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1 Relevance of the topic and review of the main

results in the �eld

1.1 The class of clasical Toeplitz operators

The �rst class of Toeplitz operators considered were the operators associated to the
unit circle in the complex plane.

Let T denote the unit circle in the complex plane, equipped with Haar measure µ.
Consider the Hilbert space L2(T ) of square-integrable functions on T . The functions
{en(t) = eint : n ∈ Z} form an orthonormal basis for L2(T ). De�ne H2(T ) to be the
closed subspace, spanned by {en : n ≥ 0}.
Let φ be a continuous function on T . De�ne the multiplication operator Mφ on
L2(T ) by Mφ(f) = φ.f Let π denote the orthogonal projection from L2(T ) on
H2(T ). De�ne the Toeplitz operator Tφ on H2(T ) by the formula

Tφ = πMφ.

De�ne the Toeplitz algebra T 1 to be the C∗-algebra generated by the operators Tφ.

The algebra T 1 is generated by the operator Tz, and Tz is an isometry. So T 1 is just
the C∗-algebra, generated by an isometry. In [3] Coburn determines the structure
of T 1.In Theorem 1. he proves that T 1 contains K� the ideal of compact operators,
and in Theorem 2. � that T 1/K ∼= C(T ). Thus Coburn obtains the following exact
sequence:

0−→K i−→T 1 γ−→T 1/K ∼= C(T )−→ 0 (0.1)

This exact sequence immediately yields the following criterion:
Theorem (Coburn, [3]). Operator T ∈ T 1 is Fredholm if and only if γ(T ) ∈ C(T )
is nonvanishing.

There is also the following index formula:
Theorem (Gohberg� Krein, [1], [2]). Let T ∈ T be a Fredholm operator. Then
the index of T equals the negative of the winding number of γ(T ).

These results provide index results for another class of operators. Let Z denote
integers. Consider l2(Z). The functions {en(k) = δnk : n ∈ Z} form an orthogonal
basis in l2(Z). Let H2(Z) be the closed linear span of {en : n ≥ 0}, and let π be
the orthogonal projection from l2(Z) onto H2(Z). Next, given n ∈ Z, de�ne the
translation operator Mn : l2(Z)−→ l2(Z) by Mnf(k) = f(n + k), and de�ne the
operator

Tn : H2(Z)−→H2(Z) Tn = πMn.

The Fourier transform gives an isomorphism between L2(T ) and l2(Z). Under this
isomorphism H2(T ) corresponds to H2(Z). Moreover, Fourier transform is a unitary
equivalence splitting Txn to Tn. So, the C

∗-algebra, generated by Tn is isomorphic
to the Toeplitz algebra T 1 via this unitary equivalence.



During the last �fty years, there has been an increasing interest in the problem of
�nding the structure of C∗-algebras, generated by multivariable Wiener-Hopf and
Toeplitz operators. It is quite straightforward to generalize the above setting to
several variables.

1.2 Toeplitz C∗-algebras investigated in the thesis

In this thesis I discuss more general types of Toeplitz operators:
Let G denote a second countable, locally compact group with identity e and left
Haar measure λ.
Fix a closed, normal subsemigroup P of G, which generates G and contains e.
For f ∈ Cc(G) we de�ne the Wiener-Hopf operator Wf on L2(P ) by the formula

Wfξ(t) =

∫
G

f(s)ξ(ts)1P (ts)dλ(s), ξ ∈ L2(P )

Observe, that Wf is an immediate generalisation of the operators of T 1. The C∗-
algebra, generated by {Wf : f ∈ Cc(G)} will be denoted by B(G,P ) or T (G,P ), or
simply by B or T . It shall be referred as the C∗-algebra of Wiener-Hopf operators,
associated with G and P . Whenever G is a discrete group, T will be called a C∗-
algebra of Toeplitz operators (associated with G and P) 1

1.3 The programme we propose

The programme we propose to study these algebras is the following:

• Construct a groupoid G, such that the algebra B is isomorphic to the groupoid
C∗-algebra C∗(G).
• Determine the lattice of two-sided ideals of B. Determine a composition series of
B and compute its subquotients. Determine the type of B. Whenever B is type I
algebra, obtain a parametrisation of the spectrum of B and exhibit a topology on it.

• Compute the K-theory of ideals of B, corresponding quotients and the whole B.
• Find Fredholm criteria for operators in B
• Obtain a formula that calculates the index of the Fredholm operators.

• Give a formula which expresses the Fredholm index in terms of topological data.

1Traditionally, whenever the group G is discrete, the term Toeplitz operator is used and

whenever the group G is continuous, the term Wiener-Hopf operator is used.

Here both type of operators and algebras are treated the same way and we will not make any

distinction between these two terms.
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1.4 A review the development

Now we begin with reviewing the development of the study of C∗-algebras of the
Toeplitz operators.

Pionering work in the �eld was done in a series of papers by Coburn and Douglas
[3], [5],[6], [17], and [18].

More advances were made by Upmeier [19],[20] and [21] who determined a compo-
sition series of B for Hardy-Toeplitz algebras of all bounded symmetric domains.
Moreover he developed an index theory, proving index formulae for the all Wiener-
Hopf operators, associated to symmetric cones.

Another approach was taken by Dynin [7], who used a procedure, based on the local
decomposition of the cone P into a product relative to the �xed exposed face for the
construction of the composition series.This presumes a certain tameness of the cone
P , which he calls "complete tangibilyty".Due to the weakness of this assumptions,
he received results about a ladge class of cones, including polyhedral, almost smooth
and homogeneous cones.

The approach, which I follow in this thesis is due to Muhly and Renault. Over the
last twenty years the groupoid algebra techniques have been used with spectacular
success to study Toeplitz and Wiener-Hopf C∗-algebras B.
Muhly and Renault describe in [11] a general procedure to produce a locally compact
groupoid, whose groupoid C∗- algebra is just the Wiener-Hopf algebra and obtain
composition series for the C∗- algebra B of Wiener-Hopf operators in the case when
the cone P is polyhedral or symmetric.Their construction is based on the convinient
compacti�cation of the cone P .
Nica in [8] has given a uniform construction of this Wiener-Hopf compacti�cation
for all pointed and solid cones.
Recently A. Aldridge and T. Johansen in [12] and [13] studied an multivariable
generalisation of the clasical Wiener-Hopf algebra, associated with convex cones in
Rn. Using groupoid methods they constructed composition series for the Wiener-
Hopf C∗-algebra B.
Aldridge and Johansen computed the spectrum of B and in the framework of
Kasparov KK-theory give a topological expression of the index maps.
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2 Author's contribution and content of the thesis

The thesis contains 56 pages, 3 of them are the list of used references. The list of
references is composed by 52 items. Four of them are autor's.

2.1 In section 1.

In section 1 we give the De�nition of the multivariable Toeplitz and Wiener-Hopf
operators and the C∗-algebras which are generated by these operators. We explaine
problems in the investigations of these algebras and the approaches we can use to
solve them. Also we present a programme how to study these algebras.

2.2 In section 2.

In section 2 we collect some necessary preliminary de�nitions and results.
This section contains facts concerning C∗-algebras; groupoids and their C∗-algebras,
some basic examples of groupoids, K-theory of C∗-algebras, and Cyclic cohomology.

2.3 In section 3.

In Section 3 we consider the groupoid C∗-algebra T = C∗(G) , where the groupoid
G is a Wiener-Hopf groupoid, i.e., G is a reduction of a transformation group G =
(Y ×G)|X, where Y and X are suitable topological spaces.
We give a criterion for an operator T ∈ C∗(G) to be Fredholm. Also we give a
method to construct continious linear cross-sections using contractions in G0�the
unit space of G.
The results will be published in [24].

In § 3.1 we establish a criterion for an operator T ∈ C∗(G) to be Fredholm.

Let X be a regular compacti�cation of P . Then U = i(P ) is an open and invariant
subset of X = G0, and therefore we have an exact sequence:

0−→K i−→C∗(G) γ−→C∗(G)/K = C∗(G|F )−→ 0

This short exact sequence gives a criterion for an operator T ∈ T to be Fredholm:
Theorem 3.1. An operator T ∈ B is Fredholm if and only if γ(T ) is invertible in
C∗(G|F ).

In § 3.2 we give a method how to construct a continious linear cross-section in
Wiener-Hopf groupoid algebras using contractions in the unit space of G

Let F be a closed and invariant subset of X = G0, and let λ : X −→F be a
continuous contraction (i.e. λ(x) = x, ∀x ∈ F ).
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Theorem 3.1. In the above notations, the map

ψ(b)(x, n) = b(λ(x), n) b ∈ Cc

(
G|F

)
is a continuous cross-section.

There is an analogue of this formula,which de�nes continuous linear cross- section,
in the case when F is a union of �nite number of closed and invariant subsets of X.

Suppose that F1, F2, . . . , Fn are closed and invariant subsets of X and F =
n⋃

i=1

Fi.

For σ ⊂ {1, 2, . . . , n}, de�ne rank(σ) to be the number of the elements of σ and

denote Fσ =
⋂
i∈σ

Fi. Let λσ : X −→Fσ be continuous contractions, such that

λσ∪τ = λσ ◦ λτ for all σ, τ ⊂ {1, 2, . . . , n}.
Theorem 3.2. In the above notations, the map ψ given by the formula

ψ(b)(x, n) =
∑

∅̸=σ⊂.{1,2,...,n}

(−1)rank(σ)+1b(λσ(x), n) b ∈ Cc

(
G|F

)
is a continuous cross-section.

2.4 In section 4

Â Section 4 we impose additional constraints on a cross-section ψ, which give us the
opportunity to de�ne cyclic 1-cocycle and to obtain a formula that calculates the
index of the Fredholm operators. The results will be published in [27].

In [23] À.Connes gives a connection between H∗
λ(A) and almost commutative maps

ϱ (i.e. , maps ϱ : A−→L(H) such that ϱ(x.y)− ϱ(.y)ϱ(y) are a trace class operators
for all x, y ∈ A). Whenever ϱ is an almost commutative map, he constructs a cyclic
1-cocycle τ ∈ H1

λ and proves that the index mapK1(A)−→ Z is given by the formula:

index(ϱ(U)) = ⟨U, τ⟩ ∀U ∈ GL(A).

In [10], E. Park considers the C∗- algebra T α,β, generated by the Toeplitz operators
in the quarter plane. He proves in [10] , Prop. 2.3 that T α,β contains K � the ideal
of the compact operators, and therefore he obtains the following exact sequence:

0−→K i−→Tα,β γ−→Tα,β/K−→ 0

He constructs a continuous cross-section ρ : Tα,β/K−→Tα,β. The map ρ has a
property that for all x and y in Tα,β/K, the operator ρ(xy)− ρ(x)ρ(y) is compact.
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Unfortunately, in this generality, this is the most one can say: ρ(xy) − ρ(x)ρ(y) is
not always a trace class operator. E. Park gets around this problem by restricting
his choices of x and y to lie in a dense subalgebra Tα,β

∞ of Tα,β/K.

In § 3.2, we give a method how to construct continuous linear cross-sections ψ in
Wiener-Hopf groupoid algebras, using contractions in the unit space of G.
We have the same troubles as E. Park in [10] : the operator ψ(xy) − ψ(x)ψ(y) is
compact, but not always a trace class operator. The main purpose of this section is
to give su�cient conditions for ψ, such that we are able to de�ne a subalgebra T ∞,
dense in T /K, with the property that ψ(x.y) − ψ(x).ψ(y) is a trace class operator
for all x, y ∈ T ∞.

In the § 4.1 we impose some additional constraints on ψ.

In the § 4.2 we de�ne the algebras S and T ∞.

In the § 4.3 we prove that ρ = ψ ◦ γ is almost multiplicative on T ∞.

And in the �nal § 4.4 we prove a formula for the Fredholm operators, which calculates
their index:

Theorem 4.4 Let T ∈ T be Fredholm operator. Let γ(T ) and
(
γ(T )

)−1
are in T ∞.

Then the Fredholm index ind(T ) of T is given by the following formula:

ind(T ) = tr
[
ψγ(A)ψ(γ(A)−1)− ψ(γ(A)−1)ψγ(A)

]

2.5 In section 5.

Whenever the lattice of ideals and corresponding quotients of the algebra B are
known, the next problem is to determine the K-theory of B(Rd, P )/K and B.
One possible approach is to use the exact sequence of Mayer-Viotoris and the
standart six term exact sequence. This is done in [25] and in § 5 under additional
assumption that the cone P is an "exhaustible cone".
In section 5 we prove that if the cone P satis�es some suitable geometric conditions
(P to be "exhaustible"), then K∗(B(Rn, P ) = (0, 0), K∗(B(Rn, P )/K) = (0,Z), and
the index map is an isomorphism. The proof uses the Mayer-Vietoris exact sequence
and the standart six term exact sequence in K-theory.
This results are published in [25].
The main results in this section are:
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• Consruction of a Fredholm operator with index 1.
This is done in § 5.2 This result is cited and used in [14] and [15].

If we know an ideal J of the C∗-algebra B and the corresponding quotient then
we can use the standard six term exact sequence (see § 2.4.1.). But even when K-
theories of J and B/J are known this is not enough to obtain K-theory of B. We
need additional information for the maps in the diagram.

This note explains the importance of the following:

Theorem ( § 5.2. Theorem 5.2.) There exists a Fredholm operator S ∈ B(Rd, P )
such that ind(S) = 1

Corollary ( [25]. Corollary 2.3) If K∗(B(Rd, P )/K) = (0,Z), then
(i)K∗(B(Rd, P )) = (0, 0) and

(ii)The index map ind : K1(B(Rd, P )/K)−→K0(K) is an isomorphism.

• Using an induction on the dimension in [25] is proved the following:
Theorem 5.2.( [25]. Theorem 3.5) Let P be an exhaustible cone in Rd. Then:
(i) K∗(B(Rd, P ) = (0, 0).

(ii) K∗(B(Rd, P )/K) = (0,Z)

(iii)The index map ind : K1(B(Rd, P )/K)−→K0(K) is an isomorphism.

The de�nition of exhaustible cones is clumsy and unconfortable.A. Aldridge in [14]
proved a result that is stronger than Theorem 5.2 in two directions: he does not need
any assumptions about P and he prove a result of KK-theory, such that Theorem 5.2
is a corrolary. So this assumption is necessary only for the proof of above theorem
and is not essential.

Here I cite the result of Aldridge:

Òåîðåìà 5.3 (Aldridge, [14] Thm 0.3) Let P be a polyhedral cone. Then B is
KK-contractible.

Finally I note that in the works of Aldridge [14] and [15] is used the existence of
Fredholm operator with index 1.

2.6 In section 6.

In section 6 we consider an interesting non-euclidian example given by the discrete
Heisenberg group H3(Z) and its positive semigroup P .
The discrete three-dimensional Heisenberg group H3 = H3(Z) can be realised as the
multiplicative group of upper-triangular matrices:

H3 =

s =
1 a c
0 1 b
0 0 1

 : a, b, c ∈ Z

 , P = {s ∈ H3 : a, b, c ≥ 0}

8



We note that P is a normal subsemigroup, generating H3, and P ∩ P−1 = {e}.

In section 6 we represent T (H3(Z)) as a groupoid C∗-algebra. We use this represen-
tation to show that T is not postliminal and to �nd a composition series with explicit
ideals and subquotiens.
The results of this section are reported in IECMSA-2019-Baku and are submitted
in Proceedings of the Bulgarian Academy of Sciences � see [26].
The main rezults of this section is:

Theorem 6.3. The closed two-sided ideals of T ∼= C∗(G) are

{0} ⊂ I0 ⊂ I1 ⊂ I1d ⊂ I2 ⊂ I3 = T ,

where I0 ∼= K and I3/I2 ∼= C∗(H3(Z). Also we have I2/I1d ∼= (C(T 2)×K)2, I1d/I1 ∼=
C(T )×K and I1/I0 ∼= (C(T )×K)2.

Corolary.6.4 The ideal I2 is a type I C
∗-algebra, but T is not a type I C∗-algebra.

2.7 References

The list of used references covers 3 pages and contains 52 items. Four of them are
autor's.
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