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I. Introduction 

Malignant diseases are currently a leading cause of death and disability and reduced quality of life. 

The burden of these diseases is unevenly distributed in different regions of the world. According to the 

latest data from the World Health Organization (WHO), the number of deaths worldwide in 2020 is 

about 10 million. Cancer mortality is unevenly distributed in different regions of the world but is 

among the highest in some Eastern European countries, including Bulgaria. 

Cancer morbidity and mortality are mainly due to a few most commonly found locations with 

corresponding sex differences. On the other side, approximately a quarter of the newly diagnosed 

cancer cases in Europe are associated with various rare cancers (https://www.rarecancerseurope.org/). 

The objective definition of the term rare cancer, is entirely epidemiological and, in a sense, based on 

the incidence of the relevant type of cancer rather than the disease itself. Currently, it is accepted that 

as rare cancer types such nosological entities, which are characterized by an annual frequency of 

newly diagnosed cases in a given population below 6 per 100,000 people should be designated. 

According to the summaries and recommendations of the EU Joint Working Group on Rare Cancers 

presented in the document “Rare     Cancers Agenda 2030” 

(https://www.esmo.org/content/download/294217/5832976/1/Rare-Cancer-Agenda-2030.pdf), the list 

of rare cancers is based on the so-called "Tier-1"― nosological entities with an annual incidence 

below <6/100,000, grouped into larger families according to location or histologic origin and 

childhood presentation (pediatric rare cancers are separated into a different family). 

The main clinical issues related to rare cancer types arise from the basic characteristics of the rare 

diseases, namely: 1) clinical decisions are hindered by a lack of medical expertise and high-quality 

evidence from the clinical trials; 2) the healthcare system hardly serves certain territories with 

specialized care that these patients need; and 3) clinical trials are difficult and limited by small patient 

numbers, thus making it difficult to generate high-quality data. 

On the other hand, for a variety of reasons, the share of rare cancers and their mortality can 

vary significantly even between developed countries. For example, the average 5-year survival rate for 

patients with rare types of cancer in the USA is 54%, in the EU - an average of 48%, in Germany - 

55%, and in Bulgaria - 35%. It should be especially noted that some rare types, such as testicular 

carcinoma, are distinguished by extremely high survival rates with timely and accurate diagnosis and 

adequate treatment. On the other hand, other rare types of cancer, such as the mesotheliomas, are 

characterized by a 5-year survival of the order of 5-10% regardless of country and region. For this 

reason, the reduction of overall mortality from rare cancers worldwide is associated not only with 

timely and adequate care, but also with conducting thorough biomedical research, which could 

https://www.rarecancerseurope.org/
https://www.esmo.org/content/download/294217/5832976/1/Rare-Cancer-Agenda-2030.pdf
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significantly improve diagnostic and therapeutic options, and thus clinical outcomes. In this regard, 

the recommendations in the document Rare Cancers Agenda 2030 encourage the implementation of 

clinical, epidemiological, and translational studies in the field of rare cancers, involving as many 

centers and patients as possible. 

Driven by the obvious greatest unmet medical need to improve overall survival in 

mesotheliomas, with this work, we have focused our efforts precisely on the main nosological entity of 

this group of diseases – malignant pleural mesothelioma (MPM).  
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II. Research hypothesis, aims, and tasks 

Research hypothesis 

Based on the above, we hypothesized that by using the already available multi-omics data, it 

is possible to derive a new gene expression-based score that has prognostic and predictive value in 

MPM patients.  

Research aim 

Derive and validate a novel gene expression-based prognostic score in MPM patients. 

Research tasks 

1. Identify published studies in MPM patients with publicly available transcriptomic data 

and at least one other type of omics data (e.g. genomic, epigenomic). 

2. Derive a gene expression-based score using data from the most extensive study (with 

the largest amount of omics data) as training data. 

3. Determine the prognostic value of the score relating to other clinical data from the 

patients in the training dataset. 

4. Validate the derived score based on the transcriptomic data from the remaining 

identified studies. 

5. Determine the prognostic value of the score in relation to other clinical data from the 

patients in the validation dataset. 

6. Test whether the derived score defines specific subgroups of patients based on the 

gene expression profile in each of the datasets that were used. 

7. Test whether the derived score defines specific subgroups of patients based on the 

DNA methylation profile in each of the available epigenomic datasets that were used. 

8. Test whether the derived score correlates with the infiltration profile by specific 

immune system cell types using deconvolution techniques of transcriptomic data. 

9. Test whether the derived score correlates with sensitivity to certain drugs based on 

publicly available data from in vitro studies with MPM cell lines.  
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III. Materials and Methods 

Datasets 

 Data from TCGA from GDC – Genomics Data Commons Portal (https://portal.gdc.cancer.gov/) 

 The European Genome-phenome Archive (EGA) (https://ega-archive.org/) (EGAD00001001915) 

 Trim Galore v. 0.6.3  

 FastQC v. 0.72  

 HISAT2 (v. 2.1)  

 featureCounts (v. 1.6.4)  

 limma package for R 

 RMA 

 Array Express (E-MTAB-6877) 

Deriving the model 

 DepMap (https://depmap.org/portal/)  

 rbsurv package for the R statistical environment  

 Akaike Information Criterion (AIC)  

 survival package for R 

 Cox regression coefficients  

 Cutoff Finder package for R (https://molpathoheidelberg.shinyapps.io/CutoffFinder_v1/) 

 Receiver operating chrarecteristics (ROC) curves 

 survminer package for R 

Gene set enrichment analysis 

 Gene set enrichment analysis (GSEA) developed by Broad Institute 

(http://www.broadinstitute.org/gsea/index.jsp) (standalone version GSEA 4.0.3) 

 Oncogenic gene ontology signatures from the Molecular Signatures Database (MSigDB) 

(https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#H) 

Cibersort 

 The Immune Landscape of Cancer (https://gdc.cancer.gov/about-

data/publications/panimmune) 

 CIBERSORTx (https://cibersortx.stanford.edu/index.php) 

 the cor function from the stats package for R 

 corplot package for R 

 

https://portal.gdc.cancer.gov/
https://ega-archive.org/
https://depmap.org/portal/
https://molpathoheidelberg.shinyapps.io/CutoffFinder_v1/
http://www.broadinstitute.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp#H
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
https://cibersortx.stanford.edu/index.php
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Drug sensitivity analysis 

 RNA-Seq data for MPM in the Genomics of Drug Sensitivity in Cancer (GDSC) project 

 ArrayExpress (E-MTAB-3983, https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-

3983) 

 Area under the curve (AUC) 

 ANOVA models 

 two-sided p-value 

Integrated DNA methylation analysis 

 Data from TCGA from GDC 

 ArrayExpress (E-MTAB-6884) 

 β-values 

 COHCAP algorithm implemented through the corresponding R package (COHCAP v. 

1.48.0)  

 p-values 

 False discovery rate (FDR) 

 Integrative Genomics Viewer (https://www.igv.org/) 

Common statistical procedures 

 Chi-sqared 

 Two-samples t-test 

 Wilcoxon-Mann-Whitney test 

Table 1. Used omics datasets to build, validate, and explore the biological nature of 2-PS. 

Dataset 
 

Data type 
 

Technology 
 

Accession number 

Patients 
(n) Purpose 

TCGA RNA-Seq 
Illumina HiSeq 

2000 phs000178 87 Training 

TCGA 
DNA 

methylation 

Infinium 
HumanMethylation 

450 BeadChip 

 
phs000178 

 
87 

 
Exploratory 

Bueno RNA-Seq 
Illumina HiSeq 

2000 
EGAD00001001915 

EGAS000010015631 211 Validation 

Blum 
Expression 
microarray 

HG-U133 Plus 2.0 
chip E-MTAB-6877 67 Validation 

Blum 
DNA 

methylation 

Infinium 
HumanMethylation 

450 BeadChip 

 
E-MTAB-6884 

 
67 

 
Exploratory 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-3983
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-3983
https://www.igv.org/
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IV.  Results 

Identification of studies for inclusion in the analysis 

The most easily accessible database of scientific publications in the field of medicine and biology is 

the US National Library of Medicine which is freely accessible online. Its literature division is 

referred to as PubMed, for short. As shown in Fig. 1. the number of publications deposited in PubMed 

on mesothelioma has increased rapidly over the past 30 years, and is currently around 600 per year. 

For this reason, we chose PubMed as the only source to search literature sources that might contain a 

description about omics data from MPM patients. Due to the rapid technological development in the 

field of omics  

 

technologies, we decided to limit our search temporally to publications from the period between 01-

01-2015 and 31-12-2020. In identifying and screening records from PubMed, we followed the 

international consensus to perform systematic analyzes of PRISMA meta-analyses, as detailed in Fig. 

2. 

 

Figure 1. Number of PubMed entries by year after searching the terms "mesothelioma AND 

malignant". Last search date 10-12-2023 
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Building and initial performance of a two-gene prognostic score (2-PS) 

We applied the Robust Likelihood-Based Survival Modeling with Microarray Data to the 

training dataset (TCGA dataset) with genes that MPM cell lines were shown to be dependent on 

(Fig. 3). The algorithm selected the best-performing prognostic model based on the lowest value 

Figure 2. PRISMA diagram of the process of selecting studies for inclusion in the 

analysis. Based on the systematic approach described in the diagram, we arrived 

at a selection of 3 studies containing publicly available multi-omics data from 

MPM patients 
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of the Akaike Information Criterion (AIC). The model chosen consists of two genes – GOLT1B 

and MAD2L1. The estimated Cox regression coefficients (ln(HR)) for GOLT1B and MAD2L1 

were 1,403 and 0,945, respectively. The continuous score for each sample in every dataset was 

calculated as the sum of expression values for each of the genes in the model multiplied by the 

regression coefficient. In univariate analysis, the continuous score was prognostic for the overall 

survival (Fig. 5). We further defined a binary score using as a cut-off the median of the 

continuous score for all samples (Fig. 4). In univariate analysis, the binary score also showed a 

significant prognostic value with Area Under the Curve value of the Receiver Operator 

Characteristics (ROC) analysis of 0,67 (Fig. 6). Additionally, we evaluated the performance of 

the binary score in a multivariate model with age, sex, stage, histology and mutational status as 

covariates while retaining independent prognostic value (Fig. 7). 
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Figure 3. Diagram of the selected analytical approach. 
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Figure 5. Univariate analysis of survival according to 2-PS in the TCGA cohort. Patients are 

stratified into a high score and a low score group based on the median of the continuous score. 

The p-value is from Cox regression analysis 

 

Figure 4. Distribution histogram of the continuous score for the patients from the TCGA cohort. 

The red vertical line shows the median value used for the dichotomous (binary) stratification 

into groups of high- and low-scoring patients. 
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Figure 7. Multivariate analysis of survival according to the 2-PS in the TCGA cohort. 

Covariates included are age, sex, histology, stage and mutational status pertaining to 4 

genes: BAP1, TP53, SETD2 and NF2. 

 

Figure 6. ROC curve analysis for the prognostic value of the binary score in terms of overall 

survival in the TCGA cohort. Area under the curve (AUC) as well as sensitivity and specificity 

were calculated at a median value of 21,59, which was used for dichotomous separation. 
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Validation of the 2-PS 

To validate our 2-gene prognostic score we used two recent publicly available datasets with 

RNA-Seq data (n=211) (Bueno) and planar expression array (n=67) (Blum). The estimated 

continuous score in the Bueno dataset showed a clear prognostic value and was further 

converted to a binary one using the median of the continuous score as a cut-off. Analogous to 

the training dataset, the binary score in this validation dataset also had prognostic power (Fig. 8) 

with AUC of the ROC analysis of 0,75.  (Fig. 10). Similar to the extensive multivariate model 

for the Bueno dataset, the binary score (Fig. 9) was still of independent prognostic value (Fig. 

11). 

. 

Figure 8. Distribution histogram of the continuous score for the patients from the Bueno 

cohort. The red vertical line shows the median value used for the dichotomous (binary) 

stratification into groups of high- and low-scoring patients. 
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.  

Figure 10. ROC curve analysis for the prognostic value of the binary score in terms of overall 

survival in the Bueno cohort. Area under the curve (AUC) as well as sensitivity and specificity 

were calculated at a median value of 11,78, which was used for dichotomous separation. 

Figure 9. Univariate analysis of survival according to 2-PS  in the Bueno cohort. Patients are 

stratified into a high score and a low score group based on the median of the continuous score. 

The p-value is from Cox regression analysis 
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Following the same procedure, we analyzed the performance of the estimated continuous 

score in the Blum data set. In univariate analysis, the continuous and binary score (Fig. 12) 

defined by the cut-off of the median for the continuous score, was proven a significant 

independent prognostic factor with AUC of the ROC curve analysis of 0,85 (Fig. 14). The 

multivariate model for the Blum dataset was built using the binary score (Fig. 13), sex, age, 

stage, and histological subtype of the disease. The mutational data was excluded, as those were 

not publicly available. The model demonstrated the independent prognostic value of the binary 

score (Fig. 15). 

 

 

Figure 11. Multivariate analysis of survival according to the 2-PS in the Bueno cohort. 

Covariates included are age, sex, histology, stage and mutational status pertaining to 4 genes: 

BAP1, TP53,  SETD2 and NF2 
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Figure 13. Univariate analysis of survival according to 2-PS in the Blum cohort. Patients are 

stratified into a high score and a low score group based on the median of the continuous score. 

The p-value is from Cox regression analysis 

Figure 12. Distribution histogram of the continuous score for the patients from the Blum cohort. 

The red vertical line shows the median value used for the dichotomous (binary) stratification 

into groups of high- and low-scoring patients. 
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Figure 15. Multivariate analysis of survival according to the 2-PS in the Blum dataset. 

Covariates included are age, sex, histology, stage and mutational status pertaining to 4 genes: 

BAP1, TP53, SETD2 and NF2. 

Figure 14. ROC curve analysis for the prognostic value of the binary score in terms of overall 

survival in the Blum cohort. Area under the curve (AUC) as well as sensitivity and specificity 

were calculated at a median value of 6,56, which was used for dichotomous separation. 
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Gene Set Enrichment Analysis in Expression Profiles (GSEA) 

Based on the observation that our novel 2-PS exhibited a similar prognostic value in both 

training and the validation datasets, the score may correlate with specific gene expression 

profile. We performed GSEA using predefined cancer hallmarks signatures corresponding to the 

main characteristics of cancer from the MSig database. For each of the datasets we obtained 

several enriched signatures in the high score patient subgroups as follows: TCGA (n=37), Bueno 

(n=34), and Blum (n=34). Example plots showing enrichment of the “mitotic spindle” profile in 

both patients with high scores and all three cohorts are presented on Fig. 16, 17 and 18. It was 

evident that there was a more significant overlap between the overexpressed signatures in the 

TCGA and Bueno and slightly less so between any of those two and the Blum dataset. However, 

there were a total of 25 signatures that were commonly overexpressed in high-score patients 

from the three cohorts (Fig. 19 and Fig. 20). Most of them were related to DNA repair and DNA 

damage response and control of mitotic cell division. 

 

 

 

 

 

Figure 16. Example result of the GSEA analysis on the TCGA dataset. (A) Enrichment plot for 

genes from the “Mitotic spindle” list; (B) Gene expression heatmap of the same list. Patients 

with a high score are shown in gray and those with a low score are shown in yellow. 
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Figure 18. Example result of the GSEA analysis on the Blum dataset. (A) Enrichment plot for 

genes from the “Mitotic spindle” list; (B) Gene expression heatmap of the same list. Patients 

with a high score are shown in gray and those with a low score are shown in yellow. 

Figure 17. Example result of the GSEA analysis on the Bueno dataset. (A) Enrichment plot for 

genes from the “Mitotic spindle” list; (B) Gene expression heatmap of the same list. Patients 

with a high score are shown in gray and those with a low score are shown in yellow. 
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Figure 20. Venn diagram of the significantly overlapping more frequently overexpressed gene 

lists in the patients with a high score from the three cohorts (TCGA, Bueno, Blum) determined 

by GSEA analysis. Numbers indicate the count of gene lists in each of the sets. 

 

Figure 19. Bar charts of the significantly more frequently overexpressed gene lists in the 

patients with high scores found in at least one of the three cohorts (TCGA, Bueno, Blum) 

determined by GSEA analysis. Numbers indicate the count of gene lists in each of the sets. 
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Integrated DNA methylation and gene expression analysis 

We analyzed whether the score defined epigenetically distinct disease subtypes using available 

DNA methylation data obtained by Infinium 450K bead chip (Illumina) for patients from the 

TCGA and Blum cohorts. For the analysis, we used the COHCAP algorithm, which allows the 

integration of DNA methylation data with gene expression data to identify CpG sites and islands 

that are differentially methylated, but the level of methylation correlates inversely with the level 

of gene expression of adjacent genes, which helps identify potentially functionally relevant sites 

for epigenetic regulation of gene expression. DNA methylation profiles of 87 patients from the 

TCGA cohort were analyzed, identifying 428 differentially methylated CpG sites between high 

and low score patients (Fig. 21), located in three differentially methylated CpG islands (Table 

2), 2 of which inversely correlated in the gene expression of the adjacent genes – SLC20A1 and 

KIAA1949 (Fig. 22 and 23, Table 3). 
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Table 2. Analysis results for differentially methylated CpG islands from the TCGA dataset. For 

analysis purposes, an island is defined as at least two contiguous CpG sites that were included on 

Illumina's Infinium 450K chip 

 
CpG island 

coordinates 

Genes 

Mean β value 
for patients 
with a high 

score 

Mean β value 
for patients 
with a low 

score 

Difference in mean 
β values High vs. 

Low score 

Nominal p-
value for the 

island 

FDR value for 
the island 

Number 
of CpG 

sites 

chr11:2923301- 
2923817 

SLC22A18; 
SLC22A18AS 0,166689202 0,342562598 -0,175873397 1,15E-06 3,46E-06 2 

chr2:113403001- 
113404079 SLC20A1 0,217591513 0,364831843 -0,14724033 9,22E-05 0,00013824 2 

chr6:30654392- 
30654934 KIAA1949 0,216549012 0,381515783 -0,164966771 0,000248645 0,00024864 13 

 

 

Figure 21. Result of the analysis of the differentially methylated CpG sites in the TCGA dataset. 

Heatmap of β-values for differentially expressed CpG sites (vertical) versus patients (horizontal) 
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Table 3. Results of the integrated analysis of differentially methylated CpG islands and gene 

expression from the TCGA dataset. For analysis purposes, an island was defined as at least two 

conti

guou

s 

CpG 

sites 

that 

were 

included on Illumina's Infinium 450K chip. 

 

 

 

 

 

 

CpG island 

coordinates 
Direction of methylation Genes 

Correlation 

coefficient 

Nominal  

p-value 
FDR value 

chr2:113403001- 
113404079 Decreased methylation SLC20A1 -0,364768107 0,0005135 0,000513 

chr6:30654392- 
30654934 Decreased methylation KIAA1949 -0,778921734 6,55E-19 1,31E-18 

Figure 22. Two-dimensional correlation plot of methylation of the CpG island chr2:113403001-

113404079 versus the SLC20A1 gene expression in the TCGA dataset. Patients with high and 

low scores are indicated in a different color. 
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Using the same method, we analyzed 62 samples from the Blum dataset. Thus, 526 differentially 

methylated CpG sites were identified (Fig. 24), of which only a small fraction (n=38) was 

identical to those from the TCGA dataset (Fig. 25). 39 CpG islands were identified that showed 

differential methylation and an inverse correlation with gene expression levels of adjacent 

genes. 

 

 

 

Figure 23. Two-dimensional correlation plot of methylation of the CpG island chr6:30654392-

30654934 versus the KIAA1949 gene expression in the TCGA dataset. Patients with high and 

low scores are indicated in a different color. 
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Figure 25. Venn diagram of overlapping significantly differentially methylated CpG sites in high 

versus low score patients from two of the cohorts (TCGA, Blum) determined by COHCAP 

analysis. Numbers indicate the count of gene lists in each of the sets. 

 

Figure 24. Result of the analysis of the differentially methylated CpG sites in the Blum dataset. 

Heatmap of β-values for differentially expressed CpG sites (vertical) versus patients (horizontal) 
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Correlation with estimated populations of infiltrating immune cells 

Infiltrating immune cells are a major player in the immune response against cancer and can be 

used as a prognostic and predictive marker. We analyzed whether the 2-PS correlated with 

specific immune cell subtype infiltration in MPM. We used the inferred infiltrating immune cell 

fractions using the CIBERSORT algorithm using TCGA (Fig. 26) and Bueno (Fig. 27) datasets. 

Notably for both datasets, the continuous prognostic score showed a positive correlation with 

CD8+ T cell fraction as well as with M1 and M2 macrophage fractions. 

 

 

Figure 26. Correlation matrix of continuous score with immune infiltration score for specific 

immune system cell populations according to expression data from the TCGA cohort. The 

CIBERSORT algorithm was used to calculate the immune scores. The color of each square of 

the correlation matrix reflects the calculated correlation coefficient. 
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The potential predictive power of the 2-PS 

We calculated the 2-PS for each of the MPM cell lines included in the Genomics of Drug 

Sensitivity in Cancer (GDSC) project - GDSC1 (n=16) and GDSC2 (n=15). We subsequently 

tested for correlation between the 2-PS and the sensitivity to each of the drugs tested in both 

projects using AUC values with which we defined the response to 11 drugs from the GDSC1 

dataset showing significant correlation with 2-PS of the tested mesothelioma cell lines (Fig. 28), 

whereas for the GDSC2 dataset the number of such significant correlations was 18 (Fig. 29). 

This analysis revealed a correlation of the 2-PS with the response to commonly used drugs in 

mesothelioma management such as cisplatin (R= - 0.51, p=0.046), gemcitabine (R=0.69, 

p=0.019) and vinblastine (R=0.63, p=0.037). 

Figure 27. Correlation matrix of continuous score with immune infiltration score for specific 

immune system cell populations according to expression data from the Bueno cohort. The 

CIBERSORT algorithm was used to calculate the immune scores. The color of each square of 

the correlation matrix reflects the calculated correlation coefficient. 
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Figure 29. Two-dimensional correlation plots between the calculated 2-PS score and AUC for 

different drugs or compounds for MPM cell lines analyzed as part of the GDSC2 project. Only 

plots for identified significant correlations are presented. 

 

Figure 28. Two-dimensional correlation plots between the calculated 2-PS score and AUC for 

different drugs or compounds for MPM cell lines analyzed as part of the GDSC1 project. Only 

plots for identified significant correlations are presented. 
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V. Discussion 

MPM presents a significant medical challenge due to the severe prognosis of those affected 

and because it‘s an example of a rare cancer caused by exposure to an obligate carcinogen in the 

external (mostly occupational) environment. What is special about MPM is that the cycle of extreme 

tumor tissue diversification is provoked by chronic tumor-promoting inflammation, which is initiated 

and maintained by asbestos fibers that have penetrated and are persisting in the pleural cavity. Further, 

in the pathogenetic mechanisms of MPM development, additional hallmarks of cancer such as 

genomic instability and extreme mutational variability, replicative immortality, loss of tumor 

suppressors, sustained proliferative signaling, evasion of cell death, neoangiogenesis, acquisition of 

the ability to metastasize through epithelial-mesenchymal transition are included. The ability of 

transformed mesothelial cells to acquire diversified essential characteristics of the cancerous growth 

determines the aggressive clinical course of the disease and the limited therapeutic response with 

conventional surgical and chemotherapeutic approaches.  

In such cases, the correct prognostic stratification of patients towards the diagnosis and 

possible use of prognostic and predictive biomarkers is of particular importance. The standard staging 

of MPM according to the TNM classification doesn’t define groups with a large difference in survival 

since it depends on the underlying biological characteristics of the disease, the histological subtype, 

more precisely. 

For these reasons, the discovery and the development of new prognostic and predictive models 

in MPM using data that more adequately reflect the underlying pathological characteristics of the 

individual disease are essential. The earliest omics technology applied to the prognostic evaluation of 

cancer patients was transcriptional analysis using planar microarrays. In the last decade, the 

determination of gene expression by RNA sequencing has additionally been used. After the year of 

2000, these technologies were also applied to molecular profiling of MPM. A number of studies have 

proposed gene expression-based prognostic models in MPM. They differ significantly in the feature 

(gene) selection approach, training and validation datasets, the number of genes included in the final 

model, and the quality of different MPM cohorts, resulting in a 3-gene and a 5-gene prognostic score 

being derived. 

In our study, we introduced an original novel approach to the selection of output markers for 

the model by limiting the number of genes tested for inclusion in the MPM prognostic model to only 

those for which MPM cell lines are known to be sensitive to their exclusion (knock-down) by siRNA 

or CRISPR/Cas9 editing. We then applied the rbsurv approach to the TCGA dataset and built a two-

gene prognostic model that showed moderate predictive ability as a continuous or binary score in both 

univariate and multivariate models in three different MPM cohorts. This moderate predictive ability is 
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a trade-off for the minimal number of genes included in the predictive score, thereby avoiding 

overfitting the model by including a larger number of genes. The limited number of genes in our 2-PS 

could further allow simple validation using low throughput techniques such as quantitative RT-PCR or 

immunohistochemistry. The two genes included in our model have not been widely studied in MPM, 

although such data are available at least for MAD2L1.  

The MAD2L1 (Mitotic Arrest Deficient 2 Like 1) gene encodes the respective protein, which is 

an integral part of the mitotic spindle assembly checkpoint and ensures that all chromosomes are 

properly aligned at the metaphase plate before the cell can proceed to anaphase. It was recently found 

that the MAD2L1 gene was overexpressed in several MPM cell lines at mRNA and protein levels. This 

study conforms with a previous one which demonstrated higher MAD2L1 protein expression (both 

nuclear and cytoplasmic) in MPM cell lines as compared to normal mesothelium. The same study also 

showed that the higher nuclear MAD2L1 expression determined using immunohistochemistry 

correlated with shorter overall survival. A recent study showed that BRCA1 in mesothelioma leads to 

co-depletion of MAD2L1 mRNA and protein. Besides, loss of BRCA1/MAD2L1 was associated with 

resistance to vinorelbine ex vivo and the survival of the patients. Survival for patients lacking 

BRCA1/MAD2L1 expression was shorter in comparison to those with double-positive tumors. This 

observation can explain the fact that our 2-PS correlated with resistance to vinblastine (mitotic spindle 

assembly inhibitor) and olaparib (PARP inhibitor) in MPM cell lines. Besides, among the top enriched 

pathways in the GSEA analysis of all three cohorts were pathways directly involving mechanisms of 

DNA replication, such as: “Mitotic spindle”, “G2M checkpoint” and “DNA repair”. 

The GOLT1B gene encodes the human Vesicle transport protein (Golgi Transport 1B) GOT1B 

protein. GOLT1B might be overexpressed in various tumors because of the amplification of the 

chromosome 12p region. Recent studies show that overexpression of GOLT1B in breast and colorectal 

cancer might be associated with poorer outcomes due to the promotion of immune evasion. Consistent 

with that, we found that in high 2-PS MPM patients from all three cohorts in our analysis “Epithelial 

mesenchymal transition”, “Apical junction” and “Protein secretion pathways” were significantly 

enriched in the gene expression profiles. 

Our GSEA analysis shows that in all three cohorts there is a significant enrichment of 

overexpressed genes in the patients with a high score that are relevant to the key cancer hallmarks that 

are an integral part of the MPM biology. Furthermore, it is clear that due to the high reproducibility of 

the profiles in all three cohorts, our inferred 2-PS reflects true underlying characteristics of patients 

with a high score versus those with a low score. However, the DNA methylation profiles proved to be 

less reproducible, enabling us to extract data from only two cohorts, which were from the same DNA 

methylation analysis platform. However, in the course of our analysis this may be due to differences in 
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the MPM biology included in the separate cohorts, as the proliferative index of each patient may vary 

which could result in different levels of DNA methylation due to the high specific cell kinetics. In 

addition, we detected a very small number of genes in the TCGA cohort, whose expression inversely 

correlated with methylation of adjacent CpG islands found in the Blum dataset. 

The aforementioned recent reports regarding the role of GOLT1B in immune evasion let us 

investigate whether our 2-PS correlated with the estimated fractions of immune cells within the tumor 

tissue. We used the now standard deconvolution and deriving algorithm to obtain an immune score for 

infiltration of immune cells into tumor tissue to demonstrate that 2-PS correlated with the CD8+ T 

cells and M1/2 macrophages. The correlation of our score with macrophage infiltration is consistent 

with the already known pathogenetic mechanism of a sustained high level of chronic inflammation in 

MPM due to ineffective phagocytosis of asbestos fibers. It is known that the macrophage polarization 

towards an M2 phenotype may be associated with a poorer prognosis in MPM. The higher infiltration 

rate of CD8+ T lymphocytes may be an expression of a more powerful adaptive immune response in 

patients with higher 2-PS, respectively with a more aggressive and more proliferative disease. This is 

based on previous observations that higher MPM infiltration by CD8+ TILs is associated with a better 

prognosis after resection. In the setting of chronic inflammation, a large portion of CD8+ TILs acquire 

an expression profile of exhausted lymphocytes with characteristically increased expression of 

inhibitory signal receptors, such as PD-1. Using a similar approach to ours to assess MPM infiltrating 

immune cell fractions Blum et al. demonstrated that epithelioid-like morphology and the 

transcriptomic profile correlated with estimated fraction of CD8+ T cells. Nguen et al. also 

demonstrated that inferred infiltrating immune cells fractions can be combined with genomic 

parameters to develop prognostic models in MPM. Another recent study showed that the markers for 

higher levels of systemic inflammation correlated with shorter overall survival in MPM patients. Our 

observations in the context of those studies suggest that immune based markers are to be included in 

the prognostic schemes for MPM patients. Besides, it is rational to expect that they may have 

predictive power for the success of immune-checkpoint inhibitors (ICIs)-based therapy in MPMs, 

along with other immunogenetic markers. 

In the ICIs era, the combinations with conventional chemotherapy or targeted therapy may 

yield additional clinical benefit in MPM. Therefore, we further evaluated our 2-PS as a possible 

marker to predict sensitivity of MPM cell lines to small molecule drugs. Interestingly, 2-PS inversely 

correlated with the AUC values for cisplatin, suggesting that it may predict higher sensitivity to it. The 

opposite observation was made for two other common chemotherapeutics such as gemcitabine and 

vinblastine suggesting that our 2-PS can predict resistance to those two.  
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Even though our study successfully demonstrated the power of integrating different omics data 

from different platforms and patient cohorts in MPM, cancer growth hallmarks, such as intratumoral 

heterogeneity, limit this approach. In this regard, a new multi-omics study in MPM based on scRNA-

Seq and genotypic data, is indicative, which identified three types of cell phenotypes in MPM, 

namely those with a pronounced ability for tumor proliferation, cells able to avoid immune response, 

and those with acinar morphology and loss of the BAP1 gene expression as the clinical course in 

different patients depends on the predominant subtype of malignant mesothelial cells. 

All of this indicates that future directions in the prognostic modeling in MPM will focus on the 

integration of new biomarkers, imaging methods, and molecular profiling technologies to improve 

prognostic accuracy and refine patient stratification. The multi-omics approaches combining genomic, 

transcriptomic and proteomic data are likely to identify with an increasing success rate prognostic 

profiles and therapeutic targets in MPM. Additionally, the advances in artificial intelligence and data 

analytics will enable the development of sophisticated predictive models capable of predicting 

individual risk and optimizing treatment. Continued efforts in the development, validation, and clinical 

translation of such models will ultimately be essential to improve the clinical outcomes in patients 

with MPM as well as other rare cancers. 

.
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VI.  Conclusion and inferences 

Having achieved the set research aim through the accurate fulfillment of the set 

research tasks, we can conclude the following: 

1. An oligogenic prognostic score in MPM was derived and validated through 

primary gene selection based on a dependency screening; 

2. The derived score defines subgroups of MPM patients that have a very similar 

expression profile in all studied cohorts – training and validation; 

3. The DNA methylation profile is not associated with reproducible differential DNA 

methylation profiles; 

4. The prognostic score is associated with specific reproducible profiles of immune 

cell infiltration that can be explained by disease pathogenesis; 

5. The derived prognostic score probably also has predictive value regarding 

sensitivity or resistance to commonly used chemotherapeutic agents for MPM 

treatment. 

Based on these findings, exemplary rational directions for future research can easily be 

defined: 

1. Conversion of the derived score into a clinically applicable score using 

immunohistochemistry or RT-PCR on archival histological materials from MPM 

patients; 

2. Prospective validation of the prognostic value of 2-PS in clinical settings using a 

simplified immunohistochemical or RT-PCR-based expression score; 

3. Prospective evaluation of the predictive value of 2-PS in clinical settings for 

response to conventional chemotherapy and/or immunotherapy with ICIs using a 

simplified immunohistochemical or RT-PCR-based expression score; 

4. Application of the approach described by us to develop prognostic and predictive 

expression scores in other types of neoplastic diseases, incl. rare cancers. 

  



 

40 

 

VII. Contributions 

Original contributions 

1. The possibility of developing a prognostic score based on gene expression in MPM by 

initial selection of genes whose expression is likely to depend on cell population 

survival in MPM is demonstrated for the first time. 

2. The prognostic value of the GOLT1B gene expression has been 

demonstrated and discussed for the first time. 

3. For the first time, an oligogenic prognostic model in MPM involving 

only 2 genes has been demonstrated. 

4. It’s shown for the first time that the developed prognostic model has a 

probable predictive value for response to treatment with various conventional 

chemotherapeutic agents. 

Confirmed contributions 

1. The prognostic value of the MAD2L1 expression was confirmed. 

2. The prognostic scores in MPM have been demonstrated to correlate inexorably 

with certain core cancer characteristics, particularly with those related to DNA 

repair and mitosis, which is expected given the proliferative and aggressive 

nature of this disease.  

3. It has been demonstrated that it’s possible to integrate different omics platforms in 

MPM, and that transcriptomic analysis platforms have good reproducibility 

regardless of the method used and the location of its use. 

4. The poor reproducibility of DNA methylation profiles in MPM and their weak 

correlation with prognostically relevant disease subgroups has been confirmed. 
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