(θ) : (2π)ϕ1(4π)ϕ2(2π)ϕ1(θ)0, (1.13)

with ϕ1 = arccos (−θ/8π) and ϕ2 = −ϕ1,

PB2(θ) : (2π)π/2(4π)ϕ2(2π)π/2(θ)0, (1.14)

with ϕ2 = 3π/2 − θ/8.
Besides these asymmetric sequences, Jones and co-workers [38] develop time-

symmetric sequence called SCROFULOUS (Short composite rotation for undoing
length over and under shoot),

SCROFULOUS(θ) : (θ1)ϕ1(π)ϕ2(θ1)ϕ1 , (1.15)

with θ1 = arcsinc(2 cos (θ/2)/π), ϕ1 = arccos (−π cos θ1/(2θ1 sin θ/2)), ϕ2 = ϕ1 −
arccos (−π/2θ1), where unnormalized sinc function is defined as sinc(θ) = sin θ/θ.

In the case of π rotation, one can choose θ1 = arcsinc(0) = π and
arccos (−π/2θ1) = −4π/3,

SCROFULOUS(π) : (π)π/3(π)5π/3(π)π/3. (1.16)

Thus ϕ2 − ϕ1 = 4π/3, and Tycko’s and co-workers’ [39] result can be recovered

Tycko(N = 3) : (π)0(π)2π/3(π)0, (1.17)

for the broadband excitation without phase distortion. This leads to the division of the
broadband CPs into two sub-classes, named variable and constant rotations [40–42].

SCROFULOUS is the shortest constant rotation with the first order of pulse area
error compensation. BB1 is the second order constant rotation, which is outperformed
by our shorter X5 and H5s symmetric sequences [43].

SK1 is the shortest passband CP [44], being geometric rotation gate [45], as SCROFU-
LOUS, also consists of three elementary pulses

SK1 : (θ)0(2π)ϕ1(2π)−ϕ1 , (1.18)
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with parameter ϕ1 = arccos (−θ/4π).
In this thesis we propose analytical and numerical methods for systematic deriva-

tion of CPs, to obtain the required property with better trade-off between operation
run-time and property measure.

1.4 thesis outline

The remainder of this thesis is organized as follows. Chapter 1 provides background
information relevant to the field of research, viz., a detailed discussion of the major
existing contributions of CPs technique in the literature. Chapter 2 details the applic-
ation of the technique into Quantum Computing (QC), especially for the design of
ultrahigh-fidelity composite rotation gates [43]. Chapter 3 details the application of
the technique for the design of ultrahigh-fidelity composite phase gates [46] with the
same method in QC. Chapter 4 summarizes the results of narrowband and passband
CP sequences, applicable to Quantum Sensing (QS). Chapter 5 modernizes the proper-
ties of the technique, opening new horizons for the development of robust ultrasmall
probability transitions with the application to deterministic single-photon emission
in Quantum Information Processing (QIP). Chapter 6 examines the capability of the
technique for ultrarobust or ultrasensitive control. These novel CPs are suitable for
PO applications such as ultrabroadband and ultranarrowband composite polarization
half waveplates [47]. Chapter 7 presents the use of the methodology for the develop-
ment of optical devices, namely broadband nonreciprocal polarization waveplates and
optical isolators [48] in PO. Chapter 8 concludes this thesis.
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C O M P O S I T E P U L S E S F O R R O B U S T

U LT R A H I G H - F I D E L I T Y R O TAT I O N G AT E S

2.1 introduction

Various proposals have been made in order to generate rotation gates that are resili-
ent to experimental errors, at the expense of being longer, and hence slower. Adiabatic
techniques are the traditional remedy for tackling such errors [49] — adiabatic evol-
ution via a half crossing [50–58], half-SCRAP (Stark-chirped rapid adiabatic passage)
[54], two-state STIRAP (stimulated Raman adiabatic passage) [55–57, 59]. An exten-
sion of this half-crossing technique to three states has been experimentally demon-
strated in a trapped-ion experiment, with an error of about 1.4 × 10−4, i.e. close to
the quantum computation benchmark level [58], which was achieved by using pulse
shaping. Another proposal used a sequence of two half-crossing adiabatic pulses split
by a phase jump, which serves as a control parameter to the created superposition
state [60].

In three-state Raman-coupled qubits, a very popular technique is fractional STIRAP
[61–63] and leads to the creation of a coherent superposition of the two end states of
the chain. Tripod-STIRAP [64–66], an extension of STIRAP has also been used for the
generation of coherent superpositions of these three states or two of them. We also
note quantum Householder reflections [67, 68].

A powerful alternative to achieve ultrahigh fidelity while featuring robustness to
parameter errors is the technique of CPs [40, 41]. The CP sequence is a finite train
of pulses with well-defined relative phases between them. These phases are control
parameters, which are determined by the desired excitation profile. CPs can shape the
excitation profile in essentially any desired manner, which is impossible with a single
resonant pulse or adiabatic techniques. In particular, one can create a broadband com-
posite π pulse, which delivers transition probability of 1 not only for a pulse area
A = π and zero detuning ∆ = 0, as a single resonant π pulse, but also in some
ranges around these values [20, 37, 40, 41, 69–77]. Alternatively, narrowband CPs [37,
42, 73, 75, 78–83] squeeze the excitation profile around a certain point in the para-

6
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meter space: they produce excitation that is more sensitive to parameter variations
than a single pulse, with interesting applications to sensing, metrology and spatial
localization. A third family of CPs — passband pulses — combine the features of
broadband and narrowband pulses: they provide highly accurate excitation inside a
certain parameter range and negligibly small excitation outside it [37, 82, 84–87].

CPs have been developed in NMR in the 1980’s. In the last two decades, CPs
have spread out to most experimental QI platforms far beyond NMR. Applications
include qubit control in trapped ions [11–18], neutral atoms [19], doped solids [20–
22], quantum dots [23–28], and NV centers in diamond [29], high-accuracy optical
clocks [30], cold-atoms interferometry [31–33], optically dense atomic ensembles [34],
magnetometry [35], optomechanics [36], etc.

CPs are particularly suitable for QI because they are quite unique in providing both
ultrahigh fidelity and resilience to experimental errors. No other quantum control
method offers this combination of high fidelity and robustness to errors and therefore,
CPs might be the key enabling control technology for high-fidelity qubit operations
which are mandatory in scalable QC.

In this chapter, we present several sets of single-qubit rotation quantum gates con-
structed with CP sequences. Constant-rotation, or phase-distortionless [39], CPs (some-
times called Class A) are obviously more demanding and require longer sequences,
with respect to variable-rotation CPs, for the same order of compensation. However, in
QIP wherein phase relations are essential, constant rotations are clearly the ones to be
used for quantum rotation gates [38].

In this chapter, we focus at the derivation of ultrahigh-fidelity composite rotation
gates, including the X, Hadamard and general rotation, which compensate pulse-area
errors up to eighth order. Our results extend earlier results on some of these gates us-
ing shorter pulse sequences. The first phase-distortionless CP was designed by Tycko
[78] which produces a composite X gate. A second-order error compensation CP was
constructed by Wimperis, the well-known BB1 (broadband of type 1) pulse [37, 74].
Jones and co-workers have devoted a great deal of attention to composite X gates,
with an emphasis of geometric approaches for derivation of such sequences, which
work up to 5 and 7 pulses [38, 88–90]. We point out that our results supplement earlier
results by our and other groups on different gates, i.e. composite quantum phase gate
[91], the CNOT [92–98], Toffoli [99], and Cn-NOT gates [99].

Composite rotation gates have been constructed using nesting and concatenation
of shorter composite sequences, and for larger error order, this procedure produces
(impractical) composite sequences of extreme length. Here we use analytic approaches
and brute-force numerics to derive rotation gates with much shorter sequences than
before.
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This chapter is organized as follows. In Sec. 2.2 we explain the derivation method.
Composite π rotations, representing the X gate are presented in Sec. 2.3. Composite
implementations of the Hadamard gate are given in Sec. 2.4, and composite rotation
gates in Sec. 2.5. Finally, Sec. 2.6 presents the conclusions.

2.2 su(2) approach

The derivation of the composite rotation gates is done in the following manner. A
phase shift ϕ imposed on the driving field, Ω(t) → Ω(t) eiϕ, is imprinted onto the
propagator (1.2) as

Uϕ =

 a b eiϕ

−b∗ e−iϕ a∗

 . (2.1)

A train of N pulses, each with area Ak and phase ϕk (applied from left to right),

(A1)ϕ1(A2)ϕ2(A3)ϕ3 · · · (AN)ϕN , (2.2)

produces the propagator (acting, as usual, from right to left)

U = UϕN(AN) · · ·Uϕ3(A3)Uϕ2(A2)Uϕ1(A1). (2.3)

Let us assume that the nominal (i.e. for zero error) pulse areas Ak have a systematic
error ϵ, i.e. Ak → Ak(1 + ϵ).

Our objective in this chapter is to construct the qubit rotation gate R̂y(θ) = ei(θ/2)σ̂y

(1.4). Under the assumption of a single systematic pulse area error ϵ, we can expand
the composite propagator (2.3) in a Taylor series versus ϵ. Because of the SU(2) sym-
metry of the overall propagator, it suffices to expand only two of its elements, say
U11(ϵ) and U12(ϵ). We set their zero-error values to the target values,

U11(0) = cos(θ/2), U12(0) = sin(θ/2), (2.4)

and we set as many of their derivatives with respect to ϵ, in the increasing order, as
possible,

U (m)
11 (0) = 0, U (m)

12 (0) = 0, (m = 1, 2, . . . , n), (2.5)

where U (m)
jl = ∂m

ϵ Ujl denotes the mth derivative of Ujl with respect to ϵ. The largest
derivative order n satisfying Eqs. (2.5) gives the order of the error compensation O(ϵn).
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2.2.1 Quantum gate fidelity

If Eqs. (2.4) and (2.5) are satisfied, then the overall propagator can be written as

U (ϵ) = R(θ) + O(ϵn+1), (2.6)

with R(θ) = U (0). Then the Frobenius distance fidelity,

F = 1 − ∥U (ϵ)− R(θ)∥ = 1 −
√

1
4 ∑2

j,k=1

∣∣Ujk − Rjk
∣∣2, (2.7)

is of the same error order O(ϵn) as the propagator, F = 1 − O(ϵn+1). As shown by
Jones and co-workers [100] for the composite X gates, the trace fidelity,

FT = 1
2Tr [U (ϵ)R(θ)†], (2.8)

has a factor of 2 higher error order O(ϵ2n), i.e. FT = 1 − O(ϵ2n+1). Throughout this
chapter we shall use the Frobenius distance fidelity (2.7), which is a much more strict
and unforgiving to errors fidelity measure; moreover, its error is of the same order as
the propagator error.

2.2.2 Composite pulse sequences

We have performed extensive numeric simulations which have returned numerous
solutions. We have categorized them in three types of composite sequences, one sym-
metric and two asymmetric.

• Each symmetric sequence consists of a sequence of 2n − 1 nominal π pulses,
sandwiched by two pulses of areas α, with symmetrically ordered phases,

αϕ1πϕ2πϕ3 · · ·πϕn−1πϕn πϕn−1 · · ·πϕ3πϕ2αϕ1 . (2.9)

These sequences generalize the three-pulse SCROFULOUS sequence [38], which
is of this type, to more than three pulses.

• The first type of asymmetric sequences consists of a sequence of nominal π

pulses, preceded (or superseded) by a pulse of area θ,

πϕ1πϕ2πϕ3 · · ·πϕN−1θϕN . (2.10)

These sequences generalize the five-pulse BB1 sequence [37], which is of this
type, to more than five pulses.
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• The second type of asymmetric sequences consists of a sequence of N − 2 nom-
inal π pulses, preceded (or superseded) by single pulses of areas α and β,

αϕ1πϕ2πϕ3 · · ·πϕN−1 βϕN . (2.11)

To the best of our knowledge, this type of composite sequences has not been
reported in the literature hitherto.

2.3 x (not) gate

As it is well known, such a gate (1.5) can be produced by a resonant pulse of temporal
area π. The Frobenius distance fidelity (2.7) reads

F = 1 −
√

2
∣∣∣sin

πϵ

4

∣∣∣ . (2.12)

For comparison, the trace fidelity is

FT = 1 − 2 sin2 πϵ

4
= cos

πϵ

2
. (2.13)

The three types of composite sequences (5.33), (2.10), and (2.11) coalesce into a
single type, a sequence of π pulses. Below we consider these sequences, in the in-
creasing order of error compensation.

2.3.1 First-order error compensation

The careful analysis of Eqs. (2.4) and (2.5) shows that the shortest possible CP which
can compensate first-order errors consists of three pulses, each with a pulse area of π,
and symmetric phases,

πϕ1πϕ2πϕ1 . (2.14)

Solving Eq. (2.4) along with Eq. (2.5) for the first derivatives gives two solutions for
the phases,

π 1
6 ππ 5

6 ππ 1
6 π, (2.15a)

π 5
6 ππ 1

6 ππ 5
6 π. (2.15b)

These two sequences generate the same propagator and hence the same fidelity.
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2.3.2 Second-order error compensation

For sequences of four pulses, it becomes possible to annul the second-order derivat-
ives in Eq. (2.5). A number of solutions exist, some of which are

(2π)3χππ+χπ 1
2 ππ−χ, (2.16a)

ππ+χ(2π)3χππ+χπ 1
2 π, (2.16b)

π 1
2 πππ+χ(2π)3χππ+χ, (2.16c)

π−χπ 1
2 πππ+χ(2π)3χ, (2.16d)

where χ = arcsin
(

1
4

)
≈ 0.0804π. The second and third sequences are related to the

BB1 sequence of Wimperis [37]. Note that all these sequences have a total nominal
pulse area of 5π, and can be considered as five-pulse sequences because the effect of
(2π)3χ is the same as π3χπ3χ.

We have derived also the symmetric sequence

πϕ1πϕ2πϕ3πϕ2πϕ1 , (2.17)

with ϕ1 = arcsin
(
1 −

√
5/8

)
≈ 0.0672π, ϕ2 = arcsin

(
(3
√

10 − 2)/8
)

≈ 0.3854π,
ϕ3 = 2ϕ2 − 2ϕ1 + π/2 ≈ 1.1364π.

We conclude this subsection by noting that the availability of various four- and five-
pulse symmetric and asymmetric sequences which produce the same fidelity is not a
redundancy because they may have rather different sensitivity to phase errors, as has
been shown recently for other composite sequences [101].

2.3.3 Higher-order error compensation

The 2n + 1-pulse sequences have an additional free phase which can be used to make
the composite sequence symmetric as in Eq. (5.33), viz.

πϕ1πϕ2πϕ3 · · ·πϕn−1πϕn πϕn−1 · · ·πϕ3πϕ2πϕ1 . (2.18)

Eqs. (2.4) and (2.5) reduce to a set of n + 1 real trigonometric equations for n + 1 free
phases. There are multiple solutions for the phases for every (2n+ 1)-pulse composite
sequence.

We have derived numerically the composite phases of symmetric sequences of an
odd number of pulses, Eq. (2.18). They are presented in Table 2.1 in the main thesis
The fidelity of these composite X gates is plotted in Figure 2.1. It is clear from the table
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Figure 2.1: Frobenius distance fidelity F (top) and infidelity (bottom) of composite X gates.
The infidelity is in logarithmic scale in order to better visualize the high-fidelity
(low-infidelity) range. The numbers N on the curves refer to composite sequences
XN listed in Table 2.1 in the main thesis.

and the figure that a single pulse has very little room for errors as the high-fidelity
X gate allows for pulses area errors of less than 0.01%. The three-pulse composite
X gate offers some leeway, with the admissible error of 0.8%. The real pulse area
error correction effect is achieved with the composite sequences of 5 to 9 pulses, for
which the high-fidelity range of admissible errors increases from 3.6% to 11.7%. Quite
remarkably, errors of up to 25% can be eliminated, and ultrahigh fidelity maintained,
with the 17-pulse composite X gate. Note that these error ranges are calculated by
using the rather tough Frobenius distance fidelity (2.7). Had we use the much more
relaxed trace distance fidelity (2.8), these ranges would be much broader, see the
numbers for 1, 3 and 5 pulses above.

2.4 hadamard gate

The Hadamard gate (1.6) can be generated by an ideal resonant π/2 pulse, which is,
however, prone to experimental errors. In order to construct the composite Hadam-
ard gate we have considered all three types of composite sequences (5.33), (2.10), and
(2.11). Below we consider these sequences, in the increasing order of error compensa-
tion.
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2.4.1 First-order error correction

The shortest pulse sequence that can provide a first-order error compensated Hadam-
ard gate consists of three pulses,

αϕ1πϕ2αϕ1 . (2.19)

The value of the pulse area α is given by an inverse sinc function of
√

2/π, which
gives α ≈ 0.6399π. Given α, we can find ϕ1 − ϕ2. The values are ϕ1 ≈ 1.8442π and
ϕ2 ≈ 1.0587π. Therefore, this CP reads

(0.6399π)1.8442ππ1.0587π(0.6399π)1.8442π. (2.20)

In term of degrees, it reads 115◦332◦180◦191◦115◦332◦ . This composite sequence is re-
lated to the well-known sequence SCROFULOUS [38]: 115◦62◦180◦281◦115◦62◦ ; the two
sequences can be obtained from each other by adding 90◦ to all phases in our sequence.

2.4.2 Second-order error correction

Second-order error compensation is obtained by a composite sequence of at least 4
pulses. A popular CP is the BB1 pulse of Wimperis [37],

BB1 = (π/2)0πχ(2π)3χπχ, (2.21)

which produces the SU(2) symmetric Splitter gate, with a total pulse area of 4.5π. We
have derived a different, asymmetric four-pulse CP,

H4a = αϕ1πϕ2πϕ3 βϕ4 , (2.22)

where α = 0.7821π, β = 1.3914π, ϕ1 = 1.8226π, ϕ2 = 0.6492π, ϕ3 = 1.2131π, ϕ4 =

0.3071π. This pulse has a total area of about 4.17π, i.e. it is faster than the BB1 pulse.
It is accurate up to the same order O(ϵ2) and produces essentially the same fidelity
profile as BB1.

We have also derived a five-pulse composite Hadamard gate by using the symmetric
sequence

H5s = αϕ1πϕ2πϕ3πϕ2αϕ1 , (2.23)

with α = 0.45π, ϕ1 = 1.9494π, ϕ2 = 0.5106π, ϕ3 = 1.3179π. It delivers again the
second-order error compensation O(ϵ2), however, with a total pulse area of just about
3.9π. Therefore it is considerably faster than the BB1 pulse, by over 13%, while having
a similar performance.
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Figure 2.2: Frobenius distance fidelity (top) and infidelity (bottom) of composite Hadamard
gates produced by using the symmetric composite sequences HNs from Table 2.2
in the main thesis.

2.4.3 Higher-order error correction

Similarly to the second order, the third-order error compensation is obtained in several
different manners, requiring at least 6 pulses. The 6-pulse sequence with the minimal
pulse area of about 5.72π reads

H6a = αϕ1πϕ2πϕ3πϕ4πϕ5 βϕ6 , (2.24)

with α = 0.5917π, β = 1.1305π, and the phases given in Table 2.2 in the main thesis.
The same error correction order is achieved with the symmetric seven-pulse sequence

H7s = αϕ1πϕ2πϕ3πϕ4πϕ3πϕ2αϕ1 , (2.25)

with α = 0.2769π, and the phases given in Table 2.2 in the main thesis. It produces
the same fidelity profile as the 6-pulse sequence but it is a little faster as its pulse area
is about 5.55π. Another seven-pulse composite sequence is built similarly to the BB1
sequence (2.21),

H7w = (π/2)π/2πϕ2πϕ3πϕ4πϕ5πϕ6πϕ7 , (2.26)

with the phases given in Table 2.2 in the main thesis. It achieves the same error order
compensation O(ϵ3), however, with a larger total pulse area of 6.5π compared to the
previous two CPs.
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Fourth-order error compensation is obtained by at least 8 pulses. The 8-pulse sequence
with the minimal pulse area of about 7.40π reads

H8a = αϕ1πϕ2πϕ3πϕ4πϕ5πϕ6πϕ7 βϕ8 , (2.27)

with α = 0.4954π, β = 0.9028π, and the phases are given in Table 2.2 in the main
thesis. The same error correction order is achieved with the symmetric nine-pulse
sequence

H9s = αϕ1πϕ2πϕ3πϕ4πϕ5πϕ4πϕ3πϕ2αϕ1 , (2.28)

with α = 0.2947, with the phases in Table 2.2 (from the PhD thesis (full text)). Its total
pulse area is 7.59π. The BB1-like nine-pulse composite sequence,

H9w = (π/2)π/2πϕ2πϕ3πϕ4πϕ5πϕ6πϕ7πϕ8πϕ9 , (2.29)

with the phases in Table 2.2 (from the PhD thesis (full text)), achieves the same fourth-
order error compensation O(ϵ4), however, with the largest total pulse area of 8.5π

compared to the previous two CPs.
The same pattern is repeated for the longer pulse sequences presented in Table 2.2

(from the PhD thesis (full text)): for the same order of pulse area error compensation,
the fastest sequences, with the smallest total pulse area are either the asymmetric HNa
or symmetric HNs sequences, and the BB1-like sequences HNw are the slowest ones.

The fidelity and the infidelity of the composite Hadamard gates of up to seventh-
order error compensation are plotted in Figure 2.2. Obviously, as the number of pulses
in the composite sequences, and hence the compensated error order, increase the
fidelity and infidelity profiles improve and get broader.

2.5 general rotation gate

2.5.1 First-order error correction

The shortest pulse sequence that can provide a first-order error compensation, as for
the X and Hadamard gates, consists of three pulses,

αϕ1πϕ2αϕ1 . (2.30)

This composite sequence is related to the SCROFULOUS CP [38], as mentioned above.
The values of the pulse area and the composite phases are given in Table 2.3 (from the
PhD thesis (full text)).
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2.5.2 More than three pulses

The five-pulse sequence,
αϕ1πϕ2πϕ3πϕ2αϕ1 , (2.31)

provides a second-order error compensation. The sequences with 7, 9, etc. pulses have
the same structure and deliver an error compensation of order 3, 4, etc. Generally, a
2n + 1-pulse symmetric sequence of this structure delivers an error compensation
up to order O(ϵn). Unfortunately, analytic expressions for the composite parameters
for more than three pulses are hard to obtain, if possible at all. Hence we have de-
rived them numerically and their values are listed in Table 2.3 (from the PhD thesis
(full text)). The fidelity of these sequences behave similarly to the ones for the X and
Hadamard gates.

2.6 comments and conclusions

In this chapter we presented a number of CP sequences for three basic quantum
gates — the X gate, the Hadamard gate and arbitrary rotation gates. The composite
sequences contain up to 17 pulses and can compensate up to eight orders of exper-
imental errors in the pulse amplitude and duration. The short composite sequences
are calculated analytically and the longer ones numerically.
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U LT R A H I G H - F I D E L I T Y P H A S E G AT E S

3.1 introduction

Quantum phase gates, such as the Z gate, the S gate and the T gate are key elements
in any quantum circuit [100, 102, 103]. An arbitrary phase shift at an angle ϕ, being
rotation around z axis, is implemented by at least two resonant π pulses up to an
undetectable global phase (see Eq. (1.8)).

The phase gates can be implemented as the sequences of π rotations. Hence, the
various quantum control techniques and proposals (see Introduction 2.1 in Chapter 2)
that make rotation gates error-resilient, are applicable in this context. Application of
CPs to produce well-defined phase shifts of the two states of a qubit is presented in
[91]. Here, similarly, we apply CPs to produce composite phase gates [46]. We use
analytic approaches and brute-force numerics to derive composite sequences for Z,
S, T and general phase gates, which achieve error compensation of up to 8th order.
Compensating both major and minor diagonal elements in general phase gate matrix,
we also ensure that these CPs are phase-distortionless.

This chapter is organized as follows. In Sec. 3.2 we explain the derivation method.
Design and performance of phase gates are presented in Sec. 3.3. Finally, Sec. 3.4
presents the conclusions.

3.2 su(2) approach

We set zero-error values to the target values,

U11(0) = e−iϕ/2, U12(0) = 0, (3.1)

and we set as many of their derivatives with respect to ϵ, in the increasing order, as
possible,

U (m)
11 (0) = 0, U (m)

12 (0) = 0, (m = 1, 2, . . . , n). (3.2)

17
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The largest derivative order n satisfying Eqs. (3.2) gives the order of the error com-
pensation O(ϵn).

3.3 broadband composite phase gates

3.3.1 Design for composite phase gates

Based on numerical evidence, we consider symmetric type (in pulse areas) of CP
sequences, designed by π pulses.

Each symmetric sequence consists of a sequence of 2n + 2 nominal π pulses, with
asymmetrically ordered phases,

πνπν+ϕ1πν+ϕ2 · · ·πν+ϕn · πν+π− 1
2 ϕπν+ϕ1+π− 1

2 ϕπν+ϕ2+π− 1
2 ϕ · · ·πν+ϕn+π− 1

2 ϕ, (3.3)

equivalent to

πν+π+ 1
2 ϕπν+ϕ1+π+ 1

2 ϕπν+ϕ2+π+ 1
2 ϕ · · ·πν+ϕn+π+ 1

2 ϕ · πνπν+ϕ1πν+ϕ2 · · ·πν+ϕn . (3.4)

From an infinite number of solutions, we choose solutions of the type (3.3) and with
a free parameter ν = 0, as the choice of relative phases ϕ1, ϕ2, . . . , ϕn is of importance.
Henceforth, we target and use a form

π0πϕ1πϕ2 · · ·πϕn · ππ− 1
2 ϕπϕ1+π− 1

2 ϕπϕ2+π− 1
2 ϕ · · ·πϕn+π− 1

2 ϕ, (3.5)

and other possible solutions can be obtained by choosing an arbitrary parameter ν in
(3.3) or/and by passing to the type (3.4).

3.3.2 General Phase-shift gate

As it is well known, such a gate can be produced by two resonant pulses of total
temporal area 2π (see (1.8) with ν = 0). The Frobenius distance fidelity (2.7) reads for
phase-shift gate F(ϕ) = U (0)

F = 1 −
√

2
∣∣∣sin

πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ . (3.6)

For comparison, the trace fidelity is

FT = 1 − 2 sin2 πϵ

2
sin2 ϕ

4
. (3.7)
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Figure 3.1: Frobenius distance fidelity F (top) and infidelity (bottom) of composite Z gates.
The infidelity is in logarithmic scale in order to better visualize the high-fidelity
(low-infidelity) range. The numbers N on the curves refer to CP sequences ZN
listed in the Table 3.1 in the main thesis.

3.3.2.1 First-order error compensation

The careful analysis of Eqs. (3.1) and (3.2) shows that the shortest possible CP which
can compensate first-order errors (both in major and minor diagonal elements) con-
sists of four pulses, each with a pulse area of π, and asymmetric phases, with the
structure similar to the two pulses,

π0πϕ1ππ− 1
2 ϕπϕ1+π− 1

2 ϕ. (3.8)

Solving Eq. (3.1) along with Eq. (3.2) for the first derivatives gives two solutions for
the phases,

π0π− 1
4 ϕππ− 1

2 ϕπ 3
4 π− 1

2 ϕ, (3.9a)

π0π 3
4 ϕππ− 1

2 ϕπ 7
4 π− 1

2 ϕ. (3.9b)

These two sequences generate the same propagator and hence the same fidelity.
Both the Frobenius and the trace distance fidelities depend on the phase flip angle

ϕ. The pulse area intervals for the four-pulse composite S4 gates are larger than for
the four-pulse composite Z4 gates and smaller than for the four-pulse composite T4
gates. This monotonic pattern persists for longer sequences as well.
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Figure 3.2: Frobenius distance fidelity F (top) and infidelity (bottom) of composite S gates. The
infidelity is in logarithmic scale in order to better visualize the high-fidelity (low-
infidelity) range. The numbers N on the curves refer to CP sequences SN listed in
the Table 3.2 in the main thesis.

3.3.2.2 Second-order error compensation

For sequences of six-π pulses, it becomes possible to annul also the second-order
derivatives in Eq. (3.2). Design of this asymmetric sequence make it possible to derive
analytic solutions

πϕ0πϕ1πϕ2πϕ0+π− 1
2 ϕπϕ1+π− 1

2 ϕπϕ2+π− 1
2 ϕ, (3.10)

The careful analysis of these type of sequences shows that they can be written in a
compact form as

πχ(2π)0πχ+π− 1
2 ϕ(2π)π− 1

2 ϕ, (3.11a)

ππ+ 1
2 ϕ−χ(2π)0π−χ(2π)π− 1

2 ϕ, (3.11b)

(2π)0ππ− 1
2 ϕ+χ(2π)π− 1

2 ϕπ−ϕ+χ, (3.11c)

(2π)0π−χ(2π)π− 1
2 ϕπ−χ+π− 1

2 ϕ, (3.11d)

where χ = 1
4 ϕ + arcsin

(
1
2 sin

(
1
4 ϕ

))
.
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3.3.2.3 Third-order error compensation

Nullification of the third-order derivatives in Eq. (3.2) as well, requires eight-π pulses.
Here, in contrast to the rotation gates, the composite phase gates with eight pulses

πϕ0πϕ1πϕ2πϕ3πϕ0+π− 1
2 ϕπϕ1+π− 1

2 ϕπϕ2+π− 1
2 ϕπϕ3+π− 1

2 ϕ, (3.12)

can be simplified giving analytic solutions. Careful analysis of these type of sequences
shows that they can be written in a compact form as

πχ(2π)0πχ+π− 1
4 ϕπχ+π− 1

2 ϕ(2π)π− 1
2 ϕπχ− 3

4 ϕ, (3.13a)

π−χ+π+ 1
4 ϕ(2π)0π−χπ−χ− 1

4 ϕ(2π)π− 1
2 ϕπ−χ+π− 1

2 ϕ, (3.13b)

(2π)0πχ+π− 1
4 ϕπχ+π− 1

2 ϕ(2π)π− 1
2 ϕπχ− 3

4 ϕπχ−ϕ, (3.13c)

(2π)0π−χπ−χ− 1
4 ϕ(2π)π− 1

2 ϕπ−χ+π− 1
2 ϕπ−χ+π− 3

4 ϕ, (3.13d)

πχ+ 1
4 ϕπχ(2π)0πχ+π− 1

4 ϕπχ+π− 1
2 ϕ(2π)π− 1

2 ϕ, (3.13e)

π−χ+π+ 1
2 ϕπ−χ+π+ 1

4 ϕ(2π)0π−χπ−χ− 1
4 ϕ(2π)π− 1

2 ϕ, (3.13f)

where χ = 1
8 ϕ + arcsin

(
1
2 sin

(
1
8 ϕ

))
.

3.3.2.4 Higher-order error compensation

For CP sequences of more than eight-π pulses, the equations for the composite phases
quickly get very bulky and unattainable to guess analytically. General form for these
sequences is (3.5).

They reiterate the pattern of the sequences of four, six and eight pulses above: the
CP sequences of 2n + 2 pulses have a total pulse area of (2n + 2)π, with all pulses
in the sequence being nominal π pulses. Sequences of 2n + 2 pulses produce error
compensation of the order O(ϵn) and fidelity profiles

F ∼= 1 −
√

2
∣∣∣sinn+1 πϵ

2

∣∣∣ ∣∣∣∣sin
ϕ

4

∣∣∣∣ , (3.14a)

FT
∼= 1 − 2 sin2n+2 πϵ

2
sin2 ϕ

4
, (3.14b)

where fidelities are sensitive to the choice of the composite phases and are approxim-
ately equal to their precise values.

We have derived numerically the composite phases of this type of sequences of an
even number of pulses. They are presented in Tables 3.1, 3.2 and 3.3 in the main thesis
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Figure 3.3: Frobenius distance fidelity F (top) and infidelity (bottom) of composite T gates. The
infidelity is in logarithmic scale in order to better visualize the high-fidelity (low-
infidelity) range. The numbers N on the curves refer to CP sequences TN listed in
the Table 3.3 in the main thesis.

for Z, S and T gates correspondingly. The fidelities of these composite Z, S and T gates
are plotted in Figures 3.1, 3.2, 3.3 respectively.

It can be seen from the tables and figures that two pulses have very little room for
error, since high-fidelity Z, S and T gates allow pulse area errors of less than 0.01%,
about 0.01%, about 0.02%, respectively. The four-pulse composite phase gate offers
some leeway, with the admissible error of 0.6%, 0.9% and 1.2% for Z, S and T cases.
The significant pulse area error correction effect is achieved with the CP sequences of
6 to 10 pulses, for which the high-fidelity range of admissible errors increases from
3% to 10.1% for Z, from 3.6% to 11.5% for S, and from 4.5% to 13.1% for T. Quite
notably, errors of up to 23.4%, 25.1% and 27.1% can be eliminated for Z, S and T, and
ultrahigh fidelity maintained, with the 18-pulse composite phase gate. Table 3.4 in the
main thesis presents composite pulse parameters of general phase gates for different
phase angles.

3.4 comments and conclusions

In this chapter we presented a number of CP sequences for four basic quantum gates
— the Z gate, the S gate, the T gate and general phase gates. The CP sequences contain
up to 18 pulses and can compensate up to eight orders of experimental errors in the
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pulse amplitude and duration. The short CP sequences (up to 8 pulses) are calculated
analytically and the longer ones numerically.

Similar class of asymmetric CP sequences for phase gates is derived in [91], where
they are build from the θ rotation gates, having twice of total pulse area of them
(similar to nesting approach). For this reason, four, eight, twelve, and sixteen CPs
are missing, but six, ten, fourteen, and eighteen CPs are given by the simple analytic
formula (are more convenient to apply) and have performance equal to the composite
gates shown in this chapter. This does not apply to composite phase gates constructed
by the universal CPs [77] in [91].

Besides all, the results presented in this chapter can be applied into PO to obtain
broadband polarization rotators using stacked single polarization half-wave plates
with the optical axes rotated by precisely chosen rotation angles (composite phases).
It is able to be done due to quantum-classical analogy of composite rotations on the
Bloch and the Poincaré spheres (cf. 6.2). Hereby, we demonstrate the possibility to
design the broadband polarization rotators with π/2, π/4, π/8 and arbitrary phase
shift angles, by up to 18 CP sequences.



4
N A R R O W B A N D A N D PA S S B A N D

C O M P O S I T E P U L S E S : A P P L I C AT I O N T O

Q U A N T U M S E N S I N G

4.1 introduction

Although CPs, first, have been used in PO [1, 2], the name, classification and de-
velopment of the technique belongs to the area of NMR [37, 40, 41, 69, 70, 73, 104,
105]. Being efficient and versatile control technique, CPs may easily adapt to vari-
ous requirements. This feature manifests in the wide range of applications in both
quantum and classical physics — qubit control in trapped ions [11–15, 17, 18], neutral
atoms [19], doped solids [20, 21], NV centers in diamond [29, 106], and quantum dots
[23–26], high-accuracy optical clocks [30], cold-atom interferometry [31–33], optically
dense atomic ensembles [34], magnetometry [35], optomechanics [36], Josephson junc-
tions [107], magnetic resonance imaging (MRI) [108], NMR quantum computation
[109], entanglement generation [106], teleportation [11, 110, 111], molecular spectro-
scopy [112] etc. The possibility of applying a deep neural network for design of CPs
is distinguished by its modernity [113].

Constant rotation CPs are independent of the initial state and not permit distor-
tions of the phase of the overall propagator in the rotation axis over a wide error
band, if not over the entire error range. Combining in one word, they are “universal”
over the entire Bloch sphere, which, for instance, makes them applicable to quantum
computation [43]. In NMR and magnetic resonance imaging (MRI), constant rotations
are often used in advanced, phase-sensitive (require phase cycling) two-dimensional
NMR experiments, like COSY [114] and TOCSY, providing a powerful tool for the
determination of the chemical structure of molecules.

This chapter is organized as follows. In Sec. 4.2 we explain the derivation meth-
ods. Composite X gates are presented in Sec. 4.3, while composite Hadamard gates
in Sec. 4.4. Sec. 4.5 is devoted to the general rotation gates. The last-mentioned three
sections are divided into two subsections, presenting narrowband and passband rota-
tions. Finally, Sec. 4.6 presents the conclusions.

24
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Figure 4.1: Frobenius distance fidelity (top) and infidelity (bottom) of composite X gates pro-
duced by the antisymmetric composite sequences AN-m designed by the regular-
ization method from the Table 4.2 in the main thesis.

4.2 derivation

We are dealing with the propagator (1.2) with SU(2) symmetry, where A represents the
temporal pulse area A =

∫ t f
ti

Ω(t)dt in quantum optics, the pulse width or amplitude
θ in NMR, and the phase shift φ = 2πL(n f − ns)/λ [115] in PO. Without loss of
generality of the problem, we will use the terminology of QC.

4.2.1 Narrowband composite pulses

4.2.1.1 SU(2) approach

Here, we set as many of their derivatives with respect to ϵ at ±1, in the increasing
order, as possible,

U (m)
11 (±) = 0, U (m)

12 (±) = 0, (m = 1, 2, . . . , ns). (4.1)

Derivation of the NB CPs requires the solution of Eqs. (2.4) and (4.1). We do this
numerically by using standard routines in Mathematica: we minimize the following
loss or error function of optimization

E = E0 +
ns

∑
k=1

[
|U (k)

11 (−)|2 + |U (k)
11 (+)|2 + |U (k)

12 (−)|2 + |U (k)
12 (+)|2

]
, (4.2)
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Figure 4.2: Frobenius distance fidelity (top) and infidelity (bottom) of composite narrowband
Hadamard gates produced by the four families of composite sequences from the
Table 4.3 in the main thesis.

where the initial condition (targeted gate) is captured by E0 = |U11(0)− cos θ/2|2 +
|U12(0)− sin θ/2|2, and ns is the narrowness or sensitivity order.

4.2.1.2 Modified-SU(2) approach

Major and minor diagonal elements of SU(2) matrix are related |U11(ϵ)|2 + |U21(ϵ)|2 =

1, being Cayley-Klein parameters. Due to this dependence, optimization of one will
directly narrower the other one. To ensure the stability of the phase of constant rota-
tion, we optimize the minor diagonal element. So, the loss function is the following

E = E0 +
2ns

∑
k=1

[
|U (k)

12 (−)|2 + |U (k)
12 (+)|2

]
. (4.3)

Modified SU(2) approach works for X gate or π rotations, and give better results than
by using SU(2). The number of derivatives optimized by both methods is equal, but
by this method the minor element (of the actual gate matrix) U21(ϵ) is optimized by
the order of 2ns, two times the sensitivity order.
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4.2.2 Passband composite pulses

4.2.2.1 SU(2) approach

As already mentioned, PB CPs have the properties of both BB and NB CPs. In addition
to the narrowband property (4.1), we add broadband property

U (k)
11 (0) = 0, U (k)

12 (0) = 0, (k = 1, 2, . . . , nr), (4.4a)

U (m)
11 (±) = 0, U (m)

12 (±) = 0, (m = 1, 2, . . . , ns). (4.4b)

Now, in addition to sensitivity order ns in Eq. (4.4b), we also have nr which is the
largest derivative order satisfying Eq. (4.4a) and gives the order of robustness O(ϵnr).
Pulse sequence with any combination of ns and nr both greater than one is passband.
Therefore, we examine two types of passband CPs, namely

• pari passu passband CPs, for which robustness and sensitivity orders are equal
and define the passband order np = nr = ns,

• diversis passuum passband CPs, for which one of the above properties is superior
to the other nr ̸= ns.

Derivation of the PB CPs requires the solution of Eqs. (2.4), and (4.4). We do this
numerically by using standard routines in Mathematica: we minimize the following
loss function of optimization

E = E0 +
nr

∑
k=1

[
|U (k)

11 (0)|2 + |U (k)
12 (0)|2

]
+

+
ns

∑
k=1

[
|U (k)

11 (−)|2 + |U (k)
11 (+)|2 + |U (k)

12 (−)|2 + |U (k)
12 (+)|2

]
.

(4.5)

4.2.2.2 Regularization approach

Results obtained by the SU(2) method of derivation besides SK1 and PB1, had wiggles
on the edges, arising negative fidelity. The optimization method, alternative to SU(2),
is more flexible and gives better results is a regularization method

E = E0 +
2np

∑
k=1

[
|F (k)

T (0)|2 + |F (k)
T (−)|2 + |F (k)

T (+)|2
]
+

+ λ
[
|U ′

11(0)|2 + |U ′
12(0)|2 + |U ′

11(+)|2+

+ |U ′
11(−)|2 + |U ′

12(+) + |U ′
12(−)|2

]
,

(4.6)
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Figure 4.3: Frobenius distance fidelity (top) and infidelity (bottom) of composite passband X
gates produced by PN (pari passu) sequences from the Table 4.4 in the main thesis.
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Figure 4.4: Frobenius distance fidelity (top) and infidelity (bottom) of composite passband X
gates produced by DN (diversis passuum) sequences from the Table 4.6 in the main
thesis.

where 2np orders of narrowness/broadness of trace fidelity of SU(2) matrix are optim-
ized, which is equivalent to the optimization of SU(2) matrix elements by the order of
np (two times lower). A regularizer λ ̸= 0 constrains the result to be constant rotation
and without unnecessary wiggles. In our optimization, it is taken λ = 1.
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4.2.3 Performance measures

Since we consider constant rotations, the fidelities can not be negative, while it can be
the case for CPs alternating at the bottom, i.e. like NB2 and PB2. Since we do not have
alternations or wiggles of the fidelity and the minimum of fidelity is at it’s boundaries
ϵ = ±1 and depends on the θ parameter

[FT(θ)]min = [FT(θ)]ϵ=±1 = cos
θ

2
, (4.7a)

[F (θ)]min = [F (θ)]ϵ=±1 = 1 −
√

1 − cos
θ

2
. (4.7b)

We propose to use the measure ∆(α0) = |ϵ (F = α0)| − |ϵ (F = 1 − α0)| of the rect-
angularity of passband CPs. In our case for rotation gates, we choose α0 equal to
10−4, which corresponds to the quantum computation benchmark, and rectangularity
measure ∆ ∆

= ∆(10−4) is the difference between absolute errors at UL-(ultralow) and
UH-fidelities (ultrahigh). Since the slope coefficient (is approximated by a straight line
tan β0 ≃ ∆F

∆(α0)
= 1−2α0

∆(α0)
) is inversely proportional to ∆, hence, smaller ∆, higher the

rectangularity of the fidelity line.

4.3 x gate

4.3.1 Narrowband

We set two appropriate designs of CPs — antisymmetric AN and Wimperis-kind WN,
both are the sequences of π pulses.

If we target pure π composite rotations (ϕ = 0), AN has the following structure or
design

πϕ1πϕ2 · · ·πϕns πϕns+1π−ϕns · · ·π−ϕ2π−ϕ1 , (4.8)

and consists of the odd number of π pulses, which besides the middle one, have
phases with equal absolute value but with opposite signs when tracking from the left
to right and from the right to left. Since we target X gate (ϕ = π/2), π/2 is added to
all phases with both minus and plus signs ±ϕk → ±ϕk + π/2.

Again, for π composite rotations (ϕ = 0), WN design looks more interpretable

πϕ1πϕ2πϕ3 · · ·πϕns+1πϕns+1 · · ·πϕ3πϕ2 , (4.9)

and consists of the odd number of π pulses, where, besides the first pulse, the second
half of the structure is a mirror image of the first half, i.e. in the second half, phases
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are written in the opposite direction. Again, since we target X gate (ϕ = π/2), π/2 is
added to all phases ϕk → ϕk + π/2.

Lowest member of WN is the well-known NB1 pulse of Wimperis (W5), hence the
name of the design. AN and WN CPs for X gate derived by SU(2) approach are listed
in Table 4.1 in the main thesis. Curiously, for X gate or π rotation, the modified-SU(2)
approach improves the results obtained by the SU(2) method. We derived up to 13
CPs by this method, called AN-m, which have the same antisymmetric design of AN.

4.3.2 Passband

4.3.2.1 Pari passu

Difficulty of derivation of the passband rotation gates is manifested in the appear-
ance of alternation in fidelity (deriving by SU(2)), not established by the derivation
method, exhibiting their tenderness. This problem can be solved by using a regular-
ization method, instead of the strict SU(2) method. Despite that it was possible to
derive SK1 and PB1 as the first and second order pari passu passband pulses, respect-
ively (wiggles arise for longer sequences). In both methods, the design of pari passu
passband pulses is the same

πϕ1(2π)ϕ2(2π)ϕ3 · · · (2π)ϕN . (4.10)

Sequences obtained by regularization method PN for X gate are listed in Table 4.4
in the main thesis. Increasing the number of pulses, performance measures, namely,
sensitivity, robustness and rectangularity, improve regularly.

4.3.2.2 Diversis passuum

Heterogeneous optimization of broadband and narrowband properties generates an-
other type of passband pulses, called diversis passuum, which can be derived using
SU(2) method, denoted as DN

πϕ1πϕ2 · · ·πϕN , (4.11)

which don’t have special design in general, although for the lowest members D7a and
D7b phases have a simple structure (see Table 4.6 in the main thesis).
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Figure 4.5: Frobenius distance fidelity (top) and infidelity (bottom) of composite passband
Hadamard gates produced by PN (pari passu) sequences from the Table 4.5 in the
main thesis.

4.4 hadamard gate

4.4.1 Narrowband

For optimization of non-π rotations, the SU(2) method is used. Four designs or struc-
tures can be used to derive narrowband Hadamard gate — antisymmetric 1st type
and 2nd type, Wimperis-kind and asymmetric, general structure of which liberally
presented in Sec. 4.5.1. Corresponding members of these four families are displayed
in Table 4.3 in the main thesis and Fig. 4.2.

4.4.2 Passband

Pari passu passband PN CPs for Hadamard gate have the structure presented in
Sec. 4.5.2 and are displayed in Table 4.5 in the main thesis.

Diversis passuum passband DN CPs for Hadamard gate have the structure presen-
ted in Sec. 4.5.2 and are displayed in Table 4.7 in the main thesis.



32 narrowband and passband composite pulses : application to quantum sensing

4.5 general rotation gate

4.5.1 Narrowband

Generalization of AN CPs, i.e. antisymmetric sequencese of 1st type, have the follow-
ing structure in general presented by θ parameter(

π − θ

2

)
ϕ0

πϕ1 · · ·πϕns πϕns+1π−ϕns · · ·π−ϕ1

(
π − θ

2

)
−ϕ0

. (4.12)

When targeting general rotation gates (ϕ = π/2), as usual, this π/2 phase change
must be done for all the components in the structure. For non-π rotations the number
of pulses is N = 2ns + 3, where ns is the sensitivity order. In the case of π rotations
(θ = π) we transition to the Eq. (4.8), where one gets rid of the first and the last
pulses (being zero rotations), hence ϕ0, and the number of constituent pulses becomes
N = 2ns + 1. General formula for the number of pulses and total operation time can
be presented using a step function σ,

N(θ) = 2ns + 1 + 2σ(θ), (4.13a)

Atot(θ) = N(θ)π − 2θ, (4.13b)

σ(θ) =

1 if θ ∈ (0, π),

0 if θ = π.
(4.13c)

Alternatively, one may use 2nd type of antisymmetric design ATN

αϕ1πϕ2 · · ·πϕns+1π−ϕns+1 · · ·π−ϕ2α−ϕ1 , (4.14)

where the all phase structure is added by π/2 to obtain a general rotation gate.
Two asymmetric sequences are also useful for general rotation gates, Wimperis-kind

and just asymmetric. Wimperis-kind WN design, written for ϕ = 0, is

θϕ1πϕ2 · · ·πϕ2ns+1 . (4.15)

Since the sequence of π pulses in the CP carry the optimization process and seeds
a stable design, the most fictitious asymmetric pulse may have the following design

αϕ1πϕ2πϕ3 · · ·πϕ2ns−1πϕ2ns
βϕ2ns+1 , (4.16)

denoted as ASN. Sometimes, it is possible to find the best trade-off in speed and
accuracy by these sequences. Good example is AS9 in Table 4.3 in the main thesis.
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Figure 4.6: Frobenius distance fidelity (top) and infidelity (bottom) of composite passband
Hadamard gates produced by DN (diversis passuum) sequences from the Table 4.7
in the main thesis.

4.5.2 Passband

Pari passu passband rotation gates PN are subjected to the following design (ϕ = π/2
must be added to all the phases)

θϕ1(2π)ϕ2(2π)ϕ3 · · · (2π)ϕ2np+1 , (4.17)

which can be considered as the generalization of the SK1:

θ0(2π)χ(2π)−χ, (4.18)

where χ = arccos
(
− θ

4π

)
, and the PB1:

θ0(2π)χ(2π)−χ(2π)−χ(2π)χ, (4.19)

where χ = arccos
(
− θ

8π

)
.

Diversis passuum passband rotation gates DN have the design similar to (4.15)

θϕ1πϕ2 · · ·πϕ2(nr+ns)+1 , (4.20)

but here the number of pulses is equal to N = 2(nr + ns) + 1.
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4.6 conclusions

We presented CPs which produce narrowband and passband rotational single-qubit
gates, namely — X, Hadamard and general rotation gates.

Three types of optimization methods were used — SU(2), modified-SU(2), and reg-
ularization. The antisymmetric A5-m pulse outperforms well-known NB1 — FWHM
of A5-m is about 42.8%, which is narrower than FWHM of NB1 49.4% of whole error
bandwidth.

We propose two types of passband CPs — pari passu PN, with passband order, and
diversis passuum DN, with different sensitivity and robustness orders.

The results in this chapter can be useful in applications such as spatial localization
in in vivo NMR spectroscopy, selective and local spatial addressing of trapped ions or
atoms in optical lattices by tightly focused laser beams in QS, narrowband polarization
filters and passband polarization retarders in PO.



5
C O M P O S I T E S E Q U E N C E S F O R

U LT R A S M A L L T R A N S I T I O N P R O B A B I L I T Y:

A P P L I C AT I O N T O D E T E R M I N I S T I C

S I N G L E - P H O T O N E M I S S I O N

In some applications of quantum control, it is necessary to produce very weak excit-
ation of a quantum system. Such an example is presented by the concept of single-
photon generation in cold atomic ensembles or doped solids, e.g. by the DLCZ pro-
tocol, for which a single excitation is shared among thousands and millions atoms or
ions. Another example is the possibility to create huge Dicke state of N qubits sharing
a single or a few excitations. Other examples are using tiny rotations to tune high-
fidelity quantum gates or using these tiny rotations for testing high-fidelity quantum
process tomography protocols. Ultrasmall excitation of a quantum transition can be
generated by either a very weak or far-detuned driving field. However, these two
approaches are sensitive to variations in the experimental parameters, e.g. the trans-
ition probability varies with the square of the pulse area. Here we propose a different
method for generating a well-defined pre-selected very small transition probability
— of the order of 10−2 to 10−8 — by using composite pulse sequences. The method
features high fidelity and robustness to variations in the pulse area and the pulse
duration.

5.1 introduction

In almost all applications of quantum control, the focus is either on complete popula-
tion inversion (known as X gate in quantum information) or half excitation (known as
Hadamard or

√
X gate in quantum information). These are produced most often by

resonant excitation by π and π/2 pulses, but adiabatic and composite methods have
also been used. These methods have different advantages and shortcomings. For in-
stance, resonant excitation is the fastest method and is very accurate if the parameter
values are very precise [116, 117], but it is sensitive to parameter variations. Adiabatic

35
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methods [49, 59] are robust to experimental errors but are slow and it is difficult to
reach high accuracy with them. (A cure is offered by the “shortcuts-to-adiabaticity”
approach [118], but it comes with the necessity of accurate pulse shaping or addi-
tional fields.) Composite pulses — trains of pulses with well-defined relative phases
used as control parameters [40, 41] — sit somewhere in the “sweet spot” as they fea-
ture extreme accuracy and robustness, while being significantly faster than adiabatic
methods (but slower than resonant excitation by a factor of 2-3 or more).

However, quantum control offers the opportunity for partial excitation with any
transition probability, rather than just 1 and 1

2 . For instance, there are applications
in which a very small transition probability is required. One prominent example is
the DLCZ protocol for single-photon generation in an ensemble of ultracold atoms
or in a doped solid and its variations and extensions [119–125]. Single photons are
the physical platform for such advanced technologies as quantum communications
[126–130] and photonic quantum computing [131–134]. In this protocol, a three-level
Raman system |g1⟩ ↔ |e⟩ ↔ |g2⟩ is used. In the writing process, the atomic transition
|g1⟩ ↔ |e⟩ is excited with a very low probability by an off-resonant laser pulse with
a wave vector

−→
kw, such that a single (or a few) atomic excitation is stored in the

ensemble as a shared excitation by all atoms. Then collective spontaneous emission
on the transition |e⟩ → |g2⟩ occurs at a random time, in which a (Stokes) photon is
emitted in a random direction. However, a single-photon detector is placed along a
particular spatial direction and any click in it is considered as a “heralded” photon,
with a well-defined wave vector

−→
ks . In the reading process, a resonant laser pulse with

a wave vector
−→
kr is applied on the atomic transition |g2⟩ ↔ |e⟩, which stimulates

the emission of a (anti-Stokes) photon on the pump transition |e⟩ → |g1⟩, in a well-
defined spatial direction

−→
ka , determined by the phase-matching condition

−→
ka =

−→
ks +

−→
kw −

−→
kr . In this protocol, one of the crucial conditions is to be able to produce only

one shared excitation among a large number of atoms N, i.e. a driving field which
generates a transition probability of 1/N is needed.

Another example is the possibility to create huge entangled Dicke states [135]. These
very special states share a fixed number of excitations n evenly among N qubits, a
special case of which (for n = 1) is the W state. A prominent feature of the Dicke states
is that they are immune against collective dephasing, which is ubiquitous in various
systems. Therefore, the Dicke sub-space, which is N!/n!(N − n)!-dimensional, can
be used as a decoherence-free computational subspace [136–138]. Dicke states possess
genuine multi-partite entanglement [139, 140], which is, moreover, very robust against
particle loss [141–143]: the loss of a qubit reduces the N-dimensional Dicke state to a
N − 1-dimensional one. Dicke states have been proposed and demonstrated in various
physical systems, including ensembles of neutral atoms [144, 145], trapped ions [146–
149], quantum dots [150], and using linear optics [145, 151]. Many of these proposals
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and demonstrations have various restrictions, as they cannot create arbitrary but only
particular Dicke states, individual qubit addressing is required, the number of the
necessary physical interactions scales very fast with N, a special initial (Fock) state is
required, insufficient efficiency, very long interaction times, etc. Composite pulses of
ultrasmall probability offer a direct path toward the creation of large Dicke states as
they can produce a specific number of shared excitations among large-N ensembles
of qubits.

A third example when a well-defined small transition probability is needed arises
when fine tuning quantum gates: in order to reach ultrahigh gate fidelity a rotation
gate at a well-defined tiny angle can be very useful. Moreover, such small rotations
alone can be used to test the accuracy of various quantum process tomography proto-
cols.

In this paper, we address this specific problem by designing composite pulse se-
quences, which seem to be the only quantum control technique capable to generate
a tiny transition probability that is robust to variations of the experimental paramet-
ers. The dominant majority of composite pulses in the literature are designed to pro-
duce specific rotations on the Bloch sphere, typically at angles π (generating com-
plete population transfer), π/2 (half population transfer), π/4 and 3π/4, as reviewed
in Refs. [40, 41]. There exist just a few composite sequences which produce general
rotations at arbitrary angles [37, 43, 73, 74, 83, 152]. Some of them can be used for
the present task of ultrasmall probability and they are listed below, along with many
newly derived composite sequences.

Composite rotations are broadly divided into two large groups called variable
and constant rotations. The variable rotations [40, 83, 152] feature well-defined
transition probability but not well-defined phases of the propagator. Constant (or
phase-distortionless rotations) feature both well-defined populations and well-defined
phases of the propagator [37, 73, 74]. There are large markets for either of these, with
only constant rotations being suitable for quantum gates. However, they are much
more demanding to generate and much longer than variable rotations, for the same
order of error compensation. This will be clearly seen below as we consider one type
of constant rotations and two types of variable rotations.

After a description of the derivation method we present specific composite se-
quences of 2, 3 and 4 pulses, many of which have analytic expressions for the com-
posite parameters, and then proceed to longer sequences.

5.2 the method

We wish to construct composite pulses, which produce a very low probability of trans-
ition between two states |1⟩ → |2⟩, in an efficient and robust manner. Such composite
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pulses are known as θ-pulses, as they produce a transition probability p = sin2(θ/2).
In the NMR literature one can find a number of θ pulses for θ = π/4 (called 45◦

pulses), θ = π/2 (called 90◦ pulses), and θ = 3π/4 (called 135◦ pulses). Very few
general formulae for an arbitrary value of θ exist in the literature. In our case we need
composite pulses, which produce transition probability p = 1/N ≪ 1, which implies
θ ≪ 1. Such composite pulses are designed here.

Each pulse in a composite sequence is considered resonant and hence it generates
the propagator

U(A, ϕ) =

 cos(A/2) −ieiϕ sin(A/2)

−ie−iϕ sin(A/2) cos(A/2)

 , (5.1)

where ϕ is the phase of the coupling. The overall propagator for a sequence of n
pulses,

(A1)ϕ1(A2)ϕ2 · · · (An)ϕn , (5.2)

each with a pulse area Ak and phase ϕk, reads

Un = U(An, ϕn)U(An−1, ϕn−1) · · ·U(A2, ϕ2)U(A1, ϕ1), (5.3)

which, by convention, acts from right to left. One of the phases is always irrelevant
for the physically observed quantities (it is related to the global phase of the wave-
function), and can be set to zero. As such, we always choose the first phase: ϕ1 = 0. In
other words, all other phases are relative phases of the respective pulse to the phase
of the first pulse.

The pulse areas Ak and the phases ϕk are the control parameters, which are selected
from the conditions that the transition probability,

P = |U12|2, (5.4)

has a specific target value p and it is robust to variations ϵ in the pulse area Ak(1+ ϵ).
The error-free values of the pulse areas Ak are called nominal values. The relative
error ϵ is assumed to be the same for all pulses in the composite sequence. This is
reasonable if they are derived from the same source, which is usually the case.

The multiplication of the two-dimensional matrices in Eq. (5.3) leads to rapidly
growing expressions. Still, these are far more manageable than the ones coming from
the three-dimensional matrices in the usual Bloch-vector derivation of composite se-
quences.

One can proceed in two directions.
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• One possibility is to expand the transition probability of Eq. (5.4) in a Taylor-
Maclaurin series vs ϵ. The coefficients in this series are functions of all Ak and
ϕk (k = 1, 2, . . . , n). We nullify as many of the first few such coefficients (i.e.
derivatives vs ϵ) as possible, which generate a set of equations for Ak and ϕk.
The result is a transition probability with a Taylor-Maclaurin series expansion

P(ϵ) = p + O(ϵm), (5.5)

where p is the target value. We say that the respective composite sequence is
accurate up to order O(ϵm). We shall first present such composite sequences,
which are known as variable rotations in NMR and allow to easily reach error
compensation of very high order.

• Alternatively, one can take the propagator elements U11 = U∗
22 and U12 = −U∗

21,
expand them in Taylor-Maclaurin series vs ϵ, and carry out elimination of as
many lowest-order terms as possible. The result is a Taylor-Maclaurin expansion
of the propagator,

Un(ϵ) = Un + O(ϵl). (5.6)

Obviously, with the same number of free parameters, one can cancel of factor
of 2 fewer terms now, than in the expansion of the probability P. However, the
resulting composite sequences will be stabilized with respect to both the amp-
litudes and the phases of the overall propagator, rather than with respect to the
amplitudes only, as with Eq. (5.5). Such composite sequences create constant ro-
tations in NMR language, or, in quantum information terms, quantum rotation
gates.

We begin with the first approach, which delivers expressions as in Eq. (5.5), and
then proceed with the second approach, which delivers expressions of the type (5.6).

5.3 small-probability composite sequences

5.3.1 Two-pulse composite sequences

We have derived two types of two-pulse composite sequences.

5.3.1.1 Symmetric sequence of pulses

In the first type, the two pulse areas are equal to π/2,

S2 : (1
2 π)0(

1
2 π)π−θ. (5.7)



40 composite sequences for ultrasmall transition probability : application to deterministic single-photon emission

The transition probability is

P = cos2 πϵ

2
sin2 θ

2
. (5.8)

For
θ = arccos(1 − 2p) = 2 arcsin(

√
p), (5.9)

we find
P = p[1 − sin2(

1
2

πϵ)] = p[1 + O(ϵ2)]. (5.10)

This simplest composite sequence is accurate up to the second order O(ϵ2). For ex-
ample, for probabilities p = 10−2, 10−3, 10−4 and 10−5 we find ϕ = 0.0638π, 0.0201π,
0.0064π, and 0.0020π. These values correspond to 11.48◦, 3.62◦, 1.15◦, and 0.36◦.

The advantage of these sequences is their extreme simplicity and the analytic for-
mula for the phase, which make it possible to immediately write down the sequence
for any target transition probability. The disadvantage is the availability of a single
control parameter only, which limits the error compensation to the first order only.
This is still superior over a single resonant pulse, which is accurate to zeroth order
only.

5.3.1.2 Asymmetric sequence of pulses

In the second two-pulse sequence, the pulse areas are different,

A2 : (A1)0(A2)ϕ2 . (5.11)

Here we have three control parameters — two pulse areas and a phase — which
allow us to compensate higher orders of errors. Now closed analytic expressions for
the parameters are not possible to derive. However, due to the fact that p ≪ 1, we can
use perturbation theory, which gives us the approximations

A1 = x − y, A2 = x + y, ϕ2 = π − ϕ, (5.12)

with x ≈ 0.7151π, y ≈ 0.2553π
√

p, and ϕ ≈ 0.4875π
√

p. All these are valid for p ≪ 1.
The pulse areas and the phases for a few values of the transition probability are given
in Table 5.1.

The advantage of the composite sequence (5.11) over the symmetric one (5.7) is that
it is accurate to the third order in ϵ,

P = p[1 + O(ϵ3)]. (5.13)

The disadvantage is that it requires a larger total pulse area, about 1.43π compared to
just π for the symmetric sequence (5.7).
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p A1 A2 ϕ

10−2 0.689806 0.741105 0.048767
10−3 0.707103 0.723255 0.015417
10−4 0.712599 0.717704 0.004875
10−5 0.714341 0.715956 0.001542
10−6 0.714894 0.715404 4.88 × 10−4

10−7 0.715068 0.715229 1.54 × 10−4

10−8 0.715123 0.715174 4.88 × 10−5

Table 5.1: Pulse areas and phases (in units of π) for the composite sequence (5.11) (in units of
π) for a few values of the transition probability. All composite sequences have the
error order O(ϵ3).
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Figure 5.1: Performance of the two-pulse composite sequences (5.7) (red dashed) and (5.11)
(blue solid) for the transition probability p = 10−4. The dotted curves show the
single pulse excitation probability for comparison.

The performance of the two sequences is compared in Fig. 5.1. Both sequences (5.7)
and (5.11) outperform significantly the conventional single-pulse excitation probab-
ility, which is very sensitive to pulse area errors. The asymmetric sequence A2 of
Eq. (5.11), with its three control parameters and error order O(ϵ3), outperforms the
symmetric sequence S2 of Eq. (5.7), which has only one control parameter and error
order O(ϵ2).
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5.3.2 Three-pulse composite sequences

We have derived three three-pulse composite sequences, two symmetric and one asym-
metric.

5.3.2.1 Symmetric sequence of pulses

The symmetric sequence of pulses reads

S3 : (1
2 π)0πα+β(

1
2 π)2β, (5.14)

where

α = θ/2, (5.15a)

β = arccos(sin α − cos α), (5.15b)

θ = arccos(1 − 2p) = 2 arcsin(
√

p). (5.15c)

The transition probability reads

P = [1 − sin4(ϵ/2)] sin2(θ/2). (5.16)

It is obviously accurate up to order O(ϵ4).
The sequence (5.14) is derived as follows. First, we calculate the overall propagator

of Eq. (5.3) for N = 3 pulses. Numerical evidence suggests that the pulse areas could
be taken as in Eq. (5.14), i.e. a π pulse in the middle sandwiched by two half-π pulses.
We take the first phase to be 0, and we are left with two phases to be determined. The
overall three-pulse transition probability for zero error (ϵ = 0) is readily calculated to
be

P = |U21|2 = sin2(ϕ2 − ϕ3/2). (5.17)

If we set P = sin2(θ/2) (as for a resonant θ pulse), we find ϕ3 = 2ϕ2 − θ. Next we
calculate the first few derivatives of U21 with respect to the error ϵ and find

U′
21(ϵ = 0) = 0, (5.18)

U′′
21(ϵ = 0) = [1 + 2 cos(θ) + 2 cos(ϕ2)

+ 2 cos(θ − ϕ2) + cos(θ − 2ϕ2)]/8, (5.19)

U′′′
21(ϵ = 0) = 0. (5.20)
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Figure 5.2: Performance of the three-pulse composite sequences (5.14) (red dashed) and (5.22)
(blue solid) for the transition probability p = 10−4. The dotted curves show the
single pulse excitation probability for comparison.

p A1 A2 A3 ϕ2 ϕ3

10−2 0.5682 1.2436 0.6292 1.1533 0.2546
10−3 0.5904 1.2276 0.6232 1.0785 0.1405
10−4 0.6001 1.2229 0.6184 1.0419 0.0785
10−5 0.6049 1.2214 0.6151 1.0229 0.0441
10−6 0.6074 1.2209 0.6131 1.0126 0.0248
10−7 0.6087 1.2208 0.6119 1.0070 0.0139
10−8 0.6094 1.2207 0.6113 1.0039 0.0078

Table 5.2: Pulse areas and phases (in units of π) for the composite sequences of 3 pulses (5.22)
for a few values of the transition probability p. All composite sequences have the
error order O(ϵ5).

The vanishing of the odd-order derivatives follows from the choice of symmetric pulse
areas in Eq. (5.14). By setting ϕ2 = θ/2 + β the equation for U′′

21(ϵ = 0) reduces to

2 cos β cos(θ/2) + cos2 β + cos θ = 0. (5.21)

has 4 solutions, two complex and two real, of which one positive and one negative.
The real positive solution is given by the expression listed in Eq. (5.14). The first
nonzero derivative is U(4)

21 (ϵ = 0). The availability of analytic formulae for the phases
allows us to find their values for any value of the transition probability.
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5.3.2.2 Asymmetric sequence of pulses

The most general three-pulse composite sequence has the form

A3 : (A1)0(A2)ϕ2(A3)ϕ3 . (5.22)

Although the composite sequence (5.22) costs more total pulse area (≈ 2.44π) than the
preceding two, it is accurate to order O(ϵ5). The pulse areas and the phases computed
numerically are given in Table 5.2.

The performance of the three-pulse sequences is illustrated in Fig. 5.2. Both
sequences (5.14) and (5.22) outperform both the conventional single-pulse excita-
tion probability and the two-pulse composite sequences (5.7) and (5.11) of Fig. 5.1.
Moreover, the asymmetric sequence A3 of Eq. (5.11), which is of error order O(ϵ5),
clearly outperforms the symmetric sequence S3 of Eq. (5.14), which is of error order
O(ϵ4).

Because the three-pulse sequences seem to be the “sweet spot” in terms of perform-
ance (error order and high-fidelity window width) versus cost (total pulse area and
control complexity), they deserve some discussion. There are clear advantages and
disadvantages of each of these two sequences. The S3 sequence has a nice analytic
form and a total pulse area of 2π. However, it has lower error order than A3. The real
advantage of the sequence S3 is its analytic form, which makes it very easy to cal-
culate the composite phases for any target transition probability p. The A3 sequence
looks less attractive as neither the pulse area nor the phases are rational numbers and
they are all numerical, but this sequence has the higher order of error compensation,
although at the expense of the larger pulse area of about 2.44π. Its real inconvenience
is in the fact that for target transition probabilities not listed in Table 5.2 one has to
calculate them numerically, although this is not a very difficult task.

5.3.3 Four-pulse composite sequences

The most general four-pulse composite sequence has the form

(A1)0(A2)ϕ2(A3)ϕ3(A4)ϕ4 . (5.23)

We present three sets of four-pulse composite sequences, two symmetric and one
asymmetric.
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5.3.3.1 Symmetric sequences of pulses

The first symmetric sequence consists of identical nominal π/2 pulses (but with dif-
ferent phases) [152],

S4a : (1
2 π)0(

1
2 π) 1

2 π(
1
2 π) 3

2 π−θ(
1
2 π)π−θ, (5.24)

where θ = 2 arcsin
√

p. Its total pulse area is just 2π. The overall transition probability
reads

P = p[1 − sin4(πϵ/2)]. (5.25)

Obviously, it is accurate up to order O(ϵ4).
The other symmetric sequence of pulses reads [152]

S4b : (1
2 π)0π 2

3 ππ 5
3 π−θ(

1
2 π)π−θ. (5.26)

The overall transition probability reads

P = p[1 − sin6(πϵ/2)]. (5.27)

Obviously, in return to the larger total pulse area ot 3π compared to the previous
sequence (5.24) it is accurate up to the higher order O(ϵ6).

These sequences are very convenient as the availability of exact analytic formulae
for the phases allows us to find their values for any value of the transition probability.

5.3.3.2 Asymmetric sequences

The most general three-pulse composite sequence has the form

A4 : (A1)0(A2)ϕ2(A3)ϕ3(A4)ϕ4 . (5.28)

All pulse areas and phases are free control parameters, which allow it to compensate
a higher error order. The pulse areas and the phases are computed numerically and
are listed in Table 5.3. Although the asymmetric composite sequence (5.28) costs more
total pulse area (≈ 3.44π) than the preceding two sequences S4a and S4b, it is accurate
to the higher order O(ϵ7).

The performance of the four-pulse sequences is illustrated in Fig. 5.3. All of them
significantly outperform the single pulse profile and provide considerable stabilisa-
tion at the target transition probability value. The best performance is delivered by
the asymmetric sequence A4, which has the error order O(ϵ7), followed by S4b, with
the error order O(ϵ6), and then S4a, with the error order O(ϵ4). However, this ranking
follows the total pulse area — the cost factor — which is ≈ 3.41π for A4, 3π for S4b,
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Figure 5.3: Performance of the four-pulse symmetrci composite sequences (5.24) (red dashed),
(5.26) (purple long-dashed) and the asymmetric sequence (5.28) (blue solid) for the
transition probability p = 10−4. The dotted curves show the single pulse excitation
probability for comparison.

p A1 A2 A3 A4 ϕ2 ϕ3 ϕ4

10−2 0.5367 1.1586 1.1360 0.5833 0.8499 1.5547 0.4360
10−3 0.8685 1.0434 0.3702 0.5174 1.0634 0.8847 0.0128
10−4 0.8165 0.9044 0.5579 0.6423 1.0362 0.9682 0.0146
10−5 0.7854 0.8335 0.6433 0.6905 1.0207 0.9856 0.0090
10−6 0.7669 0.7937 0.6875 0.7141 1.0118 0.9926 0.0052
10−7 0.7551 0.7698 0.7108 0.7255 0.9933 1.0042 1.9972
10−8 0.7494 0.7578 0.7244 0.7328 0.9962 1.0022 1.9984

Table 5.3: Pulse areas and phases (in units of π) for the composite sequences of 4 pulses (5.28).
All composite sequences have the error order O(ϵ7).

and 2π for S4a. Note that the error order O(ϵ4) for S4a is the same as the one for
the three-pulse sequence S3 and one can verify that they generate similar excitation
profiles.

5.3.4 Higher number of pulses

Higher number of pulses present the opportunity for an error compensation of a
higher order. There exist analytic symmetric composite sequences for arbitrary rota-
tions, which can be used for small p too [152]. They are constructed as follows. We can
use a composite π/2 pulse to derive a composite θ-pulse by applying a composite π/2
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pulse sequence C, followed by the composite sequence CR
θ , which is the time-reversed

sequence C, with all its phases shifted by the same phase shift θ,

C0CR
θ , (5.29)

an idea introduced by Levitt and Ernst [72]. Moreover, if the sequence C has the error
order O(ϵn) then the composite θ sequence (5.29) has the error order O(ϵ2n) [152]. A
few examples follow.

The composite sequence S2 of Eq. (5.7) becomes a composite π/2 pulse for θ = π/2,
which can be used in the twinning construction (5.29),

(1
2 π)0(

1
2 π) 1

2 π(
1
2 π) 3

2 π−θ(
1
2 π)π−θ, (5.30)

which is the same as the sequence S4a of Eq. (5.24). Because the sequence S2 has the
error order O(ϵ2) then the composite sequence S4a has the error order O(ϵ4), as found
in the previous section.

The composite sequence S3 of Eq. (5.14) for θ = π/4 reads

(1
2 π)0π 3

4 π(
1
2 π)π, (5.31)

and it has the error order O(ϵ4). By using the twinning construction (5.29) we find a
θ composite sequence of order O(ϵ8),

(1
2 π)0π 3

4 π(
1
2 π)π(

1
2 π)2π−θπ 7

4 π−θ(
1
2 π)π−θ. (5.32)

One can build θ composite sequences of arbitrary length and arbitrary error order
compensation by twinning the π/2 composite sequences [152]

(π/2)0πϕ2πϕ3 · · ·πϕN−1(π/2)ϕN , (5.33)

composed of a sequence of N − 2 nominal π pulses, sandwiched by two pulses of
areas π/2, with phases given by the analytic formula

ϕk =
(k − 1)2

2(N − 1)
π (k = 1, 2, . . . , N). (5.34)

It is easy to verify that the sequences (5.30) and (5.32) (after trivial population-
preserving transformation of the phases) belong to such a family of sequences. Be-
cause the sequence (5.33) has the error order O(ϵ2(N−1)) the corresponding twinned
sequence (5.29) will have the error order O(ϵ4(N−1)).
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Another, asymmetric family of π/2 composite sequences can be used too [152],

(π/2)0πϕ2πϕ3 · · ·πϕN−1(π)ϕN , (5.35)

composed of a sequence of N − 1 nominal π pulses, preceded by a nominal π/2 pulse,
with phases given by the analytic formula

ϕk =
2(k − 1)2

2N − 1
π (k = 1, 2, . . . , N). (5.36)

It has the error order O(ϵ2N−1). Hence the twinning method (5.29) generates θ se-
quences of the error order O(ϵ2(2N−1)). For instance, for N = 3 we find by twinning
the θ sequence

(1
2 π)0π 2

5 π
(π)8

5 π
(π)3

5 π−θ
π 7

5 π−θ
(1

2 π)π−θ, (5.37)

which has the error order O(ϵ10).
Regarding the asymmetric composite sequences of 2, 3 and 4 pulses, presented

above and derived numerically, it is computationally much harder to derive similar
sequences for more than 4 pulses. Moreover, the advantage they deliver in terms of
error order compensation for a given number of pulses compared to the symmetric
sequences seems to decrease with the number of pulses N and approach the point
when the results do not repay the labour.

5.4 quantum gates for ultrasmall rotations

Ultrasmall rotation gates are more demanding to construct due to the necessity to
have both the probabilities and the phases error-compensated. Mathematically, this is
equivalent to expanding the propagator of the gate in a Taylor-Maclaurin series versus
the error ϵ and set to zero the first few terms to the same error order O(ϵm) in all
propagator matrix elements. Below we present several sequences, which produce high-
fidelity rotation gates, two of which are known in the literature and one is derived
here.

5.4.1 First-order error compensation

The three-pulse rotation gate has been derived by Wimperis [73],

W3 : θ0πϕπ3ϕ, (5.38)
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R otation gate G3: (1
2 π + x)ϕ1ππ+y(

1
2 π + x)ϕ1

p x ϕ1 y
10−2 2.5 × 10−3 2.492 × 10−2 5.672 × 10−2

10−3 2.5 × 10−4 7.904 × 10−3 1.797 × 10−2

10−4 2.5 × 10−5 2.500 × 10−3 5.683 × 10−3

10−5 2.5 × 10−6 7.906 × 10−4 1.797 × 10−3

10−6 2.5 × 10−7 2.500 × 10−4 5.684 × 10−4

Table 5.4: Parameters of the composite sequence G3 of Eq. (5.39) for different transition prob-
abilities p.

with θ = arccos(1 − 2p) = 2 arcsin
√

p and ϕ = arccos(−θ/(2π)) ≈ 1
2 π +

√
p. It is

accurate up to order O(ϵ2). It is a phase-distortionless sequence and hence suitable
for a rotation gate.

Another three-pulse rotation gate has the form [43]

G3 : αϕ1πϕ2αϕ1 , (5.39)

where α is determined from the equation

π sin(α)
α

= 2 cos(θ/2). (5.40)

Given α, we can find ϕ1 and ϕ2 from

2α cos(ϕ1 − ϕ2) + π = 0, (5.41a)

sin(ϕ1 − ϕ2) = sin(θ/2) cos(ϕ1). (5.41b)

This composite sequence is related to the SCROFULOUS composite pulse [153] and it
is accurate to the error order O(ϵ2).

The values of the pulse area and the composite phases are given in Table 5.4.

5.4.2 Second-order error compensation

A well-known composite seqeunce, which compensates the second-order error is the
BB1 sequence of Wimperis [37],

BB1 = (π/2)0πχ(2π)3χπχ, (5.42)

with χ = arccos(−θ/4π). It produces arbitrary phase-distortionless rotations at the
angle θ with the error order O(ϵ3)
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5.5 conclusions

We presented a solution to the problem of generating well-defined very small excita-
tion of a two-state quantum transition. The method uses composite pulse sequences
of two, three, four and more pulses. Both symmetric and asymmetric, analytic and
numeric classes of sequences have been presented and analyzed in detail.

The results in this paper can be useful in application such as single-photon gen-
eration by a cold atomic ensemble of N atoms. A composite sequence producing a
transition probability of 1/N will make sure that only one excitation is shared within
the ensemble, to be subsequently released by a scheme like DLCZ. Another possible
application is fine tuning of quantum gates, in which accurate small adjustments of
the rotation angle are needed in order to reach high fidelity. Yet another application
is the generation of huge Dicke states in cold atomic ensembles or trapped ions by
global collective addressing.
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C O M P O S I T E P U L S E S F O R U LT R A R O B U S T

O R U LT R A S E N S I T I V E C O N T R O L

6.1 introduction and motivation

Based on this concept of CPs for rotations on the Bloch space, Ardavan proposed to
use the so-called BB1 or BB2 sequences for polarization retarders (i.e., rotations on the
Poincaré sphere) [154]. Existence of BB2 and NB2 sequences leads to the idea of alter-
ing CPs, which improve the feature (BB or NB) of the pulse at the expense of precision
due to alternations (inflection points) on the top (BB) or on the bottom (NB) of the
errant transition probability. We call these new subclasses of CPs as ultrabroadband
and ultranarrowband respectively.

With novel method (see Sec. 6.3) we have derived ultrabroadband and ultranar-
rowband CPs [47], when θ = π. These CPs are useful in the applications, where high-
accuracy (about 90%) is enough (although higher precision can be achieved increasing
number of pulses, due to the novel method).

6.2 jones matrices and on the quantum-classical analogy

Jones polarization matrix for a retarder with a phase shift φ (the phase shift applied
between the ordinary and the extraordinary ray passing through the retarder) and
rotated at an angle η is given as (in the left-right circular polarization basis)

Jη(φ) =

 cos
( φ

2

)
i sin

( φ
2

)
e2iη

i sin
( φ

2

)
e−2iη cos

( φ
2

)
 . (6.1)

For example, half- and quarter-wave plates rotated at an angle η, i.e. (λ/2)η, (λ/4)η,
are described by Jη(π) and Jη(π/2) respectively.

Polarization retarder is equivalent to x-rotation or quantum rotation gate, and polar-
ization rotator is equivalent to z-rotation or quantum phase gate. Henceforward, we

51
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will use NMR QC terminology and notation, and the results for PO can be obtained
by abovementioned way.

6.3 derivation method

So, errant overall propagator is SU(2) matrix. Let’s consider the general form for gen-
eral composite rotation

Un(ϵ) =

 exp(−iζϵ/2) cos(θϵ/2) −i sin(θϵ/2) exp(iϕϵ)

−i sin(θϵ/2) exp(−iϕϵ) exp(iζϵ/2) cos(θϵ/2)

 . (6.2)

For rotational θ pulses parameters follows θϵ=0 = θ, ζϵ=0 = 0 and ϕϵ=0 = ϕ (ϕ = 0
is the case for ideal θ pulse), and for phasal ζ pulses parameters are equal ζϵ=0 = ζ,
θϵ=0 = 0 and ϕϵ=0 = const.

Note that derivation method presented in Subsec. 6.3.1 does not care about rota-
tion angle, geometric and relative phase stabilities. Here, we have deal with alternat-
ing CPs, which make the feature (robustness/sensitivity or both) of the pulse more
powerful, sometimes called ultra, at the expense of precision due to alternations (at
the center/ on the wings or both).

6.3.1 Ultra-BB, ultra-NB and ultra-PB

6.3.1.1 Case of rotational θ pulses

Let’s maximize the population transfer area (6.3) at the whole-range of the error band-
width, i.e. from ϵ = −1 to ϵ = 1 (ultrabroadband θ pulses)

∑b,n
∆
=

∫ 1

−1
p(ϵ) dϵ, (6.3)

or minimize it (ultranarrowband θ pulses).
In (6.3) p(ϵ = 0) = p(θ = π) = sin2 θ/2|θ=π = 1, at the center of bandwidth, is

transition probability in QC: when pulse area error is zero, the qubit-state completely
transfers from |0⟩ to |1⟩ due to π-rotation on the Bloch sphere. In PO this is math-
ematically equivalent (see Subsec. 6.2) to the conversion of the polarization state from
|L⟩ to |R⟩ (or |H⟩ to |V⟩) due to π-rotation on the Poincaré sphere

∫ 2π

0
I(φ′) dφ′ =

∫ 2π

0
|U12(φ′)|2 dϵ, (6.4)

and I(φ′) describes the conversion efficiency of the half-wave plate I(φ′ = π) = 1.
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Figure 6.1: Transition probability p(ϵ) of ultrabroadband rotational π pulses. The numbers N
on the curves refer to CP sequences UBN listed in the Table 6.1 in the main thesis.
As noted above, the curves have k = N − 1 alternations on the top of the plot,
unlike the BB2 sequence, which has 2 alternations, so it’s worse than our five-π
UB5.

6.3.1.2 Case of phasal ζ pulses

Let’s maximize the phase shifting area (6.5) at the whole-range of the error bandwidth,
i.e. from ϵ = −1 to ϵ = 1 (ultrabroadband ζ pulses)

∑ ∆
=

∫ 1

−1
z(ϵ) dϵ. (6.5)

Here the phase shifting z(ϵ) is equal to the trace fidelity in our case ζ = π

FT = 1
2Tr [Un(ϵ)Un

†] = cos
(

ζ − ζϵ

2

)
ζ=π

cos
(

θϵ

2

)
= sin

(
ζϵ

2

)
cos

(
θϵ

2

)
, (6.6)

and the target matrix is

Un =

 exp(−iζ/2) 0

0 exp(iζ/2)


ζ=π

=

 −i 0

0 i

 . (6.7)

6.4 ultrabroadband rotational θ = π pulses

The most convenient way to construct ultrabroadband rotational π pulses is the sym-
metric design consisting of nominal π pulses

πϕ1πϕ2 . . . , πϕk/2πϕk/2+1πϕk/2 . . . πϕ2πϕ1 , (6.8)

where k = N − 1 is the number of inflection points in the errant transition probability
vs the pulse area error plot (the number of alternations of the plot).
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Figure 6.2: Transition probability p(ϵ) of ultranarrowband rotational π pulses. The numbers
N on the curves refer to CP sequences UNN listed in the Table 6.2 in the main
thesis. As noted above, the curves have k = N − 1 alternations on the bottom of
the plot, unlike the NB2 sequence, which has 2 alternations, so it’s worse than our
five-π UN5.

We have derived up to eleven sequences, which increase the broadness range of
the original rotational sequence (a single pulse) more than four times (from 20.5%
to 87.7%), and the transition probability area is increased by 83.(3)% by the eleven-
π UB11 sequence. Composite phases for the ultrabroadband rotational pulses are
shown in the Table 6.1 in the main thesis, and the transition probability is plotted in
Figure 6.1.

6.5 ultranarrowband rotational θ = π pulses

Since NB pulses are asymmetric in composite phases, to construct ultranarrowband ro-
tational π pulses we choose the antisymmetric design consisting of nominal π pulses

πϕ1πϕ2 . . . , πϕk/2πϕk/2+1π−ϕk/2 . . . π−ϕ2π−ϕ1 , (6.9)

where k = N − 1 is the number of inflection points in the errant transition probability
vs the pulse are error plot (the number of alternations of the plot). For convenience,
the middle phases can be taken as ϕk/2+1 = π.

We have derived up to eleven sequences, which decrease the narrowness range at
50% of probability, viz. full width at half maximum (FWHM), of the original rotational
sequence (a single pulse) about 6.75 times (from 50% to 7.4%), and the transition
probability area is decreased by 83.(3)% by the eleven-π UN11 sequence. Composite
phases for the ultranarrowband rotational pulses are shown in the Table 6.2 in the
main thesis, and the transition probability is plotted in Figure 6.2.
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Figure 6.3: Trace fidelity z(ϵ) of ultrabroadband phasal π pulses. The numbers N on the curves
refer to CP sequences UBPhN listed in the Table 6.3 in the main thesis. As noted
above, the curves have k = N − 2 alternations on the top of the plot.

6.6 ultrabroadband phasal ζ = π pulses

As usual (cf. (3.3)), we construct ultrabroadband phasal π pulses with asymmetric
design consisting of nominal π pulses

πϕ1πϕ2 . . . πϕk/2+1 · πϕ1+
1
2 ππϕ2+

1
2 π . . . πϕk/2+1+

1
2 π, (6.10)

where k = N − 2 is the number of inflection points in the trace fidelity vs the pulse
are error plot (the number of alternations of the plot).

We have derived up to fourteen sequences, which increase the broadness range of
the original phasal sequence (two pulses) about four times (from 20.5% to 81.5%), and
the trace fidelity area is increased by the 75% by the fourteen-π UBPh14 sequence.
Composite phases for the ultrabroadband phasal pulses are shown in the Table 6.3 in
the main thesis, and the trace fidelity is plotted in Figure 6.3.

6.7 comments and conclusions

We presented a number of CP sequences consisting of π pulses for transition of the
quantum state from |0⟩ to |1⟩ in ultrarobust and ultrasensitive manners, according to
the pulse area deviation ϵ. Using quantum-classical analogy, we presented a number
of sequences of half-wave plates for conversion of the polarization state from |H⟩ to
|V⟩ or from |L⟩ to |R⟩ in ultrabroadband and ultranarrowband ways, according to the
phase-shift (retardation) deviation φ′ − φ = φ′ − π. Our longest UB11 pulse covers
approximately 88% of the whole width for the same benchmark. Our longest UNB11
pulse covers approximately 21% of the whole width for the same benchmark. We the-
oretically design ultrarobust Z quantum gate via a number of CP sequences consist-
ing of π pulses, and equivalently ultrabroadband polarization π rotator. Our longest
UBPh14 pulse maintains 90% of trace fidelity over a broadness range of roughly 1.63π.
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B R O A D B A N D C O M P O S I T E

N O N R E C I P R O C A L P O L A R I Z AT I O N WAV E

P L AT E S A N D O P T I C A L I S O L AT O R S

7.1 introduction

The analogy between the polarization Jones vector and the quantum state vector has
recently been used to suggest arbitrarily precise broadband polarization retarders [7,
8, 154]. As recently shown by Al-Mahmoud et. al [155], wave plates retarders can
be non-reciprocal whose phase-shift retardation depends on the light propagation
direction.

In this chapter, we theoretically propose novel broadband polarization quarter-wave
plates, which are also nonreciprocal, with the potential to be used in broadband op-
tical isolators or/and circulators for telecommunications, industrial, and laboratory
research.

7.2 background

Another way to realize a retarder is to use a polarization rotator at an angle θ sand-
wiched in between two quarter-wave plates rotated by angles −π/4 and π/4 with
respect to the lab reference frame correspondingly [156]. The Jones matrix J for such a
sequence can be given by the product of the Jones matrices of the quarter-wave plates
and the rotator:

J = J−π/4 (π/2) R (θ) Jπ/4 (π/2) =

 eiθ 0

0 e−iθ

 = J0 (2θ) . (7.1)

The last part of Eq. (7.1) demonstrates that the whole sequence can be considered an
effective wave plate with an effective retardation φ = 2θ. If one uses Faraday rotator
(nonreciprocal device) then the effective waveplate is also nonreciprocal [155].

56
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7.3 composite wave plate

Now we will show three different sequences of non-reciprocal elements to construct
nonreciprocal broadband quarter-wave plates:

J (ε) = Jα1 (π/2 + ε/2) Jα2 (π + ε) Jα3 (π/2 + ε/2) , (7.2)

J (ε) = Jα1 (π + ε) Jα2 (π + ε) Jα3 (π/2 + ε/2) , (7.3)

J (ε) = Jα1 (π + ε) Jα2 (π + ε) Jα3 (π + ε)

× Jα4 (π + ε) Jα5 (π/2 + ε/2) . (7.4)

For the above odd number of sequences (7.2)-(7.4) one can easily check that they
are nonreciprocal.

In order to produce broadband nonreciprocal quarter-wave plate we determine the
rotation angles of each wave plate in Eqs. (7.2), (7.3) or (7.4) by using the Monte Carlo
method. We select solutions, which deliver the biggest overall fidelity F (ε) in the
interval of ε ∈ [−π, π] and also, ensure a flat top. The angles are presented in the
Table 7.1.

Table 7.1: Calculated angles of rotation (in radians) for the three sequences of Eqs. (7.2), (7.3),
and (7.4).

sequences angles (α1; α2; . . . ; αN)

(7.2) (3.3; 1.21; 3.1)
(7.3) (3.6; 1.65; 3.9)
(7.4) (1.61;6.48;6.47;1.62;0.78)

7.4 broadband optical isolator

Another interesting case is when the sequence serves as a broadband null retarder
in one direction and a broadband half-wave plate in the other direction, which can
be archived if we combine our nonreciprocal broadband quarter-wave plate with a
commercially available broadband but reciprocal quarter-wave plate. In this case, one
can build a broadband optical isolator as shown and explained in Figure 7.1.
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Figure 7.1: Scheme of the broadband optical isolator. ARQWP stands for the achromatic recip-
rocal quarter-wave plate, while ANRQWP stands for the achromatic nonreciprocal
quarter-wave plate.
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Figure 7.2: Fidelity versus systematic deviation for the composite waveplates designed by us-
ing three configurations: Eq. (7.2) is depicted by the blue dashed line, Eq. (7.3) by
the black dotted line, and Eq. (7.4) by the red solid line. The gray dotted line is for
a quarter-wave plate with a single Faraday rotator for easy reference.

7.5 numerical calculations

In Figure 7.2 we show the calculation for the fidelity F profiles using the three config-
urations (7.2), (7.3) and (7.4) with rotation angles taken from the Table 7.1.

For broadband optical isolator simulations in this chapter, we use terbium gallium
garnet crystal (TGG) as it is one of the most common crystals for Faraday rotators.
We fix the applied magnetic field to 1 T, the length of the crystal is considered to be
1 cm for the half-wave plates and 0.5 cm for the quarter-wave plates. Up until now,
there has been a lot of research done on the dispersion of the TGG Verdet constant ν

[157–159].
The performance of the optical isolators is quantified by its transmission Tf (a por-

tion of the input light’s intensity that passes through the isolator), back-transmission
Tb (a portion of the back-transmission light’s intensity that passes through the isolator
in the opposite direction), and isolation D.

The transmission and isolation profiles for the three configurations (7.2), (7.3) and
(7.4) are shown in Figures 7.3 and 7.4. One can notice that for all these composite
isolators both the transmission and isolation are far more efficient than that of isolators
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Figure 7.3: Transmission and isolation properties of the optical isolators with different num-
bers of wave plates in the series, compared to the isolator based on a single rotator
(blue line), vs the systematic deviation ε. The other three curves refer to the se-
quences of Eqs. (7.2) depicted by a purple line, (7.3) by a red line, and (7.4) by a
black line.
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Figure 7.4: The same as Figure 7.3 but instead of systematic deviation ε we use the wavelength
parameter.

using a single rotator (blue curve). The isolation above 10 dB over a region of 200 nm
can be seen from Figure 7.4, and it is a much broader spectral range compared to the
case of using just a single Faraday rotator (about 20 nm on the level of 10 dB).

7.6 conclusions

We have presented a novel way to construct broadband nonreciprocal polarization
quarter-wave plates. The proposed broadband nonreciprocal polarization quarter-
wave plate can be used in combination with a broadband reciprocal polarization
quarter-wave plate to build a broadband optical isolator.



8
G E N E R A L C O N C L U S I O N S A N D

P E R S P E C T I V E S

Composite pulses, the powerful quantum control technique from nuclear magnetic
resonance, and its wide applications have been explored in this thesis, which are
novel or have not been reported in the literature hitherto. The dissertation exhibits
the delicate susceptibility of the method to mathematically different kinds of target
problems. The prime purpose of the thesis is to encourage a wide range of research-
ers in both classical and quantum physics to leverage this magical and versatile tech-
nique to their research tasks. Thesis addresses several specialized applications, namely
in quantum computing and quantum information, quantum information processing
(quantum cryptography and quantum networks), quantum sensing, and polarization
optics.

We presented a number of this kind of broadband phase-distorionless composite
pulse sequences for three basic quantum gates — the X gate, the Hadamard gate and
arbitrary rotation gates in Chapter 2. In the same fashion, we presented a number
of broadband phase-distortionless composite pulse sequences for four basic quantum
gates — the Z gate, the S gate, the T gate and arbitrary phase gates in Chapter 3.
We derived narrowband and passband composite rotational quantum gates — the X
gate, the Hadamard gate and arbitrary rotation gates in Chapter 4. Robust ultrasmall
transition probability composite pulses, which are the subject of Chapter 5, allow to
construct deterministic and highly efficient single-photon source. Derivation methodo-
logy and capabilities of ultrabroadband-type (ultrarobust) and ultranarrowband-type
(ultrasensitive) types of composite pulses is presented in Chapter 6. In Chapter 7
we presented a novel way to construct broadband nonreciprocal polarization quarter-
wave plates via composite pulse parameters.
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