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Writing expert texts

Do we write for a deadline?
Do we write for the reader?

Do we seek to get published in a
scientific journal?



Main Sources
The advice of an editor-in-chief (Kwan Choi, 2002)
AAAS Science Magazine, 2024

Springer Nature (various journals), 2025

Personal experience of GM (the harsh reality)



Three Parties

Scientific publishing hinges upon the trust
among

e Authors
e Editors
* Reviewers




A scientific paper is

A written report describing original research

Its format has been defined by centuries of
developing tradition

Influenced by editorial practice, printing and
publishing services

Scientific ethics




A result of this process is that virtually every
scientific paper has

* Title

* Abstract

* |ntroduction

* Materials and Methods
* Results

* Discussion

e References



Title

e Atitle should be the fewest possible words
that accurately describe the content of the

paper.
 Omit all waste words such as "A study of ...",

"Investigations of ...", "Observations on ...",
etc.

 An improperly titled paper may never reach
the audience for which it was intended, so be
specific.




To get more citations, use tripartite
phrases in academic paper titles!

e Bornmann, Lutz and Wohlrabe, Klaus, Pattern,
Perception, and Performance: Tripartite Phrases in
Academic Paper Titles (January 31, 2025). CESifo
Working Paper No. 11671,
https://ssrn.com/abstract=5134534 or http://dx.doi.
org/10.2139/ssrn.5134534



https://ssrn.com/abstract=5134534
https://dx.doi.org/10.2139/ssrn.5134534

Examples

Table 1: Title examples containing tripartite phrases

Economics

Envy, inequality and fertility

Informed trade, uninformed trade and stock price delay

Housing, adjustment costs, and macro dynamics

Irade, development, and poverty-induced comparative advantage

Market concentration, collusiop and social welfare in Mexico: A methodological update

(Bornmann & Wohlrabe, 2025)



Abstract

* A well-prepared abstract enables the reader
to identify the basic content of a document
quickly and accurately,

 To determine its relevance to their interests,

e To decide whether to read the document in its
entirety.




e Does not include details of the methods used
unless the study is methodological, i.e.
primarily concerned with methods.




* Do not repeat information contained in the
title. The abstract, together with the title,
must be self-contained as it is published
separately from the paper in abstracting
services.




An example: Nature’s abstract
(also called ‘First paragraph’” or ‘Summary
paragraph’)



nature

How to construct a Nature summary paragraph

Annotated example taken from Nature 435, 114-118 (5 May 2005).

One or two sentences providing a basic introduction to the field,
comprehensible to a scientist in any discipline.

Two to three sentences of more detailed background, comprehensible
to scientists in related disciplines.

One sentence clearly stating the general problem being addressed by
this particular study.

One sentence summarizing the main result (with the words “here we
2
show” or their equivalent).

Two or three sentences explaining what the main result reveals in direct
comparison to what was thought to be the case previously, or how the
main result adds to previous knowledge.

One or two sentences to put the results into a more general context.

—+

Two or three sentences to provide a broader perspective, readily
comprehensible to a scientist in any discipline, may be included in the
first paragraph if the editor considers that the accessibility of the paper
is signiticantly enhanced by their inclusion. Under these circumstances,
the length of the paragraph can be up to 300 words. (This example is
190 words without the final section, and 250 words with it).

During cell division, mitotic spindles are assembled by microtubule-
based motor proteins'?, The bipolar organization of spindles is
essential for proper segregation of chromosomes, and requires plus-
end-directed homotetrameric motor proteins of the widely conserved
kinesin-5 (BimC) family’. Hypotheses for bipolar spindle formation
include the ‘push—pull mitotic muscle’ model, in which kinesin-5 and
opposing motor proteins act between overlapping microtubules™**.
However, the precise roles of kinesin-5 during this process are
unknown. Here we show that the vertebrate kinesin-5 Eg5 drives

the sliding of microtubules depending on their relative orientation.
We found in controlled in vitro assays that Eg5 has the remarkable
capability of simultaneously moving at ~20 nm s™ towards the plus-
ends of each of the two microtubules it crosslinks. For anti-parallel
microtubules, this results in relative sliding at ~40 nm s™, comparable
to spindle pole separation rates in vivo®. Furthermore, we found

that Eg5 can tether microtubule plus-ends, suggesting an additional
microtubule-binding mode for Eg5. Our results demonstrate

how members of the kinesin-5 family are likely to function in
m1lnm pushmgnpnrtmtcrpolarmmmtubulmasmllasmcrmhng
sliding. We anticipate our assay to be a starting point for more
sophisticated in vitro models of mitotic spindles. For example, the
individual and combined action of multiple mitotic motors could be
tested, including minus-end-directed motors opposing Eg5 motility.
Furthermore, Eg5 inhibition is a major target of anti-cancer drug
development, and a well-defined and quantitative assay for motor
function will be relevant for such developments,




One or two sentences providing a basic introduction to the field,
comprehensible to a scientist in any discipline.

Two to three sentences of more detailed background, comprehensible
to scientists in related disciplines.

One sentence clearly stating the general problem being addressed by
this particular study.

One sentence summarizing the main result (with the words “here we
show” or their equivalent).

Two or three sentences explaining what the main result reveals in direct

comparison to what was thought to be the case previously, or how the
main result adds to previous knowledge.
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One or two sentences to put the results into a more general context.

Two or three sentences to provide a broader perspective, readily
comprehensible to a scientist in any discipline, may be included in the
first paragraph if the editor considers that the accessibility of the paper

is significantly enhanced by their inclusion. Under these circumstances,

the length of the paragraph can be up to 300 words. (This example is
190 words without the final section, and 250 words with it).

LLIEAL I-lﬁ-'fl"
microtut
how met
mitosis, |

sliding. \
sophistic
individu
tested, in
Furthern

function




| etter

[ntrinsic honesty and the prevalence of
rule violations across societies

Simon Gachter ® & Jonathan F. Schulz &

Nature 531, 496-499 (24 March 2016) Received: 09 April 2015
doi:10.1038/nature17160 Accepted: 25 January 2016
Download Citation Published: 09 March 2016

Coevolution Human behaviour



Deception is common in nature and humans are no exceptioni. Modern
societies have created institutions to control cheating, but many situations
remain where only intrinsic honesty keeps people from cheating and
violating rules. Psychological?, sociological®> and economic theories*
suggest causal pathways to explain how the prevalence of rule violations
in people’s social environment, such as corruption, tax evasion or political
fraud, can compromise individual intrinsic honesty. Here we present cross-
societal experiments from 23 countries around the world that
demonstrate a robust link between the prevalence of rule violations and
intrinsic honesty. We developed an index of the ‘prevalence of rule
violations’ (PRV) based on country-level data from the year 2003 of
corruption, tax evasion and fraudulent politics. We measured intrinsic
honesty in an anonymous die-rolling experiment>. We conducted the
experiments with 2,568 young participants (students) who, due to their
young age in 2003, could not have influenced PRV in 2003. We find
individual intrinsic honesty is stronger in the subject pools of low PRV
countries than those of high PRV countries. The details of lying patterns
support psychological theories of honesty®Z. The results are consistent
with theories of the cultural co-evolution of institutions and valuesg, and
show that weak institutions and cultural legacies21211 that generate rule
violations not only have direct adverse economic consequences, but might
also impair individual intrinsic honesty that is crucial for the smooth
functioning of society.


https://www.nature.com/articles/nature17160#ref1
https://www.nature.com/articles/nature17160#ref2
https://www.nature.com/articles/nature17160#ref3
https://www.nature.com/articles/nature17160#ref4
https://www.nature.com/articles/nature17160#ref6
https://www.nature.com/articles/nature17160#ref7
https://www.nature.com/articles/nature17160#ref8
https://www.nature.com/articles/nature17160#ref9
https://www.nature.com/articles/nature17160#ref10
https://www.nature.com/articles/nature17160#ref11

One or two sentences providing a basic introduction to the field,

comprehensible to a scientist in any discipline.

* Deception is common in nature and humans
are no exceptionZ.


https://www.nature.com/articles/nature17160#ref1

Two to three sentences of more detailed background, comprehensible

to scientists in related disciplines.

* Modern societies have created institutions to
control cheating, but many situations remain
where only intrinsic honesty keeps people
from cheating and violating rules.



One sentence clearly stating the general problem being addressed by
this particular study.

* Psychological?, sociological®2 and economic
theories? suggest causal pathways to explain
how the prevalence of rule violations in
people’s social environment, such as
corruption, tax evasion or political fraud, can
compromise individual intrinsic honesty.


https://www.nature.com/articles/nature17160#ref2
https://www.nature.com/articles/nature17160#ref3
https://www.nature.com/articles/nature17160#ref4

* Here we present cross-societal experiments
from 23 countries around the world that
demonstrate a robust link between the
prevalence of rule violations and intrinsic
honesty. We developed an index of the
‘orevalence of rule violations’ (PRV) based on
country-level data from the year 2003 of
corruption, tax evasion and fraudulent
politics.



Two or three sentences explaining what the main result reveals in direct
comparison to what was thought to be the case previously, or how the
main result adds to previous knowledge.

* We measured intrinsic honesty in an
anonymous die-rolling experiment>. We
conducted the experiments with 2,568 young
participants (students) who, due to their
young age in 2003, could not have influenced

PRV in 2003. We find individual intrinsic

nonesty is stronger in the subject pools of low

PRV countries than those of high PRV

countries.




One or two sentences to put the results into a more general context.

* The details of lying patterns support
psychological theories of honesty®Z, The
results are consistent with theories of the
cultural co-evolution of institutions and
valuesg, and show that weak institutions and
cultural legacies2i%1l that generate rule
violations not only have direct adverse
economic consequences, but might also
impair individual intrinsic honesty that is
crucial for the smooth functioning of society.



https://www.nature.com/articles/nature17160#ref6
https://www.nature.com/articles/nature17160#ref7
https://www.nature.com/articles/nature17160#ref8
https://www.nature.com/articles/nature17160#ref9
https://www.nature.com/articles/nature17160#ref10
https://www.nature.com/articles/nature17160#ref11

Two or three sentences to provide a broader perspective, readily
comprehensible to a scientist in any discipline, may be included in the
first paragraph if the editor considers that the accessibility of the paper

is significantly enhanced by their inclusion. Under these circumstances,
the length of the paragraph can be up to 300 words. (This example is
190 words without the final section, and 250 words with it).




Beginning

 The manuscript should start with a brief
introduction describing the paper’s
significance.

e The introduction should ensure that the

significance of the experimental findings is
clear.

* Provide sufficient background information to

make the article intelligible to readers in other
disciplines.




Write on an interesting subject

* There must be an interesting story, a story
that nonexperts—who would skip all the
equations—would find intriguing.

e Controversies and debates stimulate reader
interest.

* Before writing, answer the question: What
new ideas or results does this paper offer?




Write clearly

 The main assumptions and results should be
explained clearly. If there are many
assumptions, present them together in one
place. Do not bury them in long paragraphs.




Get the reader’s attention early

 |f an apple does not taste good at the first
bite, one simply throws it away without giving

any thought on the nutritional value hidden in
the apple.

* Likewise, most readers make up their mind at

the first bite, i.e., within minutes of reading a
paper.




Discuss real-world examples

* Pass the relevance test by providing citations,
statistics, or anecdotes of real-world

examples.

* Without this sound footing in the real world,
your paper may give the impression to readers
that it provides a profound solution to
nonexistent problems.




Imitate skilful writers

e Observe how other successful writers introduce
their topic, cite literature, and get on with their
task.

* |mitate their words and phrases, and modify
them to suit your purpose.

* |tis easier to imitate what someone else has
written than to create a totally new paragraph.



Do not plagiarize

* |f you are quoting statements made by another
writer, use identifying quotation marks.

* Do not copy but summarize the contributions
of other writers in your own words to the
extent that they are related to the subject of
your paper.

 Mention the cited author with year of
publication in the text and give the exact
source in the reference section.




When it is and isn’t OK to recycle text in
scientific papers
(Nature Human Behaviour, 25 March 2024)

* |n scientific writing, one common form of text
recycling is the reuse of text from methods

sections.

* |n these cases, NHB consider reuse of text to be
appropriate and desirable to ensure clarity and
consistency.




Treat others generously

 Emphasize the importance of the paper being
written, but not at the expense of others.

e Don’t hit people. Do not hurt their feelings.

* When mentioning the works of other persons,
avoid using negative terms.




Find quotations from well-known authors

* This strategy increases the credibility of the
paper.
 Forinstance, if John Maynard Keynes or Kenneth

Arrow said something about the topic, it is
difficult to argue that your paper is uninteresting.

* Do not quote dead people too often.

* Do not quote yourself (too much). This implies

narcissism or lack of exposure to the thinking of
others.




Start writing before the paper is finished in your
head

* Writing a paper is like stringing pearls to make
a necklace. There is an optimum order for
these pearls to form a paper, and some pearls
are better left out.

e “Killing my darlings” — a great advice,
sometimes difficult to follow.




Do not read too much

* Do not read too much before you begin to
write. It can interfere with your own thinking
and writing.

e |tisimpossible to read every paper ever
written on a subject.

* |f you read a dozen papers on a topic, you
should have enough material to write a paper.
Now add your own ideas to this base of
knowledge. Only then add another dozen.




Strike a balance between theory and
applications

* A theoretical paper should say something
about policies, applications, or empirical work.

 An empirical paper should say something

about the theory that led to the empirical
work.




Divide long paragraphs

e |f there are two or more ideas in a single
paragraph, split them up.

* Break up long paragraphs even if they contain
a single idea.

* Readers tend to skip long paragraphs.




Divide long paragraphs Il

e The eyes of readers are subconsciously looking
for open space. This is why important

equations should be displayed, rather than
buried in the text.

* No paragraph should be longer than half a
page.

* As a general rule, a paragraph should have
more than two sentences.




Use tables to summarize results or to compare
with the literature

e Tables provide another way to catch the
attention.

 Avoid too many numbers in one table.

* Do not present more than three tables, except
in empirically oriented papers.



Figures

e A (good) figure is worth a thousand words.

* Do not use too many curves, lines, or labels.

e Ten years after publication, readers may not
remember anything about a paper, not
equations nor derivations. But they may recall
a Figure.




The Paper’s Conclusion

 Compare your results to those in the literature.

* |f the literature does not have comparable results,

discuss how your paper is related to the
literature.

* Do not repeat parts of the introduction.




Discuss policy implications

* Explain how the theory applies to real world
examples.

 Example: In practice, A is used, but you
recommend B, etc.

* Present the bottom line. Mention the
implications for policy makers, practitioners,
or other researchers.




Some examples from experience

e ... both good and bad
e ...and some painful but instructing
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Meural networks letter
Emotional balances in experimental consumer choices

George Mengov™*, Henrik Egbert®, Stefan Pulov®, Kalin Georgiev*

* Department of Statistics and Econometrics, Faculty of Ecomemics and Busimess Administrarion, Soff Lnfversity, 125 Tarigroduko Chaucoee Bl BL 3, 1113 Sofi, Buigaria
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4 Department of Computer informatics, Foculty of Mathematics and Informatics, Sofia Uiversity, 5 femes Bowrchier B, 1164 Sofia. Bulgaria

ARTICLE INFO ABSTREACT

Artirfe hictory: This paper presents an experiment, which builds a bridge over the gap between neuroscience and
Received 6 January 2008 the analysis of economic behaviour. We apply the mathematical theory of Pavlowvian conditioning,
Recetved in revised form kmown as Recurrent Assoclative Gated Dipole (READ) to analyse consumer cholces in a computer-
:c] “”E:;;?:ﬂ st 2008 based experiment. Supplier reputations, consumer satisfaction, and customer reactions are operationally

g 5 defined and, together with prices, related to READs newral dynamics. We recorded our participants’
- - decisions with their timing, and then mapped those decisions on a sequence of events generated by
o - - behayioar the READ model. To achieve this, all constants in the differential equations were determined using
Decision making simulated annealing with data from 129 people. READ predicted correctly 96% of all consumer choices in
Gated dipole a calibeation sample {n = 1200). and B7% in a test sample (n = 903), thus outperforming logit models.
READ The rank correlations between self-assessed and dipole-generated consumer satisfactions were BS% in

Satisfacticn treadmill the calibration sample and 7B in the test sample, surpassing by a wide margin the best lineas regression

madel

© 2008 Elsevier Ltd. All rights reserved.

1. Intreduction

John Watson, founder of behaviourism, is quoted to have said
in 1922, “The consumer is to the manufacturer, the department
stores and the advertising agencies, what the green frog is to
the physiclogist” [DiClemente & Hantula, 2003). Many decades
later, we cannot but agree with this provocative insight, although
we know a lot more about consumer behaviour, its conditioning,
and economic psychology in general Today fMRI methods help
us discover how brain systems interact when we think about
economic decisions (see for example Camerer, Loewenstein, and
Prelec (2005)). Yet, these studies still try to locate regions in the
cortex involved in forming emotions, judgments, and decision
making (cf. Winkielman, Knutson, Paulus, and Trujillo (2007)).
It might be advantageous to complement such an observational
approach, or even step aside from it for a while, by using more
extensively the available theoretical models.

In this paper, we present experimental evidence that the math-
ematical theory of Paviovian conditioning, known as Recurrent As-
sociative Gated Dipole (READ) [Grossberg & Schmajuk, 1987) is
able to capture essential features of consumer behaviour. A com-
puter based experiment showed how a supplier of a fictitious

* Camesponding authar. Tel- +359 887765632; fax: +359 28739941,
Emmil address: g mengov@febuani-sofia by (G Mengov).

0893-6080/% - see fromt matter © 2008 Ekevier Led. All rights reserved.
doi: 10.1016{j neumet. 2008 08.006

service provoked satisfaction and disappointment, and gradually
built its own reputation in the minds of participants as consumers.
Accommodated by READ, these factors turned out to be strong pre-
dictors of customers’ decisions to retain or abandon their current
supplier. Our work borrows ideas from affective balance theory
(Grossbherg & Gutowski, 1987) and the Leven and Levine [ 1996)
neural model of a consumer.

2. Experiment

This experiment investigates the links between (1) monetary
outcome and momentary affect, (2) previouws emotional experience
amd supplier reputation, and (3) provoked emotions and consumer
decisions to retain or abandon the current supplier. It was
conducted in May 2007 and involved 129 students of economics
from Sofia University. Its content bears resemblance to the
Bulgarian market of mobile phone services where two leading
providers offered indistinguishable quality and prices at the time
of the study. However, similarities with other markets in other
countries would have been just as useful.

In each of 17 rounds the participant sees on a computer screen
an advertised price (Fa) offered by the current supplier, which
serves as orientation about what final price (F, ) might be expected
(Fig. 1). Mo payments with real money are made. Prices F, were
adjusted to fluctuate slightly around an average monthly bill
wobtained in a survey among another 40 students. Thus, Py varied
within 40 = 5 Bulgarian leva, and 1 lev is 0.5 euros.

1216 G. Mengov et al. / Newral Networks 21 (2008) 1213-1219

Positive reputations, Z;., Zry Negative reputations, Zy, Zsn

Supplier A Supplier B Supplier A Supplier B

Time, sec Time, sec AB Time, sec Time, sec

Satisfaction, [X;]' Disappointment, [X,]'

Neurotransmitter, ¥,

Time, sec Time, sec

sAP P, AP

.

-P,

Rounds

Fig. 3. Relating a participant's data to the READ model. Market is Saturated'. All plots show variables computed with that person's best set of constants obtained with
simulated annealing. Note the ¥; neurotransmitter release and increased disappointment in the last rounds due to larger unfavourable price differences AP. In addition,
because the participant switched from Supplier A to 8 at the end of the first round, A's positive reputation did not change much for a while, while Bs increased over the next
couple of rounds.
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the physiologist” (DiClemente & Hantula, 2003). Many decades
later, we cannot but agree with this provocative insight, although
we know a lot more about consumer behaviour, its conditioning, .
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In this paper, we present experimental evidence that the math-
ematical theory of Paviovian conditioning, known as Recurrent
sociative Gated Dipole (READ) (Grossberg & Schmajuk, 1987
able to capture essential features of consumer behaviour. A com-
puter based experiment showed how a supplier of a fictitious
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from Sofia University. Its content bears resemblance to the
Bulgarian market of mobile phone services where two leading
providers offered indistinguishable quality and prices at the time
of the study. However, similarities with other markets in other
countries would have been just as useful.

In each of 17 rounds the participant sees on a computer screen
an advertised price (Fa) offered by the current supplier, which
serves as orientation about what final price (P, ) might be expected
(Fig. 1). Mo payments with real money are made. Prices F, were
ad}usu‘d to fluctuate slightly around an average monthly bill
obtained in a survey among another 40 students. Thus, Py varied
‘within 40 = 5 Bulgarian leva, and 1 lev is 0.5 euros.
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Fig. 3. Relating a participant's data to the READ model. Market is ‘Saturated’. All plots show variables computed with that person's best set of constants obtained with
simulated annealing. Note the ¥; newrotransmitter release and increased disappointment in the last rounds due to larger unfavourable price differences AP, In addition,
because the participant switched fram Supplier A to 8 at the end of the first round, A’s positive reputation did not change much for a while, while B's increased over the next
couple of rounds.
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Keywards:
Decision making
Econoemnic chobce
Experimental economics
Gated dipale

Intuitive thinking
Differential equations

Decision making is an interdisciplinary field, which is explored with methods spanning from economic
experiments to brain scanning. Its dominant paradigms such as utility theory, prospect theory, and the
mdern dual-process theories all resort to formal algebraic models or non-mathematical postulates, and
remain purely phenomenological. An approach introduced by Grossherg deployed differential equations
describing neural networks and bridged the gap between decision science and the psychology of
cognitive-emnotional interactions. However, the limits within which neural models can explain data from
real people’s actions are virtually untested and remain unknown. Here we show that a model built around
arecurrent gated dipole can successfully forecast individual economic cheices in a complex laboratory
experiment. Unlike classical statistical and econometric techniques or machine leaming algorithms,
our method calibrates the equations for each individual separately, and carries out prediction person-
by-person. It predicted very well the behaviour of 15%-20% of the participants in the experiment —
half of them extremely well - and was overall useful for two thirds of all 211 subjects. The model
succeeded with people who were guided by gut feelings and failed with those who had sophisticated
strategies. One hypothesis is that this neural network is the biological substrate of the cognitive system
for primitive-intuitive thinking, and so we believe that we have a moded of how people choose economic
optiens by a simple form of intuition. We anticipate our study to be useful for further studies of human
intuitive thinking as well as for analyses of economic systems populated by heterogeneous agents.

i@ 2014 Elsevier Led. All rights reserved.

1. Introduction

In the meantime, psychology has gone a long way in under-
standing human decision processes. Kahneman and Tversky's re-

General Charles de Gaulle of France once remarked that it search programme enriched economie analysis with findings about

was difficult to govern a nation that had 246 different kinds of
cheese. Besides the obvious message about developed countries
being sophisticated, these words hint that economic cheice is
not only important but alse somewhat frustrating. Economists
have studied its more traditional aspects extensively and have
come to the understanding that the axioms used in economic
and political theory need revision (Sen, 1997). To better explain
and predict, they ought to account for the subtle rationality of
seemingly irrational decisions as in Amartya Sen’s famous example
of somebody taking a fruit from a basker with two fruits, but
refusing to do so when only one is left. Behavioural economics has
addressed the general issue by relaxing its axioms as well as by
equipping them with more empirical knowledge about the human
being's cognitive characteristics.

* Tel: +350 2071 8070; Fax: +350 28739841
E-muil address: g mengov@leh uni-sofia b,

hitp:fjdbx. doi.org] 10.1016/j.newnet. 2014.09.002
0893-6080/C 2014 Elsevier Lid. Al rights reserved.

the heuristic and emotional aspects of decision making (Kah-
neman, 2003, 2011; Tversky & Kahneman, 1971, 1981). In our
time, it has been established that a decision is reached in the
complex interaction of two cognitive systems. Different theories
have labelled them in different ways, but in general it is be-
lieved that there is one system for “intuitive”, “experiential”, or
“impulsive” reasoning, also called “System 1", and another for
“logical”, “rational”, or “reflective” reasoning, also called “System
II" (Epstein, 1954, 2003; Kahneman & Frederick, 2002; Schnei-
der & Shiffrin, 1977; Stanovich & West, 2000; Strack & Deutsch,
2004). Recent reviews on the subject can be found in [Alds-
Ferrer & Strack, 2014; Brocas & Carrillo, 2004; Dayan, 2009),
while some of the recent modelling advances constitute (An-
dersen, Harrison, Lau, & Rutstriim, 2014; Fudenberg & Levine,
2006; Fudenberg, Levine, & Maniadis, 2014; Mukherjee, 2010 In
this view, the intuitive system is automatic, effortless, emation-
driven, governed by habit, but difficult to change, while the log-
ical system is effortful, controlled and slow, but flexible and
able to adopt complex decision rules. Easy tasks are dealt with
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General Charles de Gaulle of France once remarked that it
was difficult to govern a nation that had 246 different kinds of
cheese. Besides the obvious message about developed countries
being sophisticated, these words hint that economic choice is
not only important but also somewhat frustrating. Economists
have studied its more traditional aspects extensively and have
come to the understanding that the axioms used in economic
and political theory need revision (Sen, 1997). To better explain
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Advice

* In science, you must develop a thick skin.
(Robert French)

* | have always believed that scientific research
is another domain where a form of optimism is
essential to success: | have yet to meet a
successful scientist who lacks the ability to
exaggerate the importance of what he or she
is doing... (Daniel Kahneman)




A better way to start a paper

... 1S to solve a long-standing problem
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ARTMAP NN
Computes

y = f(x)

Creates input and
output clusters
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Each ART module
performs ‘hypothetico-
deductive reasoning’.

The NN ‘knows’ if it has
seen this X, or similar,
before. (E.g., “Similarity
of 91%”).

The same abouty.
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Hypotheses are made
about the I/O mapping
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When a hypothesis is
turned down...
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... a hew one is made.
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Eventually, a correct
matching is identified.
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And learning takes
place.

(The relevant
connections among
neurons are changed.)

ARTa

ARTb
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e The ARTMAP NN has huge advantages and
one handicap —

* It could not perform error-based y-value
learning

* But only class-membership learning



* Anew NN is

proposed...
 And should be
tested with
1. Interesting cHoLfeL
problemsand [ [ )X )
o OHOA—1@A
2. Difficult data :




The first stage in preparing a
manuscript

* (After all research work is done)

 Tables
* Figures



The Lucas Critique

In the economy, if you have a forecasting model,
and it is working, it is no longer working.

(A paraphrase of a statement by Robert Lucas)



An abstract economic process — after two
regular cycles the agents rush and overshoot in
cycle 3, leading to a slump in cycle 4.
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The economic variable (prices, traded volumes, interest
rates, etc) has five values at each transaction moment.
Blue colour indicates the first two regular cycles,
magenta the last two imbalanced cycles.
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There are four market locations of different size




Data, actually submitted to the neural network,
are ordered in time and from largest to smallest
market (only the two regular cycles are shown)
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The NN’s internal memory

A B

Dipole Memory: Below Average Dipole Memory: Above Average Dipole Memory: Below Average Dipole Memory: Above Average

rr

0.4 0.2 0

==}

0.25 0.50

Figure 3. Dipole memory after one epoch of WTA training. A. 71 categories, p = 0.75and r =
0.5. B. 400 categories, p = 1.0 and/or r = 0.005.



Figure 4c is the happy end

Figure 4. Neural network performance. A. Imbalanced cycles 3 & 4 data as submitted. B.

Forecast ex-ante during WTA learning. C. Forecast ex-ante during distributed learning.



 That was a hard problem with synthetic data.
* Now comes a harder problem with real data.



A study in work motivation and
professional life, Bulgaria 1994 - 1999

e Comprehensive measurement instrument from work
and organizational psychology

e 49 psychological and 4 demographic variables, 450
items

* Representative sample of 1107 people
* Longitudinal, 4 waves
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1058% inflation in 1997
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1058% inflation in 1997

Fundamental
economic restructuring
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1058% inflation in 1997

Fundamental
economic restructuring
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Spring 1994 Autumn 1995  Autumn 1997 Autumn 1999

In-Sample, Out-of-Sample,
Training Sample, Test Sample
Calibration Sample




To what extent can the new NN predict the
elements of work motivation and professional
life in 1999, based on the previous waves?




An example:

 What predicts General Job Satisfaction
— Socioeconomic wellbeing
— Previous General Job Satisfaction
— Opportunity for Personal Growth
— Task ldentity
— Career Opportunities



Examples: A few people
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General Job Satisfaction
Opportunity for Personal Growth
Task ldentity

Career Oportunities

Figure 6. Examples of input data for General Job Satisfaction (SA) forecasting. (Panel data, input
variables are fromm moment t, output SA is from t + 1). A. A person who assessed their job

satisfaction, personal growth, and career opportunities way above average despite a low socio-
economic wellbeing. B. A person feeling somewhat dissatisfied with their job although all other



/O data plots
(only 2 of 5 predictors are shown)

A B

General Job Satisfaction (SA) 1999
General Job Satisfaction (SA) 1999
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Figure 5. Data for General Job Satisfaction (SA). Small dots are empirical observations. Bigger
dots are column averages. Joining lines highlight tendencies. Red and yellow colours indicate
data concentration, i.e., areas with more people behind a single small dot. Two out of five
predictors for SA are shown.



In some cases, the NN is visually successful,
numerically — not so much

General Job Satisfaction (SA) 1999
General Job Satisfaction (SA) 1999
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Figure 8. Forecasting General Job Satisfaction (SA) in 1999 — two predictors are shown. A single-
neuron forecast after two WTA training epochs with 1994/95/97 data. Small and bigger black
dots are as in Figure 5. Magenta dots are predicted observations, blue dots are column averages
over predicted values. Joining lines highlight the tendencies.



The numerically best result

- A T - —————————— B
B . . o B . B . - . . e e . .
0.7 0.7

05

General Job Satisfaction (SA) 1999
General Job Satisfaction (SA) 1999

04 L] L . . . L 0.4 L] L] . L] L] L] . L
. L] . L] L] . . . . . . .
0.3 0.3
. L] L L] L]
0 ° 0 ’2> . .
-3 -2 -1 0 1 2 ’ 2 1 0 1 2
General Job Satisfaction (SA) 1997 Career Opportunities (CO) 1997

Figure 9. Forecasting General Job Satisfaction (SA) in 1999 after one WTA epoch followed by one
distributed training epoch. A and B. The best result, R =0.5036, is achieved by a 100-neuron

forecast. C and D. A tiny bit worse, yet visually more compelling result is R = 0.5017, by a 200-
neuron forecast.
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And the second best result
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Figure 9. Forecasting General Job Satisfaction (SA) in 1999 after one WTA epoch followed by one
distributed training epoch. A and B. The best result, R =0.5036, is achieved by a 100-neuron
forecast. C and D. A tiny bit worse, yet visually more compelling result is R = 0.5017, by a 200-
neuron forecast.



The Title...

A dART-Dipole neural system with
error-minimization learning



The Title...

An efficient error-minimizing dART-Dipole neural
network

A computationally efficient and explainable
dART-Dipole neural network

A dART-Dipole neural network combining
match-based and error-based learning



The Title...

dART-Dipole: A computationally efficient,
explainable, and novelty-detecting function
approximator



Concluding Advice

Have what to say
Organize it well
Leave out a lot
Be optimistic



Thank you!



