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Chapter 1. Introduction

1.1 Motivation and Relevance of the Topic

Internet has transformed many areas of our everyday lives. It made a whole new
range of services and products available to a global audience from around the
world. In turn, this has changed the way companies and businesses operate and
interact with their clients. A major, rapidly growing aspect of their operations is the
demand for better and more reliable customer support, not only in terms of how
accurate the information provided by the operator or an automated system is, but
also how fast a solution to a particular problem or request is reached. Moreover,
these services must be accessible by the customers, on one hand, throughout their
preferred channels of communication, and on the other, in their most convenient
language as well. Although, conversation with human experts is more likely to
end in better customer experience, it becomes more and more clear that recruiting
and training new employees becomes infeasibly fast, as it is an expensive and time-
consuming process that cannot keep up with the ever growing rate of adopting
new users. This is a clear sign that further automation with conversation agents
and development of better question answering systems, in addition to new and
improved tools for customer service operators, are urgently needed.

First, let me give a formal definition of conversational agent. The following def-
inition will be used throughout this thesis: “A conversational agent also referred to
as chatbot is a computer program which tries to generate human like responses during a
conversation.” (Ramesh et al., 2017). Next, I focus on the following three research
questions outlined by Gao et al. (2019), in order to scope the problems that conver-
sational agents are expected to solve:

• question answering: “the agent needs to provide concise, direct answers to user
queries based on rich knowledge drawn from various data sources including text col-
lections such as Web documents and pre-compiled knowledge bases such as sales and
marketing datasets”;

• task completion: “the agent needs to accomplish user tasks ranging from restaurant
reservation to meeting scheduling, and to business trip planning”;

• social chat: “the agent needs to converse seamlessly and appropriately with users –
like a human as in the Turing test – and provide useful recommendations.”.

In order to further quantify the current state of the field, I focus on recently
reported metrics in real-world studies. First, it is important to emphasize that con-
versational agents are gaining more trust both from the companies and from the
customers, and they are becoming an integral part of the customer service pipeline.
Drift’s 2020 State of Conversational Marketing report,1 reported that the usage of chat-
bots as a brand communication channel increased by 92% compared to the previ-
ous year. In the Zendesk report,2 it is noted that 69% of the customers say they are

1https://www.drift.com/blog/state-of-conversational-marketing/
2,https://cx-trends-report-2022.zendesk.com/growth-areas

https://www.drift.com/blog/state-of-conversational-marketing/
https://cx-trends-report-2022.zendesk.com/growth-areas
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willing to interact with a bot on simple issues, which is a 23% increase from the
previous year. According to Invesp, 33% of the consumers would rather contact a
company’s customer service via social media rather than by phone.3 However, 54%
of the customers said that their biggest frustration with chatbots was the number of
questions they must answer before being transferred to a human agent.2 Moreover,
customers are concerned with the “understanding” capabilities of the conversa-
tional agents, 60% of them think humans are able to understand their needs better
than chatbots.4 Furthermore, users note the chatbots’ “inability to solve complex
issues” as another major concern of theirs.5

Figure 1.1: Conceptual diagram illustrating the information flow pipeline of a task-oriented
conversational agent. The components I explore in this thesis are marked with ✓, and the

ones that are not – with ✗.

In Figure 1.1, I illustrate the main components in the pipeline of a conversa-
tional agent. The first component that the user request is processed through is the
natural language understanding (Weld et al., 2022) one. It is responsible for the gen-
eral understanding of the input, and thus the name of the module. Its main tasks
are (i) to detect the intent and (ii) extract the values for the relevant slots from the
input tokens and pass them to the Dialogue Manager. In turn, the Dialogue Man-
ager aggregates the entire dialogue context, called dialogue state tracking (Williams
et al., 2016), estimates the user’s goal and generates the next system action, i.e., the
dialogue policy. Nonetheless, in this thesis I do not study approaches related to the
Dialogue Manager. My focus is on improving the natural language understanding
abilities and the quality of the answers and the generated utterances (discussed be-
low), not only in terms of factually, but also in terms of consistency and relevance
to the user’s input.

The next step in the conversational agent’s pipeline is to map the dialog act
generated by the dialog policy to a natural language utterance (Gatt and Krahmer,
2018; Dong et al., 2022). To achieve this, often multiple strategies are implemented
such as natural language generation (NLG) models, filling pre-defined textual tem-
plates or extracting data from external knowledge sources. The templates are an
integral part of task-oriented dialogue (Williams and Zweig, 2016; Wen et al., 2017).
They guarantee consistent and well-written sentences, albeit they suffer from the
same issues as rule-based systems – they are static and should be prepared be-
forehand. Moreover, the agent becomes less flexible, and the dialogue sounds less

3https://www.invespcro.com/blog/social-media-customer-support/
4https://userlike.com/en/blog/consumer-chatbot-perceptions
5https://startupbonsai.com/chatbot-statistics/

https://www.invespcro.com/blog/social-media-customer-support/
https://userlike.com/en/blog/consumer-chatbot-perceptions
https://startupbonsai.com/chatbot-statistics/
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natural and diverse. Hereby, I do not study them further in this thesis. On the
other hand, the NLG models are answering user questions with external knowl-
edge sources such as retrieving long-form answers or finding evidence passages.6

The final part of the pipeline is the next utterance selection model. In the case
of a single natural language generation (or similar) source, this model should copy
the text as the chatbot’s next turn, i.e., to be bypassed in the pipeline. However, in
the case of multiple generation strategies, the conversational agent needs to choose
the most relevant sentence from the list of candidates, and thus this component is
responsible for re-ranking and choosing the most appropriate option from this list.
The decision can again be based on a pre-defined scenario. Here, I explore more
complex methods based on deep neural networks.

1.2 Dissertation Aims and Objectives

The aims of this thesis can be summarized as follows:

1. Develop efficient natural language processing-based approaches for building
multi-component, task-orient, context-aware conversational agents, with the
specific application for serving as customer support chatbots.

2. Create new resources and corpora that can help in the development of di-
alogue agents, on one hand, extending them to multiple languages, and on
the other hand, allowing for generating long-form answers (e.g., articles from
knowledge bases), as opposed to the common short ones.

In this regard, I outline the following research objectives:

• Survey the existing literature, previous work and approaches on conversa-
tional agents and their components.

• Design, describe, implement, and evaluate an natural language understand-
ing (NLU)-based component that jointly identifies the user intent and recog-
nizes what is relevant to its slots.

• Design, describe, implement, and evaluate an algorithm for curating utter-
ances from external knowledge sources.

• Design, describe, implement, and evaluate an end-to-end generative models
for customer support chatbots.

• Design, describe, implement, and evaluate a pipeline for multilingual and
cross-lingual dialogue.

1.3 Dissertation Structure

The rest of this thesis is organized as follows:

• In Chapter 2, I review state-of-the-art approaches related to conversation
agents and their building components. First, I start by reviewing previous
work on task-oriented conversational agents – including modularized and

6Customers prefer knowledge bases over all other self-service channels. https://www.hubspot.
com/knowledge-base

https://www.hubspot.com/knowledge-base
https://www.hubspot.com/knowledge-base
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end-to-end (differentiable) dialogue systems. Second, I cover approaches rele-
vant to two of the main natural language understanding tasks in task-oriented
dialogue – intent classification, slot filling and their joint modeling. Then, I
survey methods for question answering (QA) and machine reading compre-
hension (MRC), zooming into science QA datasets, multilingual models and
approaches for cross-lingual transfer. Next, I summarize previous work on
retrieval long-form explanations through the lenses of the task of detecting
previously fact-checked claims. Finally, I discuss advanced conversational agents
such as end-to-end generative ones, and strategies to combine responses from
different sources, e.g., retrieved from previous conversations, generated using
a sequence-to-sequence model or by filling pre-defined templates.

• In Chapter 3, I describe a novel method for joint intent detection and slot fill-
ing. The main idea is to better leverage the connection between the two tasks.
For this purpose, the representations of the two tasks are fused together while
training the model, on one hand, by an intent pooling attention mechanism,
and on the other, by slot modeling via concatenating the token-level repre-
sentations from the language model with the predicted intent distribution,
and finally adding hand-crafted features. I further demonstrate SOTA re-
sults on two standard NLU datasets, namely ATIS (Hemphill et al., 1990) and
SNIPS (Coucke et al., 2018).

• Chapter 4 introduces new methods for curating answers from external knowl-
edge sources. First, I present a new dataset for multiple-choice question an-
swering in Bulgarian, and I evaluate information retrieval-based methods,
in order to obtain evidence passages. This is further combined with zero-
shot transferred model from high-resource language (i.e., English). Next, I
present a novel method for obtaining long-form answers, i.e., explanations in
the context of detecting previously fact-checked claims. In particular, I de-
scribe a novel weakly supervised method for collecting large-scale datasets of
article–claim pairs, and learning from them with techniques for model self-
adaptation to training on noisy data.

• In Chapter 5, I explore methods for advanced conversation. First, I study
end-to-end generative agents learned from conversation logs, collected from
Social Media, between a company’s customer support operator and a client.
Next, I introduce a new framework for multi-source response selection using
a neural network-based re-ranking model. Finally, I present a new multi- and
cross-lingual, question answering dataset, and explore the abilities of several
state-of-the-art multilingual models to transfer knowledge across languages.

• Chapter 6 concludes the thesis, summarizes the contributions, and discusses
future research directions.

1.4 Published Papers

• Momchil Hardalov, Anton Chernyavskiy, Ivan Koychev, Dmitry Ilvovsky, and
Preslav Nakov. 2022. CrowdChecked: Detecting Previously Fact-Checked
Claims in Social Media. In Proceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 12th International
Joint Conference on Natural Language Processing, AACL-IJCNLP ’22, Online

https://openreview.net/forum?id=7ObvucmbjMM
https://openreview.net/forum?id=7ObvucmbjMM
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• Momchil Hardalov, Todor Mihaylov, Dimitrina Zlatkova, Yoan Dinkov, Ivan
Koychev, and Preslav Nakov. 2020b. EXAMS: A Multi-subject High School Ex-
aminations Dataset for Cross-lingual and Multilingual Question Answering.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’20, pages 5427–5444, Online

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2020a. Enriched Pre-
trained Transformers for Joint Slot Filling and Intent Detection. arXiv preprint
arXiv:2004.14848

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2019a. Beyond English-
Only Reading Comprehension: Experiments in Zero-shot Multilingual Trans-
fer for Bulgarian. In Proceedings of the International Conference on Recent Ad-
vances in Natural Language Processing, RANLP ’19, pages 447–459, Varna, Bul-
garia

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2019b. Machine Read-
ing Comprehension for Answer Re-Ranking in Customer Support Chatbots.
Information, 10(3)

• Momchil Hardalov, Ivan Koychev, and Preslav Nakov. 2018. Towards Auto-
mated Customer Support. In Proceedings of the 18th International Conference on
Artificial Intelligence: Methodology, Systems, and Applications, AIMSA ’18, pages
48–59, Varna, Bulgaria

Chapter 2. Background and
Related Work

In this chapter, I review a wide range of holistic approaches to conversational
agents, including datasets used for training and I provide sufficient background for
the rest of the thesis.

First, I summarize the literature for two conversational NLU tasks: (i) intent
detection, i.e., understanding the user’s current goal, and (ii) slot filling, i.e., identi-
fying different slots in the running dialog, which correspond to different parameters
of the user’s query.

Next, I focus on the related topic of QA, covering full resource and zero-shot
approaches applied in mono- and multilingual scenario. Further, I cover the prob-
lem of curating answers from external knowledge sources. I study this problem
through the lenses of finding previously fact-checked claims, and thus I give the needed
background for this task and the state-of-the-art approaches and models, including
training with noisy data and distant supervision.

Finally, I focus on advances in conversation techniques, i.e., generative models
for dialogue and combining answers obtained from multiple sources in order to
find the best next utterance in a conversation.

https://doi.org/10.18653/v1/2020.emnlp-main.438
https://doi.org/10.18653/v1/2020.emnlp-main.438
https://arxiv.org/abs/2004.14848
https://arxiv.org/abs/2004.14848
https://doi.org/10.26615/978-954-452-056-4_053
https://doi.org/10.26615/978-954-452-056-4_053
https://doi.org/10.26615/978-954-452-056-4_053
https://doi.org/10.3390/info10030082
https://doi.org/10.3390/info10030082
https://doi.org/10.1007/978-3-319-99344-7_5
https://doi.org/10.1007/978-3-319-99344-7_5
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Chapter 3. Semantic Parsing of
Human-Generated Utterances

This chapter presents a novel method for natural language understanding that mod-
els jointly the tasks of intent detection and slot filling (Transformer-NLU). Table 3.1
shows a user request collected from a personal voice assistant. Here, the intent is to
play music by the artist Justin Broadrick from year 2005. The slot filling task naturally
arises as a sequence tagging task. To this end, the main idea is to use a pooling
attention layer for intent classification in order to obtain a single representation for
the whole sentence formed from all tokens, as their vectors representations encode
information about the slots, too. Further, the slot filling task is reinforced with
truecasing and word-specific features, that allow the model to distinguish between
names such as personal, city, country, state, etc., in addition to the predicted in-
tent distribution from the aforementioned layer. The method outperforms strong
neural-based models on two well-known NLU datasets for slot filling and intent
detection.

This chapter is mainly based on Hardalov et al. (2020a).

Intent PlayMusic

Words play music from 2005 by justin broadrick
↓ ↓ ↓ ↓ ↓ ↓ ↓

Slots O O O B-year O B-artist I-artist

Table 3.1: Example from the SNIPS dataset with slots encoded in the BIO format. The
utterance’s intent is PlayMusic, and the given slots are year and artist.

3.1 Dataset

In my experiments, I use two publicly available datasets (see Table 3.2), the Airline
Travel Information System (ATIS) (Hemphill et al., 1990), and SNIPS (Coucke et al.,
2018). The ATIS dataset contains transcripts from audio recordings of flight infor-
mation requests, while the SNIPS dataset is gathered by a custom intent engine for
personal voice assistants.

3.2 Proposed Approach

I propose a joint approach for intent classification and slot filling built on top of a
pre-trained language model, i.e., BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019). I further improve the base model in three ways: (i) for intent detection, I ob-
tain a pooled representation from the last hidden states for all tokens, (ii) I obtain
predictions for the word case and named entities for each token (word features),
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ATIS SNIPS

Vocab Size 722 11,241
Average Sentence Length 11.28 9.05
#Intents 21 7
#Slots 120 72
#Training Samples 4,478 13,084
#Dev Samples 500 700
#Test Samples 893 700

Table 3.2: Statistics about the ATIS and SNIPS datasets.

and (iii) I feed the predicted intent distribution vector, BERT’s last hidden represen-
tations, and word features into a slot filling layer. The complete architecture of the
model is shown in Figure 3.1b.

To train the model, I use a joint loss function Ljoint for the intent and for the
slots. For both tasks, I apply cross-entropy over a softmax activation layer, except
in the case of CRF tagging. In those experiments, the slot loss Lslot will be the
negative log-likelihood (NLL) loss. Moreover, I introduce a new hyper-parameter
γ to balance the objectives of the two tasks (see Eq. 3.1). Finally, I propagate the
loss from all the non-masked positions in the sequence, including word pieces, and
special tokens ([CLS], <s>, etc.). Note that I do not freeze any weights during
fine-tuning.

Ljoint = γ ∗ Lintent + (1− γ) ∗ Lslot (3.1)

(a) BERT-Joint. (b) Transformer-NLU (mine).

Figure 3.1: Model architectures for joint learning of intent and slot filling: (a) classical joint
learning with BERT/RoBERTa, and (b) proposed enhanced version of the model.

3.3 Experiments and Analysis

3.3.1 Evaluation Results

Table 3.3 presents quantitative evaluation results in terms of (i) intent accuracy, (ii)
sentence accuracy, and (iii) slot F1. The first part of the tables refers to previous
work, whereas the second part presents my experiments and is separated with a
double horizontal line. The evaluation results confirm that my model performs
better then the current state-of-the-art.
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ATIS SNIPS

Model
Intent
(Acc)

Sent.
(Acc)

Slot
(F1)

Intent
(Acc)

Sent.
(Acc)

Slot
(F1)

Joint Seq. (Hakkani-Tür et al., 2016) 92.60 80.70 94.30 96.90 73.20 87.30
Atten.-Based (Liu and Lane, 2016) 91.10 78.90 94.20 96.70 74.10 87.80
Sloted-Gated (Goo et al., 2018) 95.41 83.73 95.42 96.86 76.43 89.27
Capsule-NLU (Zhang et al., 2019) 95.00 83.40 95.20 97.30 80.90 91.80
Interrelated SF-First (E et al., 2019) 97.76 86.79 95.75 97.43 80.57 91.43
Interrelated ID-First (E et al., 2019) 97.09 86.90 95.80 97.29 80.43 92.23
Stack-Propagation (Qin et al., 2019) 96.9 86.5 95.9 98.0 86.9 94.2
AGIF (Qin et al., 2020) 97.1 87.2 96.0 98.1 87.3 94.8

BERT-Joint 97.42 87.57 95.74 98.71 91.57 96.27
RoBERTa-Joint 97.42 87.23 95.32 98.71 90.71 95.85

Transformer-NLU:BERT 97.87 88.69 96.25 98.86 91.86 96.57

Transformer-NLU:RoBERTa 97.76 87.91 95.65 98.86 92.14 96.35
Transformer-NLU:BERT w/o Slot Features 97.87 88.35 95.97 98.86 91.57 96.25
Transformer-NLU:BERT w/ CRF 97.42 88.26 96.14 98.57 92.00 96.54

Table 3.3: Intent detection and slot filling results on the SNIPS and the ATIS datasets.
Highest results in each category are written in bold. My models are shown in italic; the
non-italic models on top come from the literature. Qin et al. (2019, 2020) report their results

with single precision.

I introduce a fine-grained measure, i.e., relative error reduction (RER) percentage,
which is defined as the proportion of absolute error reduced by a modela compared
to modelb.

RER = 1− Errormodela

Errormodelb
(3.2)

Table 3.4 shows the error reduction by my model compared to the current
SOTA, and to a BERT-based baselines (see Section 3.4.2 in the dissertation). Since
there is no single best model from the SOTA, I take the per-column maximum
among all, albeit they are not recorded in a single run. For the ATIS dataset, we
see a reduction of 11.64% (1.49 points absolute) for sentence accuracy, and 6.25%
(0.25 points absolute) for slot F1, but just 4.91% for intent accuracy (see Table 3.3).
Such a small improvement can be due to the quality of the dataset and to its size.
For the SNIPS dataset, we see major increase in all measures and over 35% error
reduction. In absolute terms, I have 0.76 for intent, 4.84 for sentence, and 1.77
for slots. This effects cannot be only attributed to the better model (discussed in
the analysis below), but also to the implicit information that BERT learned during
its extensive pre-training. This is especially useful in the case of SNIPS, where
fair amount of the slots in categories like SearchCreativeWork, SearchScreeningEvent,
AddToPlaylist, PlayMusic are names of movies, songs, artists, etc.

3.3.2 Transformer-NLU Analysis

I dissect the proposed model by adding or removing prominent components to out-
line their contributions. The results are shown in the second part of Table 3.3. First,
I compare the results of BERT-Joint and the enriched model Transformer-NLU:BERT.
We can see a notable reduction of the intent classification error by 17.44% and
11.63% for the ATIS and the SNIPS dataset, respectively. Furthermore, we see a
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Metric Relative Error Reduction

ATIS
Intent (Acc) 4.91% 17.44%
Sent. (Acc) 11.64% 11.43%
Slot (F1) 6.25% 19.87%

SNIPS
Intent (Acc) 40.00% 11.63 %
Sent. (Acc) 35.91% 6.76%
Slot (F1) 37.64% 17.35%

Transformer-NLU vs. SOTA vs. BERT

Table 3.4: Comparing Transformer-NLU:BERT to the two baselines: (i) current SOTA for
each measure, and (ii) conventionally fine-tuned BERT-Joint without the improvements, in

terms of relative error reduction (Eq. 3.2).

19.87% (ATIS) and 17.35% (SNIPS) error reduction in slot’s F1, and 11.43% (ATIS)
and 11.63% (SNIPS) for sentence accuracy. I also try RoBERTa as a backbone to my
model: while I still see the positive effect of the proposed architecture, the over-
all results are slightly worse. I attribute this to the different set of pre-training data
(CommonCrawl vs. Wikipedia). I further focus my analysis on BERT-based models,
since they performed better than RoBERTa-based ones.

Next, I remove the additional slot features – predicted intent, word casing,
and named entities. The results are shown as Transformer-NLU:BERT w/o Slot
Features. As expected, the intent accuracy remains unchanged for both datasets,
since I retain the pooling attention layer, while the F1-score for the slots decreases.
For SNIPS, the model achieved the same score as for BERT-Joint, while for ATIS it
was within 0.2 points absolute.

I added a CRF layer on top of the slot network, since it had shown positive
effects in earlier studies (Xu and Sarikaya, 2013; Huang et al., 2015; Liu and Lane,
2016; E et al., 2019). I denote the experiment as Transformer-NLU:BERT w/ CRF.
However, in my case it did not yield the expected improvement. The results for
slot filling are close to the highest recorded, while a drastic drop in intent detection
accuracy is observed, i.e., -17.44% for ATIS, and -20.28% for SNIPS.

Finally, I visualize the learned attention weights on Figure 3.2. It presents a
request from the ATIS (Figure 3.2a) and SNIPS (Figure 3.2b) datasets.
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Figure 3.2: Intent pooling attention weight for one example per dataset. The thicker the
line, the higher the attention weight.
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3.4 Summary

In this chapter, I studied the two main tasks in task-oriented conversational natural
language understanding, i.e., intent detection and slot filling. They form an impor-
tant part (component) of customer service chatbots, serving user requests on the
company’s website or on different corporate Web and Social Media platforms. That
component is responsible for extracting slot–value pairs that are later used by the
dialogue manager to navigate the agent’s next actions.

In particular, I proposed an enriched pre-trained language model to jointly
model the two tasks (i.e., intent detection and slot filling), namely, Transformer-
NLU. I designed a pooling attention layer in order to obtain intent representation
beyond just the pooled one from the special start token. Further, I reinforced the
slot filling with word-specific features, and the predicted intent distribution. My
experiments on two standard datasets showed that Transformer-NLU outperforms
other alternatives for all standard measures used to evaluate NLU tasks. I found
that using RoBERTa and adding a CRF layer on top of the slot filling network did
not help. Finally, the Transformer-NLU:BERT achieved intent accuracy of 97.87
(ATIS) and 98.86 (SNIPS). Or as a relative error reduction – almost 5% for ATIS,
and over 40% for SNIPS, compared to the state-of-the-art. In terms of slot’s filling
F1, my models scored 96.25 (+6.25%) for ATIS, and 96.57 (+37.64%) for SNIPS.

Chapter 4. Curating Answers from
External Knowledge Sources

This chapter discusses different approaches for curating answers from external
knowledge sources. Here, the focus is on methods that rely on retrieval of contex-
tual information, passages, entire documents, etc. in order to obtain an answer to a
user-generated question (or a query).

In the first part of the chapter, I explore the problem of selecting the most
relevant answer from a list of candidates, i.e., multiple-choice question answering.
In order to choose the best option, the pipeline should be based on a two-step
approach. First, retrieval of contextual passages using the question in combination
with each of the candidates as a query, and then predict the most probable option
based on the retrieved evidence text. However, rarely the answer to the question
is contained directly in the passages, and therefore the models must derive it by
reasoning beyond simple word matching.

Nevertheless, a single utterance is not always sufficient to answer the cus-
tomer’s question, especially if they need a step-by-step guide to complete their
goal. In the second part of the chapter, I propose a novel methodology for retrieving
previously written documents/articles related to claims made in conversations in
Twitter. More precisely, in the domain of conversational agents this can be viewed
as redesigning the output that a chatbot produces which is commonly a short sen-
tence, into a long-form answer that can also serve as an explanation of a process or
step-by-step guide. More precisely, in this chapter, I formulate the problem as fol-
lows: the produced answers are expected to be retrieved fact-checking articles, and



Chapter 4. Curating Answers from External Knowledge Sources 11

the task can be defined as finding previous fact-checked claims. The three main chal-
lenges explored related to the aforementioned problem in this chapter are: (i) data
scarcity, as the existing datasets are small in size, less then couple of thousand ex-
amples total, (ii) finding negative examples, as only correct article–claim pairs are
available, and therefore there are no explicit samples from the negative class, and
(iii) learning from noisy (labeled with distant supervision) examples.

This chapter is mainly based on Hardalov et al. (2019a) and Hardalov et al.
(2022).

4.1 Knowledge Retrieval

Here, I investigate skill transfer from a high-resource language, i.e., English, to a
low-resource one, i.e., Bulgarian, for the task of multiple-choice reading compre-
hension. Most previous work (Pan et al., 2019; Radford et al., 2018; Tay et al., 2018;
Sun et al., 2019) was monolingual, and a relevant context for each question was
available a priori. I take the task a step further by exploring the capability of a neu-
ral comprehension model in a multilingual setting using external commonsense
knowledge. My approach is based on the multilingual cased BERT (Devlin et al.,
2019) fine-tuned on the RACE dataset (Lai et al., 2017), which contains over 87,000
English multiple-choice school-level science questions. For evaluation, I build a
novel dataset for Bulgarian. I further experiment with pre-training the model over
stratified Slavic corpora in Bulgarian, Czech, and Polish Wikipedia articles, and
Russian news, as well as with various document retrieval strategies. Finally, I ad-
dress the resource scarceness in low-resource languages and the absence of question
contexts in my dataset by extracting relevant passages from Wikipedia articles.

4.1.1 Model

The model has three components (see Figure 4.1): (i) a context retrieval module,
which tries to find good explanatory passages for each question-answer pair, from
a corpus of non-English documents, (ii) a multiple-choice reading comprehension

Figure 4.1: BERT for multiple-choice reasoning.
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module pre-trained on English data and then applied to the target language in a
zero-shot fashion, i.e., without further training or additional fine-tuning, to a tar-
get (non-English) language, and (iii) a voting mechanism, which combines multiple
passages from (i) and their scores from (ii) in order to obtain a single (most proba-
ble) answer for the target question.

In order to enable search for appropriate passages for non-English questions,
I created an inverted index from Wikipedia articles using Elasticsearch. Following
the notation of Devlin et al. (2019), the input sequence can be written as follows:

[CLS] Passage [SEP] Question + Option [SEP]

I normalize the scores after the projection layer by adding a softmax. During
fine-tuning, I optimize the model’s parameters by maximizing the log-probability
of the correct answer.

Finding evidence passages that contain information about the correct answer is
crucial for reading comprehension systems. The context retriever may be extremely
sensitive to the formulation of a question. Thus, instead of using only the first-hit
document, we should also evaluate lower-ranked ones. In my experiments, I adopt
a simple summing strategy. I evaluate each result from the context retriever against
the question and the possible options, thus obtaining a list of raw probabilities.

4.1.2 Data

My goal is to build a task for a low-resource language, such as Bulgarian, as close
as possible to the multiple-choice reading comprehension setup for high-resource
languages such as English. This will allow us to evaluate the limitations of trans-
fer learning in a multilingual setting. One of the largest datasets for this task is
RACE (Lai et al., 2017), with a total of 87,866 training questions with four answer
candidates for each. Moreover, there are 25,137 contexts mapped to the questions
and their correct answers.

I collect my own dataset for Bulgarian, resulting in 2,633 multiple-choice
questions, without contexts, from different subjects: biology (16.6%), philoso-
phy (23.93%), geography (23.24%), and history (36.23%). Table 4.1 shows an ex-
ample question with candidate answers chosen to represent best each category. I
use green to mark the correct answer, and bold for the question category. For con-
venience all the examples are translated to English.

Table 4.2 shows the distribution of questions per subject category, the length
(in words) for both the questions and the options (candidate answers), and the

(Biology) The thick coat of mammals in winter is an example of:
A. physiological adaptation
B. behavioral adaptation
C. genetic adaptation
D. morphological adaptation

(Philosophy) According to relativism in ethics:
A. there is only one moral law that is valid for all
B. there is no absolute good and evil
C. people are evil by nature
D. there is only good, and the evil is seeming

Table 4.1: Example questions, one per subject, from the Bulgarian dataset. The correct
answer is marked in green.
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Domain #QA-pairs #Choices Len Question Len Options Vocabulary Size
12th Grade Matriculation Exam

Biology 437 4 10.4 2.6 2, 414 (12, 922)
Philosophy 630 4 8.9 2.9 3, 636 (20, 392)
Geography 612 4 12.8 2.5 3, 239 (17, 668)
History 542 4 23.7 3.6 5, 466 (20, 456)

Online History Quizzes
Bulgarian History 229.0 4 14.0 2.8 2, 287 (10, 620)
PzHistory 183 3 38.9 2.4 1, 261 (7, 518)
Overall 2, 633 3.9 15.7 2.9 13, 329 (56, 104)

RACE Train - Mid and High School
RACE-M 25, 421 4.0 9.0 3.9 32, 811
RACE-H 62, 445 4.0 10.4 5.8 125, 120
Overall 87, 866 4.0 10.0 5.3 136, 629

Table 4.2: Statistics about my Bulgarian dataset compared to the RACE dataset.

#Epoch RACE-M RACE-H Overall

Multilingual BERT
1 64.21 53.66 56.73
2 68.80 57.58 60.84
3 69.15 58.43 61.55

Slavic BERT
2 53.55 44.48 47.12
3 57.38 46.88 49.94

Table 4.3: Accuracy measured on the dev RACE dataset after each training epoch.

vocabulary richness, measured in terms of unique words. The first part of the table
presents statistics about the dataset, while the second part is a comparison to RACE.

Finally, I examine the vocabulary richness of the two datasets. The total num-
ber of unique words is shown in the last column of Table 4.2 (Vocab Size). For my
dataset, there are two numbers per row: the first one shows statistics based on the
question–answer pairs only, while the second one, enclosed in parentheses, mea-
sures the vocabulary size including the extracted passages by the Context Retriever.
The latter number is a magnitude estimate rather then a concrete number, since its
upper limit is the number of words in Wikipedia, and it can vary for different
retrieval strategies.

4.1.3 Experiments and Evaluation

BERT Fine-Tuning

I divide the fine-tuning into two groups of models (i) Multilingual BERT, and
(ii) Slavic BERT1. Table 4.3 below presents the results in the multiple-choice com-
prehension task on the dev dataset from RACE.

1http://github.com/deepmipt/Slavic-BERT-NER

http://github.com/deepmipt/Slavic-BERT-NER
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Setting Accuracy

Random 24.89
Train for 3 epochs –
+ window & title.bg & pass.ngram 29.62
+ passage.bg & passage 39.35
– title.bg 39.69
+ passage.bg^2 40.26
+ title.bg^2 40.30
+ bigger window 36.54
+ paragraph split 42.23
+ Slavic pre-training 33.27
Train for 1 epoch best 40.26
Train for 2 epochs best 41.89

Table 4.4: Accuracy on the Bulgarian testset: ablation study when sequentially
adding/removing different model components.

Wikipedia Retrieval and Indexing

I use the Bulgarian dump of Wikipedia from 2019-04-20, with a total of 251,507
articles. I index each article title and body in plain text, which I call a passage.
I further apply additional processing for each field: (i) ngram: word-based 1–3
grams; (ii) bg: lowercased, stop-words removed and stemmed; (iii) none: bag-of-
words index.

I ended up using a subset of four fields from all the possible analyzer-field
combinations, namely title.bg, passage, passage.bg, and passage.ngram. I applied Bul-
garian analysis on the title field only as it tends to be short and descriptive, and
thus very sensitive to noise from stop-words, which is in contrast to questions that
are formed mostly of stop-words, e.g., what, where, when, how.

For indexing the Wikipedia articles, I adopt two strategies: sliding window
and paragraph. In the window-based strategy, I define two types of splits: small,
containing 80-100 words, and large, of around 300 words. Finally, I use a list of
top-N hits for each candidate answer.

Experimental Results

English Pre-training for Multiple-Choice MRC. Table 4.3 presents the change in
accuracy on the original English comprehension task, depending on the number
of training epochs. In the table, “BERT” refers to the Multilingual BERT model,
while “Slavic” stands for BERT with Slavic pre-training. I fine-tune the models on
the RACE dataset and I report their performance in terms of accuracy, following
the notation from Lai et al. (2017). Note that the questions in RACE-H are more
complex than those in RACE-M. The final column in the table, Overall, shows the
accuracy calculated over all questions in the RACE testset. We can see a positive
correlation between the number of epochs and the model’s accuracy. We further
see that the Slavic BERT performs far worse on both RACE-M and RACE-H, which
suggests that the change of weights of the model towards Slavic languages has led
to catastrophic forgetting of the learned English syntax and semantics.
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Zero-Shot Transfer. Here, I assess the performance of the model when applied to
Bulgarian multiple-choice reading comprehension. Table 4.4 presents an ablation
study for various components. Each line denotes the type of the model, and the
addition (+) or the removal (–) of a characteristic from the setup in the previous line.
The first line shows the performance of a baseline model that chooses an option
uniformly at random from the list of candidate answers for the target question. The
following rows show the results for experiments conducted with a model trained
for three epochs on RACE.

From my experiments, I found the best combination of query fields to be ti-
tle.bulgarian^2, passage.ngram, passage, passage.bulgarian^2, where the title has a mi-
nor contribution, and can be sacrificed for ease of computations and storage. Fixing
the best query fields, allowed me to evaluate other indexing strategies, i.e., bigger
window (size 1,600, stride 400) with accuracy 36.54%, and paragraph splitting, with
which I achieved the highest accuracy of 42.23%. This is an improvement of almost
2.0% absolute over the small sliding window, and 5.7% over the large one.

Next, I examined the impact of the Slavic BERT. Surprisingly, it yielded 9%
absolute drop in accuracy compared to the multi-lingual BERT. This suggests that
the latter already has enough knowledge about Bulgarian, and thus it does not need
further adaptation to Slavic languages.

Further, I study the impact of the number of fine-tuning epochs on the model’s
performance. I observe an increase in accuracy as the number of epochs grows,
which is in line with previously reported results for English tasks. While this corre-
lation is not as strong as for the original RACE task (see Table 4.3 for comparison),
I still observe 1.6% and 0.34% absolute increase in accuracy for epochs 2 and 3,
respectively, compared to epoch 1.

I further study the impact of the size of the results list returned by the re-
triever on the accuracy for the different categories. I further analyize the aver-
age accuracy for a given query size Sq over all performed experiments, where
Sq ∈ {1, 2, 5, 10, 20}. My experiments show that longer query result lists (i.e., con-
taining more than 10 results) per answer option worsen the accuracy for all cate-
gories, except for biology, where we see a small peak at length 10, while still the
best overall results for this category is achieved for a result list of length 5. A single
well-formed maximum at length 2 is visible for history and philosophy. With these
two categories being the biggest ones, the cap at the same number of queries for
the overall accuracy is not a surprise.

4.2 Answer Retrieval from a Pool of Explanations

In this section, I study the following problem of detecting previously fact-checked
claims: Given a user comment, detect whether the claim it makes was previously fact-
checked with respect to a collection of verified claims and their corresponding articles (see
Table 4.5). This task is an integral part of an end-to-end fact-checking pipeline (Has-
san et al., 2017), and also an important task on its own right as people often repeat
the same claim (Barrón-Cedeno et al., 2020; Vo and Lee, 2020; Shaar et al., 2021).
Research on this problem is limited by data scarceness, with datasets typically hav-
ing about a 1,000 tweet–verifying article pairs (Barrón-Cedeno et al., 2020; Shaar
et al., 2020, 2021), with the notable exception of Vo and Lee (2020), which contains
19K claims about images matched against 3K fact-checking articles.
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Figure 4.2: Crowd fact-checking thread on Twitter. The first tweet (Post w/ claim) makes
the claim that Ivermectin causes sterility in men, which then receives replies. A (crowd) fact-
checker replies with a link to a verifying article from a fact-checking website. I pair the
article with the tweet that made this claim (the first post ✓), as it is irrelevant (✗) to the other

replies.

I propose to bridge this gap using crowd fact-checking to create a large col-
lection of tweet–verifying article pairs, which I then label (if the pair is correctly
matched) automatically using distant supervision. Figure 4.2 shows an example.

4.2.1 My Newly Collected Dataset: CrowdChecked

Dataset Collection

I use Snopes as my target fact-checking website, due to its popularity among both
Internet users and researchers (Popat, Kashyap and Mukherjee, Subhabrata and
Strötgen, Jannik and Weikum, Gerhard, 2016; Hanselowski et al., 2019; Augenstein
et al., 2019; Tchechmedjiev et al., 2019). I further use Twitter as the source for col-
lecting user messages, which could contain claims and fact-checks of these claims.

My data collection setup is similar to the one in Vo and Lee (2019). First,
I form a query to select tweets that contain a link to a fact-check from Snopes
(url:snopes.com/fact-check/), which is either a reply or a quote tweet, and not a
retweet.2 An example result from the query is shown in Figure 4.2, where the
tweet from the crowd fact-checker contains a link to a fact-checking article. I then as-
sess its appropriateness to the claim (if any) made in the first tweet (the root of the
conversation) and the last reply in order to obtain tweet–verified article pairs.

I then collect all tweets matching the query from October 2017 till October 2021,
obtaining a total of 482,736 unique hits. I further collect 148,503 reply tweets and
204,250 conversation (root) tweets.3

Tweet Collection (Conversation Structure)

It is important to note that this ‘fact-checking’ tweet can be part of a multiple-turn
conversational thread, therefore taking the post that it replies to (previous turn),
does not always express a claim which the current tweet targets. In order to better
understand that phenomena, I perform manual analysis of conversation thread.

2I exclude retweets, as they do contain no comments, but rather share previous tweets.
3The sum of the unique replies and of the conversation tweets is not equal to the number of

fact-checking tweets, as more than one tweet might reply to the same comment.



Chapter 4. Curating Answers from External Knowledge Sources 17

User Post w/ Claim: Sen. Mitch McConnell: “As recently as October, now-President Biden
said you can’t legislate by executive action unless you are a dictator. Well, in one week, he
signed more than 30 unilateral actions.” [URL] — Forbes (@Forbes) January 28, 2021

Verified Claims and their Corresponding Articles

(1)

When he was still a candidate for the presidency in
October 2020, U.S. President Joe Biden said, “You can’t legislate by ex-
ecutive order unless you’re a dictator.” http://snopes.com/fact-check/
biden-executive-order-dictator/

✓

(2)
U.S. Sen. Mitch McConnell said he would not participate in 2020 election
debates that include female moderators. http://snopes.com/fact-check/
mitch-mcconnell-debate-female/

✗

Table 4.5: Illustrative examples for the task of detecting previously fact-checked claims.
The post contains a claim (related to legislation and dictatorship), the Verified Claims are
part of a search collection of previous fact-checks. In row (1), the fact-check is a correct
match for the claim made in the tweet (✓), whereas in (2), the claim still discusses Sen.

Mitch McConnell, but it is a different claim (✗), and thus it forms an incorrect pair.

Dataset Tweets‡ Words Vocab
|Unique| Mean 50% Max |Unique|

CrowdChecked (Mine) 316,564 12.2 11 60 114,727
CheckThat ’21 1,399 17.5 16 62 9,007

Table 4.6: Statistics about my dataset vs.CheckThat ’21. ‡The number of unique tweets is
lower compared to the total number of tweet–article pairs, as one tweet can be fact-checked

by multiple articles.

The conversational threads are organized in a similar way shown Figure 4.2, i.e., the
root is the first comment, then there can be a long discussion, followed by a fact-
checking comment (the one with the Snopes link).

Comparison to Existing Datasets

Next, I compare my dataset to a closely related dataset from the CLEF-2021 Check-
That ’21 on Detecting Previously Fact-Checked Claims in Tweets (Shaar et al., 2021),
to which I will refer as CheckThat ’21 in the rest of the paper. There exist other re-
lated datasets that are smaller (Barrón-Cedeno et al., 2020), come from a different
domain (Shaar et al., 2021), are not in English (Elsayed et al., 2019), or are multi-
modal (Vo and Lee, 2020).

Table 4.6 compares CrowdChecked to CheckThat ’21 in terms of number of exam-
ples, length of the tweets, and vocabulary size. Before I calculated these statistics, I
lowercased the text and I removed all URLs, Twitter handlers, English stop words,
and punctuation. We can see that CrowdChecked contains two orders of magnitude
more examples, slightly shorter tweets (but the maximum length stays approxi-
mately the same, which can be explained by the word limit of Twitter), and has
a vocabulary size that is an order of magnitude larger. Note, however, that many
examples in CrowdChecked are incorrect matches, and thus I use distant supervi-
sion to label them, with the resulting dataset sizes of matching pairs shown in
Table 4.7. Here, I want to emphasize that there is absolutely no overlap between
CrowdChecked and CheckThat ’21 in terms of tweets/claims.

http://snopes.com/fact-check/biden-executive-order-dictator/
http://snopes.com/fact-check/biden-executive-order-dictator/
http://snopes.com/fact-check/mitch-mcconnell-debate-female/
http://snopes.com/fact-check/mitch-mcconnell-debate-female/
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Data Labeling (Distant Supervision)

To label the examples, I experiment with two distant supervision approaches:
(i) based on the Jaccard similarity between the tweet and its fact-checking article,
that received a fact-checking reply and the title/subtitle of the liked fact-checking
(Snopes) article in that reply, and (ii) based on the predictions of a model trained
on CheckThat ’21.

To evaluate the feasibility of the obtained labels, I performed manual annota-
tion, aiming to estimate the number of correct pairs (i.e., tweet–article pairs, where
the article fact-checks the claim in the tweet). My prior observations of the data
suggested that unbiased sampling from the pool of tweets was not suitable, as it
would include mostly pairs that have very few overlapping words, which is often
an indicator that the texts are not related.

4.2.2 Method

General Scheme As a base for my models, I use Sentence-BERT (SBERT). I keep
the base architecture proposed by Reimers and Gurevych (2019), but I use addi-
tional features, training tricks, and losses described in the next sections. The input
is a pair of a tweet and fact-checking article, which I encode as follows:

• User Tweet: [CLS] Tweet Text [SEP]
• Verifying article: [CLS] Title [SEP] Subtitle [SEP] Verified Claim [SEP]

I train the models using the multiple negatives ranking (MNR) loss (Henderson
et al., 2017) (see Eq. 4.1). Moreover, I propose a new variant of the MNR loss that
accounts for the noise in the dataset.

Enriched Scheme Here, I adopt the pipeline proposed in the best-performing
system from the CheckThat ’21 competition (Chernyavskiy et al., 2021). Their
method consists of independent components for assessing lexical (TF.IDF-based)
and semantic (SBERT-based) similarities. The SBERT models use the same archi-
tecture and input format as described in the ‘General Scheme’ above. However,
Chernyavskiy et al. (2021) use an ensemble of models.

I adopt a temperature parameter (τ) in the MNR loss. I also make it trainable
in order to stabilize the training process as suggested in (Chernyavskiy et al., 2022).

Training with Noisy Data

To account for possible noise in the distantly supervised data, I propose a new
method based on a self-adaptive training (Huang et al., 2020), which was intro-
duced for classification tasks and the CE loss; however it needs to be modified in
order be used with the MNR loss. I iteratively refurbish the labels y using the
predictions of the current model starting after an epoch of choice, which is a hyper-
parameter:

yr ← α · yr + (1− α) · ŷ,
where yr is the current refurbished label (yr = y initially), ŷ is the model prediction,
and α is a momentum hyper-parameter (I set α to 0.9).

The adapted version of the MNR loss is defined as follows:

L = − 1
m

m

∑
i=1

yr
i

( cT
i vi

τ
− log

m

∑
j=1

exp(
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i vj

τ
)
)

(4.1)
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If I set yr
i = 1, then Eq. 4.1 resembles the MNR loss definition. The parameter

τ is the temperature.
In the self-adaptive training approach, Huang et al. (2020) introduce weights

wi = maxj∈{1,..,L} ti,j, where ti is the corrected one-hot encoded target vector in a
classification task with L classes. After applying both modifications the impact of
each training example is proportional to the square of the corrected label, i.e., in
Eq. 4.1 yr

i is now squared.

Re-ranking

I adopt the re-ranking procedure from Chernyavskiy et al. (2021). It uses a Lamb-
daMART (Wu et al., 2010) model. The inputs are the reciprocal ranks (position
in the ranked list of claims) and the predicted relevance scores (2 factors) based
on the scores of the TF.IDF and SBERT models (2 models), between the tweet and
the claim, claim+title, and claim+title+subtitle (3 combinations), for a total of 12
features in the ensemble and 4 in the single model.

4.2.3 Experiments

Datasets

Table 4.7 shows statistics about the data split sizes for CrowdChecked and Check-
That ’21. I use these splits in my experiments, albeit sometimes mixed together.

The first group (CrowdChecked) is the data splits obtained from distant su-
pervision. As the positive pairs are annotated with distant supervision and not by
humans, I include them as part of the training set. Each shown split is obtained
using a different similarity measure (Jaccard or Cosine) or threshold. From the to-
tal number of 332K collected tweet–article pairs in CrowdChecked, I end up with
subsets of sizes between 3.5K and 49K examples.

The second group describes the CheckThat ’21 dataset. I preserve the original
training, development, and testing splits. In each of my experiments, I validate and
test on the corresponding subsets from the CheckThat ’21, while the training set
can be a mix with CrowdChecked.

Dataset Data Split Threshold Tweet-Article
Pairs

CrowdChecked
(My Dataset)

Train - 332,660

Train
Jaccard

0.30 27,387
0.40 12,555
0.50 4,953

Train
Cosine

0.50 48,845
0.60 26,588
0.70 11,734
0.80 3,496

CheckThat ’21
Train - 999
Dev - 199
Test - 202

Table 4.7: Statistics about my collected datasets in terms of tweet–verifying article pairs.
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Model MRR P@1 MAP@5

Baselines (CheckThat ’21)
Retrieval (Shaar et al., 2021) 76.1 70.3 74.9
SBERT (CheckThat ’21) 79.96 74.59 79.20

CrowdChecked (My Dataset)
SBERT (jac > 0.30) 81.50 76.40 80.84
SBERT (cos > 0.50) 81.58 75.91 81.05

(Pre-train) CrowdChecked, (Fine-tune) CheckThat ’21
SBERT (jac > 0.30, Seq) 83.76 78.88 83.11
SBERT (cos > 0.50, Seq) 82.26 77.06 81.41

(Mix) CrowdChecked and CheckThat ’21
SBERT (jac > 0.30, Mix) 83.04 78.55 82.30
SBERT (cos > 0.50, Mix) 82.12 76.57 81.38

Table 4.8: Evaluation on the CheckThat ’21 testing set. In parenthesis is name of the training
split, i.e., Jaccard or Cosine selection strategy, (Seq) first training on CrowdChecked and then

on CheckThat ’21, (Mix) mixing the data from the two. The highest results are in bold.

Model MAP@5
Dev Test

DIPS (Mihaylova et al., 2021) 93.6 78.7
NLytics (Pritzkau, 2021) - 79.9
Aschern (Chernyavskiy et al., 2021) 94.2 88.2

SBERT (jac > 0.30, Mix) 90.0 82.3
+ shuffling & trainable temp. 92.4 82.6
+ self-adaptive training (Eq. 4.1) 92.6 83.6
+ loss weights 92.7 84.3

+ TF.IDF + Re-ranking 93.1 89.7
+ TF.IDF + Re-ranking (ens.) 94.8 90.3

Table 4.9: Results on CheckThat ’21 (dev and test). I compare my model and its components
(added sequentially) to the state of the art. The best results are in bold.

Experimental Results

Threshold Selection Analysis Table 4.8 shows the results grouped based on train-
ing data used. In each group, I include the two best-performing models. We see
that all SBERT models outperform the Retrieval baseline by 4–8 points absolute
MAP@5. Interestingly, training only on distantly supervised data is enough to out-
perform the SBERT trained on the CheckThat ’21 by more than 1.5 MAP@5 points.
Moreover, the performance of both data labeling strategies (i.e., Jaccard and Cosine)
is relatively close, suggesting comparable amount of noise in the two datasets.

Adding more distantly supervised data is beneficial for the model, regardless
of the strategy. The only exception is the drop in performance when I decrease the
Jaccard threshold from 0.5 to 0.4.
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Modeling Noisy Data I explore the effects of the proposed changes to the SBERT
training approach: (i) shuffling and training temperature, (ii) data-related modi-
fication of the MNR loss for self-adaptive training with weights. I use the (jac >
0.30, mix) approach in my experiments, as the baseline SBERT models achieved the
highest scores on the dev set. In Table 4.9, I ablate each of these modifications by
adding them iteratively to the baseline SBERT model.

4.3 Summary

In this chapter, I studied two directions for curating answers from external knowl-
edge sources, namely: (i) zero-shot transfer from a rich- to a low-resource language
for answer selection from a list of candidates based on a set of retrieved evidence
contexts from an external knowledge base, and (ii) answer retrieval from a pool
of explanations, i.e., previously written long-form answers such as documents or
articles.

First, I studied the task of multiple-choice reading comprehension for low-
resource languages, using a newly collected Bulgarian corpus with 2,633 questions
from matriculation exams for twelfth grade in history and biology, and online ex-
ams in history without explanatory contexts. In particular, I designed an end-to-end
approach, on top of a multilingual BERT model (Devlin et al., 2019), which I fine-
tuned on large-scale English reading comprehension corpora, and open-domain
commonsense knowledge sources (Wikipedia). My main experiments evaluated
the model when applied to Bulgarian in a zero-shot fashion. The experimental re-
sults found additional pre-training on the English RACE corpus to be very helpful,
while pre-training on Slavic languages to be harmful, possibly due to catastrophic
forgetting. Paragraph splitting, n-grams, stop-word removal, and stemming further
helped the context retriever to find better evidence passages, and the overall model
to achieve accuracy of up to 42.23%, which is well above the highest baselines of
24.89% and 29.62%.

Next, I presented CrowdChecked, a large-scale dataset for detecting previously
fact-checked claims, with more than 330,000 pairs of tweets and corresponding
fact-checking articles posted by crowd fact-checkers. I further investigated two
techniques for labeling the tweet–article pairs using distance supervision, based on
Jaccard similarity and the predictions from a neural network model resulting in
training sets of 3.5K–50K examples. I also proposed an approach for training from
noisy data using self-adaptive learning and additional weights in the loss function.
Furthermore, I exhibit the utility of my data, which yielded sizable performance
gains of four points in terms MRR, P@1, and MAP@5 over strong baselines trained
on manually annotated data (Shaar et al., 2021). Finally, I demonstrated improve-
ments over the state of the art on the CheckThat ’21 dataset by two points, achieving
MAP@5 of 90.3, when using the proposed dataset and pipeline.
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Chapter 5. Advanced Conversation

This chapter explores advanced conversational methods that go beyond single lan-
guage and individual models. First , I discuss end-to-end generative models. In
contrast to the models discussed in previous chapters, these methods should allow
the agent to handle the dialogue and to produce new answers that are unseen so far
in the conversation, without depending on external sources or NLU components.

Next, I propose a novel approach for selecting the next utterance in the con-
versation from a set of candidates obtained from multiple sources, e.g., generated
using sequence-to-sequence models or retrieved from a knowledge base. I evalu-
ate the proposed approaches using a large-scale dataset collected from a real-world
customer support conversations in social media (Twitter) between companies and
their peers. The dataset is described in the next section.

Finally, I study methods that go beyond single language and zero-shot learn-
ing. In particular, I introduce a new dataset for multiple-choice question answering
covering sixteen language from eight language families. Moreover, I use this dataset
to evaluate the capabilities of recent state-of-the-art multilingual models for cross-
lingual transfer. This section develops on and extends further some of the ideas
presented in Chapter 4, Knowledge Retrieval.

This chapter is mainly based on Hardalov et al. (2018), Hardalov et al. (2019b)
and Hardalov et al. (2020b).

5.1 Dataset for Customer Support Conversations

Overall, data and resources that could be used to train a customer support chat-
bot are very scarce, as companies keep conversations locked on their own closet,
proprietary support systems. This is due to customer privacy concerns and to com-
panies not wanting to make public their know-how and the common issues about
their products and services.

This situation has changed as a new open dataset, named Customer Support
on Twitter, was made available on Kaggle.1 It is a large corpus of recent tweets
and replies, which is designed to support innovation in natural language under-
standing and conversational models, and to help study modern customer support
practices and impact. The dataset contains 3M tweets from 20 big companies such
as Amazon, Apple, Uber, Delta, and Spotify, among others.

As customer support topics from different organizations are generally unre-
lated to each other, I focus only on tweets related to Apple support, which repre-
sents the largest number of tweets in the corpus. This allows us to stay focused on
a small range of topics that are related to a single company, a situation closer to a
real-world scenario. Table 5.1 show statistics about the dataset.

1https://www.kaggle.com/thoughtvector/customer-support-on-twitter

https://www.kaggle.com/thoughtvector/customer-support-on-twitter
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Overall

# words (in total) 26,140
Min # turns per dialog 2.00
Max # turns per dialog 106.00
Avg. # turns per dialog 2.6
Avg. # words in question 20.00
Avg. # words in answer 25.88

# dialogs tuples 49,626
Training set: # of dialogs 45,582
Testing set: # of dialogs 4,044

Table 5.1: Overall statistics about the dataset.

5.2 End-to-End Generative Agent

The rapid proliferation of mobile and portable devices has enabled a number of
new products and services. Yet, it has also laid stress on customer support as users
now also expect 24x7 availability of information about their orders, or answers to
basic questions such as ‘Why is my Internet connection dead?’ and ‘What time is
the next train from Sofia to Varna?’.

Chatbots are especially fit for the task as they are automatic: fully or partially.
Moreover, from a technological viewpoint, they are feasible as the domain they need
to operate in is narrow. As a result, chit-chat is reduced to a minimum, and chatbots
serve primarily as question-answering devices. Moreover, it is possible to train
them on real-world chat logs. Here, I experiment with such logs from customer
support on Twitter, and I compare two types of chatbots: (i) based on information
retrieval (IR), and (ii) on neural question answering. I further explore semantic
similarity measures since generic ones such as ROUGE (Lin, 2004), BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie, 2005), which come from machine
translation or text summarization, are not well suited for chatbots.

5.2.1 Method

Preprocessing

Since Twitter has its own specifics of writing in terms of both length and style,
standard text tokenization is generally not suitable for tweets. Therefore, I used a
specialized Twitter tokenizer (Manning et al., 2014) to preprocess the data. Then,
I further cleaned the data by replacing the shorthand entries, slang words, URLs
with <url>, all user mentions with <user>, and all hashtags with<hashtag>. I chose
the top N words when building the model, and I replaced the instances of the
remaining words with a special symbol <unk>.

Information Retrieval

The IR approach can be defined as follows: given a user question q′ and a list
of pairs of previously asked questions and their answers (Q, A) = {(qj, aj)|j =
1, . . . , n}, find the most similar question qi in the training dataset that a user has
previously asked and return the answer ai that customer support has given to qi.
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Word Overlap Measures
BLEU@2 ROUGE-L

IR - BM25 13.73 22.35
Seq2seq 15.10 26.60
Transformer 12.43 25.33

Table 5.2: Results based on word-overlap measures.

The similarity between q′ and qi can be calculated in various ways, but most com-
monly this is done using the cosine between the corresponding TF.IDF-weighted
vectors.

Sequence-to-Sequence

My encoder uses a bidirectional recurrent neural network RNN based on
LSTM (Hochreiter and Schmidhuber, 1997). It encodes the input sequence x =

(x1, . . . , xn) and calculates a forward sequence of hidden states (
−→
h1 , . . . ,

−→
hm) and

also a backward sequence (
←−
h1 , . . . ,

←−
hm). The decoder is a unidirectional LSTM-based

RNN, and it predicts the output sequence y = (y1, . . . , yn). Each yi is predicted us-
ing the recurrent state si, the previous predicted word yi−1, and a context vector ci.
The latter is computed using an attention mechanism as a weighted sum over the
encoder’s output (

−→
hj ,
←−
hj ), as proposed by Bahdanau et al. (2015).

Transformer

The Transformer model was proposed by Vaswani et al. (2017), and it has shown
very strong performance for machine translation, e.g., it achieved state-of-the-art
results on WMT2014 data for English-German and English-French translation. Sim-
ilarly to the Seq2seq model, the Transformer has an encoder and a decoder. The
encoder is a stack of identical layers, based on multi-head self-attention and a sim-
ple position-wise fully connected network. The decoder is similar, but in addition
to the two sub-layers in the encoder, it introduces a third sub-layer, which per-
forms multi-head attention over the encoders’ stack outputs. The main advantage
of the Transformer model is that it can be trained significantly faster, as compared
to recurrent or convolutional neural networks.

5.2.2 Experiments

Table 5.2 shows the results for the three models I compare (IR, Seq2seq, and Trans-
former) when using word overlap measures such as BLEU@2, which uses unigrams
and bigrams only, and ROUGE-L (Lin and Och, 2004), which uses longest common
subsequence (LCS).

Table 5.3 shows the results for the same three systems, but using the above-
described semantic evaluation measures, namely Embedding Average (with cosine
similarity), Greedy Matching, and Vector Extrema (with cosine similarity). For all
three measures, I used Google’s pre-trained word2vec embeddings because they
are not learned during training, which helps to avoid adding biases, as it has been
suggested in (Liu et al., 2016; Lowe et al., 2017).
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Semantic Evaluation Measures
Embedding Average Greedy Matching Vector Extrema

IR - BM25 76.53 29.72 37.99
Seq2seq 77.11 30.81 40.23
Transformer 75.35 30.08 39.40

Table 5.3: Results based on semantic measures.

The evaluation results show that Seq2seq performed best with respect to all
five evaluation measures. For the group of semantic measures, it outperformed the
other systems in terms of Embedding Average by +0.58, in terms of Greedy Match-
ing by +0.73, and in terms of Vector Extrema by +0.83 (points absolute). Moreover,
SeqSeq was also clearly the best model in terms of word-overlap evaluation mea-
sures, scoring 15.10 on BLEU@2 (+1.37 ahead of the second), and 26.60 on ROUGE-
L (+1.27 compared to the second best system). The Transformer model was ranked
second by three of the evaluation measures: Greedy Matching, Vector Extrema, and
ROUGE-L. Finally, the retrieval (ir) model achieved the second-best results in terms
of BLEU@2 and Embedding Average, but it was the worst according to the other
three evaluation measures. This shows the superiority of the generative neural
models over simple retrieval.

5.3 Multi-Source Response Selection

The growing popularity of smart devices, personal assistants, and online cus-
tomer support systems has driven the research community to develop various
new methodologies for automatic question answering and chatbots. In the do-
main of conversational agents, two general types of systems have become domi-
nant: (i) retrieval-based, and (ii) generative. While the former produce clear and
smooth output, the latter bring flexibility and the ability to generate new unseen
answers.

In my thesis, I focus on finding the most suitable answer for a question, where
each candidate can be produced by a different system, e.g., knowledge-based, rule-
based, deep neural network, retrieval, etc. In particular, I propose a re-ranking
framework based on machine reading comprehension for question–answer pairs.

5.3.1 Re-Ranking Model

My re-ranking framework uses a classifier based on QANet (Yu et al., 2018), a state-
of-the-art architecture for machine reading comprehension, to evaluate whether a
given answer is a good fit for the target question. It then uses the posterior proba-
bilities of the classifier to re-rank the candidate answers, as shown in Figure 5.1.

Negative Sampling

My goal is to distinguish “good” vs. “bad” answers, but the original dataset only
contains valid, i.e., “good” question–answer pairs. Thus, I use negative sampling
(Mikolov et al., 2013), where I replace the original answer to the target question
with a random answer from the training dataset. I further compare the word-based
cosine similarity between the original and the sampled answer, and, in some rare
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Figure 5.1: My answer re-ranking framework, based on the QANet architecture.

cases, I turn a “bad” answer into “good” one if it is too similar to the original
“good” answer.

QANet Architecture

Machine reading comprehension aims to answer a question by looking to extract a
string from a given text context. Here, I use that model to measure the appropri-
ateness of a given question–answer pair.

The first layer of the network is a standard an embedding layer, which trans-
forms words into low-dimensional dense vectors. Afterwards, a two-layer highway
network (Srivastava et al., 2015) is added on top of the embedding representations.
This allows the network to regulate the information flow using a gated mechanism.

I experiment with two types of input embeddings. First, I use 200-dimensional
GloVe (Pennington et al., 2014) vectors trained on 27 billion Twitter posts. I compare
their performance to ELMo (Peters et al., 2018), a recently proposed way to train
contextualized word representations. In ELMo, these word vectors are learned
activation functions of the internal states of a deep bi-directional language model.

The embedding encoder layer is based on a convolution, followed by self-
attention (Vaswani et al., 2017) and a feed-forward network. The output of the
layer is f (layernorm(x)) + x, where layernorm is the layer normalization operation.
The output again is mapped to #words× d by a 1D convolution. The input and the
embedding layers are learned separately for the question and the answer.

The attention layer is a standard module for machine reading comprehension
models. I call it answer-to-question (A2Q) and question-to-answer (Q2A) attention,
which are also known as context-query and query-context, respectively.

The attention layer is followed by a model layer, which takes as input the con-
catenation of [a; a2q; a⊙ a2q; a⊙ q2a], these are rows from the original matrices. For
the output layer, I learn two different representations by passing the output of the
model layer to two residual blocks, applying dropout (Srivastava et al., 2014) only
to the inputs of the first one. I predict the output as P(a|q) = σ(Wo[M0; M1]). The
weights are learned by minimizing a binary cross-entropy loss.
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Model Embedding Type d_model Heads Accuracy

Majority class – – – 50.52

QANet GloVe
64 4 80.58
64 8 82.83
128 8 83.42

QANet ELMo (token level)
64 4 82.92
64 8 83.88
128 8 83.48

QANet ELMo (sentence level)
64 8 84.09
128 8 85.45

Table 5.4: Auxiliary task: question–answer appropriateness classification results.

Answer Selection

I experimented with two answer selection strategies: (i) max, and (ii) proportional
sampling after softmax normalization. The former strategy is standard and it se-
lects the answer with the highest score, while the latter one returns a random an-
swer with probability proportional to the score returned by the softmax, aiming at
increasing the variability of the answers.

For both strategies, I use a linear projection applied on the output of the last
residual model block, which is shows as “linear block” in Figure 5.1. I can gener-
alize the latter as follows: o(q, ak) = Wo[M], where M is the concatenation of the
outputs of one or more residual model blocks.

I empirically found that the answer selection based on the max strategy does
not always perform well. I can gain notable improvement by using proportional
sampling after softmax normalization, instead of always selecting the answer with
the highest probability. In my experiments, I model Ans as a random variable that
follows a categorical distribution over K = |A| events (candidate answers).

5.3.2 Evaluation Results

Auxiliary Task: Question–Answer Appropriateness Classification

Table 5.4 shows the results for the auxiliary task of question–answer appropriate-
ness classification. The first column is the name of the model. It is followed by
three columns showing the type of embedding used, the size of the hidden layer,
and the number of heads. The last column reports the accuracy. Since the dataset is
balanced (I generate about 50% positive, and about 50% negative examples), accu-
racy is a suitable evaluation measure for this task. The top row of the table shows
the performance for a majority class baseline. The following lines show the results
for my full QANet-based model when using different kinds of embeddings. We
can see that contextualized sentence-level embeddings are preferable to using sim-
ple word embeddings as in GloVe or token-level ELMo embeddings. Moreover,
while token-level ELMo outperforms GloVe when the size of the network is small,
there is no much difference when the number of parameters grows (dmodel = 128,
#Heads = 8).
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Word Overlap Semantic Similarity

Model BLEU@2 ROUGE_L Emb Avg Greedy Match Vec Extr

Transformer 12.43 25.33 75.35 30.08 39.40
IR-BM25 13.73 22.35 76.53 29.72 37.99
Seq2seq 15.10 26.60 77.11 30.81 40.23

QANet on IR
(Individual) 14.92± 0.13 23.30± 0.12 77.47± 0.06 30.40± 0.06 39.63± 0.06

Table 5.5: Main task: performance of the individual models. Single model results results
are reported in Tables 5.2 and 5.3.

Answer Selection/Generation: Individual Models

Table 5.5 reports the performance of the individual models: information retrieval
(IR), sequence-to-sequence (Seq2seq), and the Transformer. The same experimental
setup is used for the experiments described in Section 5.2. The table is organized
as follows: The first column contains the name of the model used to obtain the
best answer. The second and the third columns report the word overlap measures:
(i) BLEU@2, which uses uni-gram and bi-gram matches between the hypothesis and
the reference sentence, and (ii) ROUGE-L, which uses LCS. The last three columns
are for the semantic similarity measures: (i) Embedding Average (Emb Avg) with
cosine similarity, (ii) Greedy Matching (Greedy Match), and (iii) Vector Extrema
(Vec Extr) with cosine similarity. In the three latter measures, I used the standard
pre-trained word2vec embeddings because they are not learned during training,

Model
Word Overlap Semantic Similarity

BLEU@2 ROUGE_L Emb Avg Greedy Match Vec Extr

Random Top Answer 14.52± 0.12 23.41± 0.12 77.21± 0.06 30.24± 0.07 38.25± 0.20

QANet+GloVe
d=64, h=4 15.18 24.13 78.38 31.14 40.85
Softmax 15.81± 0.09 24.53± 0.05 78.32± 0.08 31.10± 0.03 40.51± 0.12

d=64, h=8 15.41 23.62 78.48 30.97 40.81
Softmax 15.90± 0.06 24.39± 0.03 78.38± 0.04 31.11± 0.02 40.66± 0.06

d = 128, h = 8 15.94 24.59 78.29 31.19 40.63
Softmax 16.04± 0.08 24.71± 0.06 78.36± 0.07 31.20± 0.07 40.70± 0.05

QANet+ELMo (Token)
d = 64, h = 4 15.23 23.48 78.25 30.77 40.22

Softmax 15.77± 0.15 24.44± 0.09 78.27± 0.03 31.06± 0.05 40.46± 0.11
d = 64, h = 8 15.30 23.41 78.54 30.97 40.19

Softmax 15.86± 0.07 24.40± 0.06 78.36± 0.08 31.11± 0.04 40.49± 0.05
d = 128, h = 8 15.24 23.59 78.34 30.90 40.19

Softmax 15.89± 0.08 24.55± 0.10 78.33± 0.06 31.11± 0.05 40.40± 0.05

QANet+ELMo (Sentence)
d = 64, h = 8 15.48 23.88 78.44 30.96 40.33

Softmax 16.00± 0.14 24.50± 0.33 78.34± 0.10 31.13± 0.08 40.56± 0.09
d = 128, h = 8 15.64 24.13 78.52 31.14 40.63

Softmax 16.05± 0.06 24.81± 0.08 78.40± 0.07 31.20± 0.06 40.58± 0.03

Table 5.6: Main task: re-ranking the top K = 5 answers returned by the IR and the Seq2seq
models.
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which helps avoid bias, as has been suggested in (Liu et al., 2016; Lowe et al., 2017).

Main Task: Multi-Source Answer Re-Ranking

Next, I combine the top-K answers from different models: IR and Seq2seq. I did not
include the Transformer in the mix as its output is generative and similar to that
of the Seq2seq model; moreover, as we have seen in Table 5.5 above, it performs
worse than Seq2seq on the dataset. I set K = 2 for the baseline, Random Top Answer,
which selects a random answer from the union of the top K answers by the models
involved in the re-ranking. For the remaining re-ranking experiments, I use K = 5.
I found these values using cross-validation on the training dataset, trying 1–5.

The results are shown in Table 5.6, where different representations are sepa-
rated by a horizontal line. The first row of each group contains the name of the
model. Then, on the even rows (second, forth, etc.), I show the results from a
greedy answer selection strategy, while on the odd rows are the results from an
exploration strategy (softmax sampling). Since softmax sampling and random se-
lection are stochastic in nature, I include a 95% confidence interval for them.

5.4 Multi- and Cross-Linguality

Here, I present Eχαµs, a new dataset and benchmark for multilingual and cross-
lingual evaluation of models and methods for answering diverse school science
questions (see Figure 5.2).

5.4.1 Eχαµs Dataset

Dataset Statistics

I collected Eχαµs from official state exams prepared by the ministries of educa-
tion of various countries. These exams are taken by students graduating from high
school, and often require knowledge learned through the entire course. The ques-
tions cover a large variety of subjects and material based on the country’s education
system. Moreover, I do not focus only on major school subjects such as Biology,
Chemistry, Geography, History, and Physics, but I also cover highly-specialized
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Si quitamos un electrón de un átomo
de oxígeno, ¿qué obtenemos?
A) Un isótopo.
B) Un núcleo desnudo.
C) Un ion. 
D) Un átomo excitado.

Milyen számlák egyenlege jelenik
meg a Mérlegben?
A) Eredmény, forrás.
B) Eszköz, forrás, eredmény. 
C) Eszköz, eredmény.
D) Eszköz, forrás.

etc.

Figure 5.2: Properties and examples from Eχαµs.
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ones such as Agriculture, Geology, Informatics, as well as some applied and pro-
filed studies. These characteristics make the questions in the dataset of very high
variety, and not easily solvable, due to the need for highly specialized knowledge.

Multilinguality The dataset includes a total of 24,143 questions in 16 languages
from eight language families. Each question is a 3-way to 5-way (3.96 on average)
multiple-choice question with a single correct answer. Table 5.7 shows a breakdown
for each language, where the number of subjects, questions, and the vocabulary
size are shown as absolute numbers, while the question length, the choice length,
and the number of choices are averaged. All statistics about the questions and the
answer options are measured in terms of words.

Lang Family #Subjects Question Len Choice Len #Choices #Questions Vocab

Albanian Albanian 8 15.0 5.0 4.0 1,505 11,572
Arabic Semitic 5 10.3 3.4 4.0 562 5,189
Bulgarian Balto-Slavic 6 13.0 3.3 4.0 2,937 15,127
Croatian Balto-Slavic 14 14.7 4.1 3.9 2,879 20,689
French Romance 3 18.4 10.5 3.5 318 2,576
German Germanic 5 18.3 9.1 3.5 577 4,664
Hungarian Finno-Ugric 10 11.6 5.9 3.9 2,267 15,045
Italian Romance 12 20.0 5.6 3.9 1,256 9,050
Lithuanian Balto-Slavic 2 9.7 4.7 4.0 593 5,394
Macedonian Balto-Slavic 8 13.4 4.5 4.0 2,075 13,114
Polish Balto-Slavic 1 13.7 4.3 4.0 1,971 18,990
Portuguese Romance 4 19.9 8.6 4.0 924 6,811
Serbian Balto-Slavic 14 15.4 4.3 3.9 1,637 15,509
Spanish Romance 2 23.0 10.2 3.2 235 2,130
Turkish Turkic 8 19.5 4.6 4.4 1,964 22,069
Vietnamese Austroasian 6 37.0 6.4 4.0 2,443 6,076

#Langs 16 #Families 8 24 17.19 5.08 3.96 24,143 158,942

Table 5.7: Statistics about Eχαµs. The average length of the question (Question Len) and the
choices (Choice Len) are measured in number of tokens, and the vocabulary size (Vocab) is

measured in number of words.

Parallel Questions Some countries allow students to take official examinations in
several languages. Such parallel examinations also exist in my dataset. In particular,
there are 9,857 parallel question pairs spread across seven languages as shown in
Table 5.8. The parallel pairs are coming from Croatia (Croatian, Serbian, Italian,
Hungarian), Hungary (Hungarian, German, French, Spanish, Croatian, Serbian,
Italian), and North Macedonia (Macedonian, Albanian, Turkish).

Data Splits

Multilingual In this setup, I want to train and to evaluate a given model with
multiple languages, and thus I need multilingual training, validation and test sets.
In order to ensure that I include as many of the languages as possible, I first split the
questions independently for each language L into TrainL, DevL, TestL with 37.5%,
12.5%, 50% of the examples, respectively.2 I then unite all language-specific subsets
into the multilingual sets TrainMul , DevMul , TestMul , and I used them for training,
development, and testing.

2For languages with fewer than 900 examples, I only have TestL.
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de es fr hr hu it mk sq sr

de -
es 199 -
fr 253 120 -
hr 189 134 109 -
hu 456 159 274 236 -
it 30 9 15 1,214 99 -

mk 0 0 0 0 0 0 -
sq 0 0 0 0 0 0 1,403 -
sr 40 25 20 1,564 104 1,002 0 0 -
tr 0 0 0 0 0 0 1,222 981 0

Table 5.8: Parallel questions for different language pairs.

Multilingual Cross-lingual
Language Train Dev Test Train Dev

Albanian 565 185 755 1,194 311
Arabic - - 562 - -
Bulgarian 1,100 365 1,472 2,344 593
Croatian 1,003 335 1,541 2,341 538
French - - 318 - -
German - - 577 - -
Hungarian 707 263 1,297 1,731 536
Italian 464 156 636 1,010 246
Lithuanian - - 593 - -
Macedonian 778 265 1,032 1,665 410
Polish 739 246 986 1,577 394
Portuguese 346 115 463 740 184
Serbian 596 197 844 1,323 314
Spanish - - 235 - -
Turkish 747 240 977 1,571 393
Vietnamese 916 305 1,222 1,955 488

Combined 7,961 2,672 13,510 - -

Table 5.9: Number of examples in the data splits based on the experimental setup.

Since I have parallel data for several languages (discussed in Section 5.4.1),
in this setup, I ensure that the same parallel questions are only found in either
training, development or testing, so that I do not leak the answer from training via
some other language. The number of examples per language and the total number
of multilingual sets are shown in the first three columns of Table 5.9.3

Cross-Lingual In this setting, I want to explore the capability of a model to trans-
fer its knowledge from a single source language Lsrc to a new unseen target lan-
guage Ltgt. In order to ensure that I have a larger training set, I train the model on
80% of Lsrc, I validate on 20% of the same language, and I test on a subset of Ltgt.4

The last three columns of Table 5.9 show the number of examples used for training
and validation with the corresponding language.

3Sometimes, grouping parallel questions in the same split slightly violates the splitting ratios.
4To ensure that the cross-lingual evaluation is comparable to the multilingual one, I use the same

subset of questions from language Ltgt that are used in TestMul
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ARC R12 Eχαµs
Lang/Set E C en ar bg de es fr hr hu it lt mk pl pt sq sr tr vi All

Random Guess 25.0 25.0 25.0 25.0 25.0 29.4 32.0 29.4 26.7 27.7 26.0 25.0 25.0 25.0 25.0 25.0 26.2 23.1 25.0 25.9
IR (Wikipedia) - - - 31.0 29.6 29.3 27.2 32.1 31.9 29.7 27.6 29.8 32.2 29.2 27.5 25.3 31.8 28.5 27.5 29.5

XLM-R on RACE 61.6 45.9 57.4 39.1 43.9 37.2 40.0 37.4 38.8 39.9 36.9 40.5 45.9 33.9 37.4 42.3 35.6 37.1 35.9 39.1
w/ SciENs 73.6 51.2 68.4 39.1 44.2 35.5 37.9 37.1 38.5 37.9 39.5 41.3 49.8 36.1 39.3 42.5 37.4 37.4 35.9 39.6
then on Eχαµs (Full) 72.8 52.6 68.8 40.7 47.2 39.7 42.1 39.6 41.6 40.2 40.6 40.6 53.1 38.3 38.9 44.6 39.6 40.3 37.5 42.0

XLM-RBase (Full) 54.2 36.4 54.6 34.5 35.7 36.7 38.3 36.5 35.6 33.3 33.3 33.2 41.4 30.8 29.8 33.5 32.3 30.4 32.1 34.1
mBERT (Full) 63.8 38.9 57.0 34.5 39.5 35.3 40.9 34.9 35.3 32.7 36.0 34.4 42.1 30.0 29.8 30.9 34.3 31.8 31.7 34.6
mBERT (Eχαµs only) 39.6 28.5 35.1 31.9 34.1 30.4 37.9 33.3 32.6 29.3 31.1 31.9 42.4 29.0 28.3 29.9 30.8 25.4 30.0 31.7

XLM-R as KB 30.8 26.2 27.2 31.0 27.2 31.7 37.9 29.9 27.6 29.3 28.0 28.3 23.5 24.6 27.0 25.6 25.4 24.4 24.9 27.0
XLM-R (Full) w/o ctx 45.4 39.2 47.6 30.2 34.8 34.3 30.2 33.0 33.6 33.4 28.5 30.9 37.5 30.0 32.4 36.7 32.1 31.7 30.4 32.8

Table 5.10: Overall per-language evaluation. The first three columns show the results on
ARC Easy (E), ARC Challenge (C), and Regents 12 LivEnv (en). The following columns
show the per-language and the overall results (the last column All) for all languages. All is

the score averaged over all Eχαµs questions.

5.4.2 Baseline Models

No Additional Training

Information Retrieval IR This IR baseline is from Clark et al. (2016), and it ranks
the possible options o for each question q based on the relevance score returned by
a search engine.5 In particular, for each option oi, I form a query by appending the
option’s text to the question’s (q + oi), and I send this concatenation to the search
engine.

Pre-trained Model as a Knowledge Base (KB) Here, I evaluate the knowledge
contained in the model by leveraging the standard masking mechanism used in pre-
training. I tokenize each question-option pair into subwords, and then I replace all
the pieces from the option with the special [MASK] token. Following the notation
from Devlin et al. (2019), the input sequence can be written as follows:
[CLS] [Q1] . . . [QN] [M_O1] . . . [M_OM] [SEP],
where Q is the question, and M_O is the masked option. Following the notation
above, I obtain a score for each option in the question based on the normalized
log-probability for the entire masked sequence (see Eq. 5.1).

score(Oi) =
1
|Oi| ∑

t∈Oi

log PMLM(t|Q) (5.1)

Fine-Tuned Models

I am interested in evaluating the ability of pre-trained models to transfer science-
based knowledge across languages when fine-tuned.

5.4.3 Experiments and Results

Multilingual Evaluation

The next two groups show (i) how continuous fine-tuning of XLM-R on multi-
choice machine reading comprehension and multi-choice science QA helps, and
(ii) how the different models (XLM-R, XLM-RBase, and mBERT) compare. I follow a

5I build and use a separate index for each language using ElasticSearch.
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Lang AE ACh R12 de es fr it pt bg hr lt mk pl sr hu sq tr vi ar

enall 73.6* 51.2* 68.4* 35.5* 37.9 37.1 39.5 39.3 44.2 38.5 41.3 49.8 36.1 37.4 37.9 42.5 37.4 35.9 39.1

w/ it +1.4 +1.3 +1.4 +6.2 +4.2* +0.3* - -3.7* +1.2 +4.1 +0.9 +0.8 +1.5 +3.1 +2.8 +0.9 -1.3 +1.8 +1.8
w/ pt +0.1 +1.2 -0.8 +2.2 +2.5* -2.5* +1.4* - +0.3 0.0 +2.0 +0.8 -0.1 -0.6 -0.6 -1.3 +1.3 +0.6 +1.1
w/ bg +0.6 +0.4 -0.4 +3.6 +0.8 +1.6 +3.4 -1.9 - +1.5* +2.9* +1.6* +0.1* +1.5* +2.0 +2.3 -0.9 -0.8 +0.8
w/ hr +1.1 +1.7 -0.2 +4.8 +3.8 +0.3 +5.8 -2.8 +1.7* - +0.2* -0.1* +1.2* +6.7* +2.8 +1.7 +1.2 +0.5 -0.1
w/ mk +1.5 -0.5 +2.2 +1.0 +4.2 -0.3 +2.0 -2.6 +1.8* +3.9* +1.5* - +1.9* 0.0* +2.0 +6.9 +4.8 +0.5 +4.5
w/ pl -2.0 -1.5 -3.1 0.0 +0.4 -2.5 +0.1 -1.3 +1.1* +1.0* -0.5* -0.2* - 0.0* -0.4 +0.3 +0.2 -1.4 +0.9
w/ sr +1.8 -0.1 -1.2 +2.6 +5.1 +1.9 +2.8 -0.6 +2.2* +6.2* +0.2* +1.3* +1.3* - +1.4 -0.4 -0.7 -1.0 +3.2
w/ hu -0.8 -0.8 -1.0 +7.8 +10.2 +2.8 +1.1 -1.9 +0.7 +0.8 -3.2 +0.1 +0.9 +0.9 - -0.2 -0.2 -0.6 -1.4
w/ sq -0.1 +0.3 -1.5 +3.5 -0.5 -0.6 +0.8 +0.9 +0.9 +0.8 +1.0 +3.4 +0.6 +0.6 +1.9 - +0.4 +0.3 +0.2
w/ tr -0.5 +1.1 -1.5 +1.5 +3.0 -1.9 +2.3 -3.0 +1.0 +1.0 -2.7 +1.5 +0.2 +1.2 +2.4 +3.7 - -1.0 +1.8
w/ vi -0.5 +0.4 -0.8 +2.9 +3.4 +4.1 +1.1 +1.1 +1.5 +1.7 +0.4 +0.4 +2.1 0.0 +1.7 +0.8 +1.1 - +3.4

Table 5.11: Cross-lingual zero-shot performance on Eχαµs. The first three columns show
the performance on the test set of the AI2 science datasets (English), followed by per-
language evaluation. The underlined values mark languages that have parallel data with

the source language, and the ones with an asterisk* are from the same family.

standard training scheme for such tasks: first I fine-tune on RACE (Lai et al., 2017)
(∼85k EN questions over documents), then on the AI2 English science datasets
(I call them SciENs for shorter), including ∼9k EN questions with provided rele-
vant contexts,6 and, finally, on the multilingual training set (see Section 5.4.1) with
retrieved relevant contexts from Wikipedia, which is my desired multilingual eval-
uation setting and I call it Full. We can also see that training on the SciENs, which
has mostly primary school questions from Natural Sciences, only yields +0.5% im-
provement on Eχαµs. Nevertheless, we see a 2.4% improvement with multilingual
fine-tuning on Eχαµs and +0.5% for English. In the third group, I compare the
results from mBERT, XLM-RBase, and XLM-R after fine-tuning. Increasing the ca-
pacity of the model yields improvements: XLM-R scores 7.4% higher on Eχαµs,
and more than 14% on English datasets, compared to its base version (XLM-RBase).
However, mBERT and XLM-RBase have close performance, with mBERT having a
small advantage in the multilingual setting. Finally, I fine-tuned mBERT on Eχαµs
only. As expected, the performance drops by 3% absolute compared to the Full
setup.

Knowledge Evaluation

The last two rows of Table 5.10 evaluate the knowledge in the best model, namely
XLM-R. With XLM-R as KB (see Section 5.4.2) we see small improvement over the
random baseline: +5% ARC Easy, 2% on R12, and just +1% on Eχαµs and ARC
Challenge. Furthermore, I evaluate the knowledge contained in the model after the
Full fine-tuning by excluding the relevant knowledge context (ctx). This is better
than the XLM-R as KB, but it still achieves inferior overall results, which shows that
the stored knowledge is not enough, and that I need to explicitly obtain additional
knowledge from an external source.

Cross-lingual Evaluation

Table 5.11 shows the results from the cross-lingual zero-shot transfer compared to
the English-only baseline enall , from XLM-R fine-tuned on SciEN. The languages are
ordered by family, and then alphabetically. I further fine-tune on a single source

6I use the data described at http://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0

http://leaderboard.allenai.org/arc/submission/blcotvl7rrltlue6bsv0
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language and I test on all other languages using the splits described in Section 5.4.1.
The results show that the additional fine-tuning on a single language is mostly
positive. This is notable when fine-tuning on a language with similar linguistic
characteristics to the target language, e.g., Balto-Slavic: bg-sr, hr-mk, pl-mk, sr-bg.

We also see gains when the source language contains more questions from
largely represented and harder subjects. Examples of such are the experiments
showing the positive effects of training on Vietnamese and Macedonian as source
languages; they both contain such subjects: Biology, History, Chemistry, Physics,
and Geography.

5.5 Summary

In this chapter, I presented a study on automating customer support on Twitter us-
ing two types of models: (i) retrieval-based (IR with BM25), and (ii) based on gener-
ative neural networks (Seq2seq with attention and Transformer). I evaluated these
models without the need of human judgments, using evaluation measures based
on (i) word-overlap (BLEU@2 and ROUGE-L), and (ii) semantics (Embedding Av-
erage, Greedy Matching, and Vector Extrema). For my experiments, I have divided
the data by the timestamp of the post in order to simulate a real-world scenario.
My experiments showed that generative neural models outperform retrieval-based
ones, but they struggle when very few examples for a particular topic are present
in the training data. Nonetheless, despite showing good results and being able
to generate grammatically correct answers and mostly relevant to the question an-
swers, the data provided only from chat logs is not enough to build an end-to-end
customer support bot. It is due to the evolving nature of customer issues, while
being accurate when they were posted, they tend to become obsolete with time.

Further, I have presented a novel framework for re-ranking answer candidates
for conversational agents. In particular, I adopted techniques from the domain of
machine reading comprehension (Chen et al., 2017; Seo et al., 2017; Yu et al., 2018)
to evaluate the quality of a question–answer pair. My framework consists of two
tasks: (i) an auxiliary one, aiming to fit a appropriateness classifier using QANet
and negative sampling, and (ii) a main task that re-ranks answer candidates using
the learned model. I further experimented with different model sizes and two
types of embedding models: GloVe (Pennington et al., 2014) and ELMo (Peters
et al., 2018). My experiments showed improvements in answer quality in terms
of word-overlap and semantics when re-ranking using the auxiliary model. Last
but not least, I argued that choosing the top-ranked answer is not always the best
option. Thus, I introduced probabilistic sampling that aims to diversify the agent’s
language and to up-vote the popular answers, while taking their ranking scores
into consideration.

Finally, I presented Eχαµs, a new challenging cross-lingual and multilingual
benchmark for science QA in 16 languages and 24 subjects from high school ex-
aminations. I further proposed new fine-grained evaluation that allows precise
comparison across different languages and school subjects. I performed various
experiments and analysis with pre-trained multilingual models (XLM-R, mBERT),
and I demonstrated that there is a need for better reasoning and knowledge trans-
fer in order to solve some of the questions from Eχαµs. I hope that my publicly
available data and code will enable work on multilingual models that can reason
about question answering in the challenging science domain.
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Chapter 6. Conclusion and Future
Work

6.1 Contributions

The key contributions of this thesis are as follows:

• Exploring new models and algorithms:

– I proposed a novel enriched pre-trained language model to jointly model
the tasks of intent detection and slot filling, namely, Transformer-NLU.
Moreover, I designed a pooling attention layer in order to obtain in-
tent representation beyond just the pooled one from the special start
token. Further, I reinforced the slot filling with word-specific features,
and the predicted intent distribution. My experiments on two standard
datasets showed that Transformer-NLU outperforms other alternatives
for all standard measures used to evaluate NLU tasks.

– I proposed an approach for training from noisy data using self-adaptive
learning and additional weights in the loss function. Furthermore, I de-
mostrated the utility of the data collected and labeled using distant su-
pervision (CrowdChecked), which yielded sizable performance gains of
four points in terms of MRR, P@1, and MAP@5 over strong baselines that
are trained on manually annotated data (Shaar et al., 2021). Moreover,
I demonstrated improvements over the state of the art on the Check-
That ’21 dataset by two points, achieving MAP@5 of 90.3, when using
CrowdChecked and my newly proposed pipeline.

– I designed an end-to-end approach the task of multiple-choice reading
comprehension for low-resource languages. The model is built on top of
a multilingual BERT model (Devlin et al., 2019), which I fine-tuned on
large-scale English reading comprehension corpora, and open-domain
commonsense knowledge sources (Wikipedia). My main experiments
evaluated the model when applied to Bulgarian in a zero-shot fashion.

– I developed an approach for automating customer support on Twitter us-
ing two types of models: (i) retrieval-based (IR with BM25), and (ii) based
on generative neural networks (seq2seq with attention and Transformer).
I evaluated these models without the need for human judgements, using
evaluation measures based on (i) word-overlap (BLEU@2 and ROUGE-
L), and (ii) semantics (Embedding Average, Greedy Matching, and Vector
Extrema). My experiments showed that generative neural models out-
perform retrieval-based ones, but they struggle when very few examples
for a particular topic are present in the training data.

– I introduced a novel framework for re-ranking answer candidates for
conversational agents. In particular, I adopted techniques from the do-
main of machine reading comprehension (Chen et al., 2017; Seo et al.,
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2017; Yu et al., 2018) to evaluate the quality of a question–answer pair.
My framework consists of two tasks: (i) an auxiliary one, aiming to fit a
goodness classifier using QANet and negative sampling, and (ii) a main
task that re-ranks answer candidates using the learned model. I further
experimented with different model sizes and two types of embedding
models: GloVe (Pennington et al., 2014) and ELMo (Peters et al., 2018).
My experiments showed improvements in answer quality in terms of
word overlap and semantics when re-ranking using the auxiliary model.

– I designed a new challenging cross-lingual and multilingual benchmark
for science QA from high school examinations. I evaluated the abilities
of state-of-the-art models for zero-shot and cross-lingual transfer in mas-
sively multilingual settings. I showed that pre-training on large English
out-of-domain datasets can help the model to learn the task, but further
improvements can only be achieved by in-domain multilingual data.

– I performed various experiments and analysis with pre-trained multilin-
gual models (XLM-R, mBERT), and I demonstrated that there is a need
for better reasoning and knowledge transfer in order to solve some of
the questions from Eχαµs.

• Creating new datasets:

– I collected a new Bulgarian corpus for multiple-choice reading compre-
hension with 2,633 questions from matriculation exams for twelfth grade
in history and biology, and online exams in history without explanatory
contexts.

– I collected Eχαµs, a new challenging cross-lingual and multilingual
benchmark for science QA in 16 languages and 24 subjects from high
school examinations. I further proposed new fine-grained evaluation
that allows precise comparison across different languages and school
subjects.

– I built CrowdChecked, a large-scale dataset for detecting previously fact-
checked claims, with more than 330,000 pairs of tweets and correspond-
ing fact-checking articles posted by crowd fact-checkers. I further inves-
tigated two techniques for labeling the tweet–article pairs using distance
supervision, based on Jaccard similarity and the predictions from a neu-
ral network model resulting in new training sets of 3.5K–50K examples.

6.2 Directions for Future Research

Modularized (task-oriented) conversational agents provide a great flexibility in
terms of model training, and allow for easy adding new or to replace existing
modules to the agent’s pipeline. However, that flexibility brings several limitations
along. First, there is a disconnect between different components (models) both
during training and inference, that, in turn, leads to error accumulation along the
pipeline. And second, including too many components can increase the compu-
tational cost, hence deploying the dialogue system can become infeasible. Here, I
outline several promising directions for future research:

• In the short term, end-to-end differentiable architectures based on a combi-
nation of hierarchical neural networks, multi-task learning and multi-model
error propagation can be a step forward in that direction.
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• In the long term, in my opinion, single model architectures based on end-to-
end generative models can be a strong alternative to multi-model pipelines,
even in task-oriented scenarios.

• Even with the development of models with capacity increased to billions of
trainable parameters models are still vulnerable to both ethical and practical
risks (Bender et al., 2021; Bommasani et al., 2021). That said, it is clear that we
need more research and better models in order to release end-to-end models
in a dynamic real-world scenarios. Some directions are:

– Developing efficient mechanisms for updating the factual knowledge
stored in the model itself (De Cao et al., 2021)

– Implementing additional knowledge grounding (Zhao et al., 2020),

– Working on auto-debasing (Guo et al., 2022) procedures, in order to en-
sure that the chatbots produce correct and factual responses.

– Finally, we need to develop mechanism that prevent malicious actors to
exploit the models (Hancock et al., 2019; Vanderlyn et al., 2021).

• Explainability is now becoming an important research area in
NLP (Danilevsky et al., 2020). Some interesting future directions are:
methods that focus on explaining the reasoning chain (Yang et al., 2018; Das
et al., 2018); forming long-form answers with detailed explanations based on
evidence paragraphs (Kwiatkowski et al., 2019; Fan et al., 2019) and further
enriching them on the fly (Schick et al., 2022) with automatic edits, adding
sources, etc., or obtaining token-level explanations (Li and Yao, 2021; Arora
et al., 2022).

Appendices A–B

• Appendix A discusses the hyper-parameters used for training the models
used in Section 4.3 Answer Retrieval from a Pool of Explanations. Moreover, it
shows the annotation guideliness, annotator demographics, inter-annotator
agreement and disagreement analysis.

• Appendix B provides definitions for all subjects included in the Eχαµs dataset
(Section 5.5 Multi- and Cross-Linguality). Additionally, it describes the fine-
tuning procedure and the models’ hyper-parameters.
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