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CHAPTER 1

Introduction

1.1 Short history of branching processes

Branching processes are a class of stochastic processes that capture some of the fun-
damental aspects of division and propagation observed in nature. Branching processes
model the evolution of a population of objects (these objects can correspond to real-world
elementary particles, photons, electrons, atoms, molecules, cells, viruses, bacteria, ani-
mals, people, information, finances, and other entities) through time and study various
characteristics of this evolution. It comes as no surprise that the areas of application of
branching processes are diverse and numerous - physics, chemistry, biology, demography,
ecology, economy, etc. This diversity of contexts stimulates the development of various
kinds of branching processes, adapted towards answering particular questions of interest
found within these contexts. Indeed, there are branching processes in discrete-time and
continuous-time, with one or multiple types of objects/particles/cells, branching processes
with random immigration, branching diffusion processes, spatial branching processes, con-
trolled branching processes, and others.

The study of branching processes begins around the middle of the 19th century with
the question of explaining the disappearance of aristocratic family lines in Europe. In
1845, the French mathematician and statistician Bienaymé first studied the process of
extinction of the French noble families, [83], and created the first branching process model.
Unfortunately, as Bienaymé left no students, his name, as well as his results, gradually
faded into obscurity. A few decades later, in 1873, concerns regarding the extinction of
noble family names reappeared among the scientific community with the famous work
of Galton and Watson, [85]. Despite the fallacy in the final conclusion of Galton and
Watson, [85] is considered by many as the beginning of branching process theory. It took
more that 50 years for the correct solution to be published by the Danish mathematician
J. F. Steffensen within [88] in 1930. It took 40 more years for Heyde and Seneta to first
note in 1972 that Bienaymé already had the correct statement of the Criticality Theorem
back in 1845 (see [84]).

After World War II, branching processes and their applications in physics became
intensely researched, leading to the rapid development of the field. The term branching
process itself is considered to have been coined by A. N. Kolmogorov and N. A. Dmitriev in
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6 Chapter 1. Introduction

their work [89] from 1947. Among the most influential monographs in the field are those of
Harris [58] (1963), Sevastyanov [8] (1971), and [57] from Athreya and Ney (1972). In more
contemporary times the focus of questions and applications explored through branching
processes has shifted away from physics and has orientated towards biological contexts
- see Kimmel and Axelrod [14] (2002), Haccou, Jagers, and Vatutin [10] (2007), Durrett
[104] (2015), Pardoux [36] (2016).

1.2 A descriptive definition of a Sequential Decision

Problem (SDP)

Within Chapter 3 of the dissertation, we investigate stochastic sequential decision prob-
lems in the context of systems with underlying branching process dynamics. Here, we
give a brief informal description of what a “sequential decision problem” is.

Assume that there is a dynamic system with which we can interact. We observe
the system at specified moments in time, called decision epochs. We will denote the set
of decision epochs with t̂T , t̂T = {0 = t0, t1, t2, . . . , tT = T̂}, the distance between two
neighboring decision epochs can vary but cannot be 0 or∞. At each decision epoch ti ∈ t̂T ,
except at tT = T̂ , we make a decision (interaction with the system) that affects how the
system evolves from t onward. Upon making a decision, we collect rewards (or incur costs),
with the exception of tT = T̂ where we only collect predefined rewards (or incur predefined
costs). A sequential decision problem is a problem of choosing such decisions so that the
cumulative expected reward, after collecting the rewards at tT = T̂ , is maximized (or the
cumulative expected cost is minimized). The problem can be deterministic or stochastic.

1.3 Conceptual organization of the dissertation

This dissertation is conceptually divided into two topics explored in Chapter 2 and Chap-
ter 3 respectively. Chapter 2 defines the novel Multi–type Sevastyanov Branching Pro-
cesses through probabilities of Mutation between types (MSBPM) and obtains results
of interest in the context of populations escaping extinction. Chapter 3 is dedicated to-
wards the incorporation of branching processes, including the MSBPM, into optimization
problems known as Sequential Decision Problems (SDPs).

The novel MSBPM from Chapter 2 is connected to the classic multi-type Sevastyanov
branching process, however, within the MSBPM, probabilities for mutation are used for
writing down expressions of interest. This makes the novel MSBPM well adapted towards
modeling biological populations under stress that escape extinction. Within Chapter 2,
we obtain various systems of equations for the MSBPM as well as for quantities relevant
in the context of populations escaping extinction. To the best of our knowledge, such an
in-depth investigation of the topic has not been done previously (excluding our earlier
work in [7] as well as preceding papers [1] - [6]) for multi-type, continuous-time branching
processes. We explore the case of the MSBPM starting with one particle of age 0 and the
case of the MSBPM starting with one particle of age a, a 6= 0. The latter case, to the best
of our knowledge, has not been explored previously in a systematic manner within the



1.3. Conceptual organization of the dissertation 7

context of branching processes. Numerical schemes for calculating all obtained systems
of equations are also developed within Chapter 2.

In Chapter 3, we begin with an introduction of the “Universal Modeling Framework”
developed by Warren B. Powell in [82] (2022). The choice of modeling framework within
which we specify our Sequential Decision Problems (SDPs) is of paramount importance
for our perspective on the systems we attempt to model as well as for the ease of possible
future extensions of our results. Our choice of framework allows us to utilize Bellman’s
optimality equation for finding solutions of SDPs, provided that our models conform
to the assumptions of the framework. We proceed with our novel considerations and
results as follows. We recast the multi-type Bienaymé-Galton-Watson (BGW) branching
process optimization problem, considered in [77], as a SDP within the “Universal Modeling
Framework”. In Theorem 3.2 from Subsection 3.4.3 within the dissertation, we provide
a novel proof for Theorem 3.1 from [77] that is based on Bellman’s optimality equation.
Theorem 3.2 enables us to efficiently find the solution of SDPs with underlying BGW
dynamics. Next, we incorporate the multi-type Bellman-Harris branching process with
exponential lifespan distributions as well as the Multi-type Bellman-Harris Branching
Process through probabilities of Mutation between types (MBHBPM; a particular case of
the MSBPM) with exponential lifespan distributions into a SDP and prove that a result,
similar to Theorem 3.2, holds. We then shown that, with respect to a novel state space,
the MSBPM and the multi-type Sevastyanov branching process can also be incorporated
into SDPs. Unfortunately, an analogue of Theorem 3.2 is not available for these processes.
Regardless, Bellman’s optimality equation allows us to consider the Approximate Dynamic
Programming (ADP) approach for finding the solution of obtained SDPs within future
research. We conclude our investigations by outlining a general ADP algorithm based on
post-decision state variables that may serve as a starting point for the future development
of a specialized ADP algorithm for SDPs with branching process based dynamics.

Within the Appendix, we have provided some standard results regarding the Perron-
Frobenius theorem. We reference these results in some of our MSBPM related discussions.

More detailed description of the structure of Chapter 2 and Chapter 3, as well as
relevant remarks and discussions, can be seen in the corresponding “Chapter overview
and organization” sections within these chapters.
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CHAPTER 2

Multi-type continuous-time branching processes

through probabilities of mutation between types

2.1 Chapter overview and organization

In this Chapter, we define the novel continuous time branching process model that plays
the central role within this dissertation - the Multi–type Sevastyanov Branching Processes
through probabilities of Mutation between types (MSBPM). The MSBPM can be consid-
ered as a relative of the classical multi-type Sevastyanov branching process as defined in
Chapter VIII in [8]. The novel characteristic of the MSBPM, with respect to the classical
formulation in [8], is the use of probabilities of mutation (a particle is a “mutant” if it
is of type that is different from the type of its mother particle) between types. More
specifically, through the use of probabilities of mutation, effectively, we decompose the
classical probabilities piααα(u) for a particle of type i of age u to transform into ααα particles at
the end of its lifespan (see page 229 in [8] or Subsection 1.3.1 from the dissertation) into
two components: 1) Probabilities pik(u) for the total k number of offspring, regardless of
offspring type, of a type i particle of age u; 2) Probabilities for mutation of an offspring
particle of a type i particle towards type j, uij.

The use of probabilities for mutation opens the way for applications of the MSBPM into
many biological contexts. Most notably, the MSBPM is well suited for modeling biological
populations under stress that face certain extinction unless a “beneficial” mutation occurs
(or a combination of mutations occur), leading to supercritical behavior. Such situations
are of interest in the areas of cancer modeling and treatment, spread of viruses, vaccination
campaigns, control over agricultural pests and others (see, e.g., [61], [62], [63], [64], [65],
[66], [104], [1] - [7]). In biological contexts it is easier to estimate the probabilities for
the total number of offspring, pik(u), and the probabilities of mutation, uij, found within
the MSBPM, than the more abstract piααα(u) used in the multi-type Sevastyanov branching
process. The use of pik(u) and uij often provides us with a model with more clear and
straightforward interpretations.

Within this Chapter, we concentrate our efforts towards obtaining results for the
MSBPM regarding quantities that are of interest in the context of populations escap-
ing extinction. Other authors, see [64], [65], [66], discuss similar topics to the ones
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explored within the dissertation, however, their discussions is based on multi-type Bien-
aymé-Galton-Watson (BGW) processes. The BGW is a discrete time branching process
while the MSBPM is in continuous time - a more difficult theoretical setting. [61], [62],
[64], [65], explore populations escaping extinction under the assumption that probabilities
of mutation are small quantities. Such an assumption is not made for obtaining the results
for the MSBPM, making the model more general in terms of possible applications. [61]
and [62] assume Poisson and geometric offspring distributions for obtaining their results.
The results obtained for the MSBPM do not rely on particular assumptions of offspring
distributions. [64], [65] consider only one supercritical type, in contrast the MSBPM can
accommodate an arbitrary number of supercritical types, in addition to that almost all of
our results do not depend on type criticality. Further, almost all results obtained for the
MSBPM do not rely on an assumption about the process being non-decomposable, this
assumption being central for many results valid for the classical multi-type Sevastyanov
branching process. We also note that our results for the MSBPM do not rely on particular
assumptions about the lifespan distributions among types. All mentioned features of the
MSBPM and the results obtained within the current Chapter, highlight the flexibility and
wide area of applicability of the MSBPM in modeling populations escaping extinction.
However, the MSBPM is not to be understood as exclusively tied to biology - the model
can be applied in other areas as well, provided a proper interpretation of uij.

This Chapter is a continuation and generalization of our previous work in [1] - [7]
where the focus is on cancer modeling as well as modeling escape from extinction. More
specifically, with respect to our latest work in Vitanov & Slavtchova-Bojkova [7] (2022),
the MSBPM provides an extension in the following directions: 1) The MSBPM can be
non-decomposable; 2) The “emitting” class and the target class can intersect. The process
discussed in [7] is a particular case of the MSBPM, that is, the decomposable MSBPM
(DMSBPM) explored in Subsection 2.3.1 of this dissertation. The DMSBPM is of partic-
ular interest for modeling mutation as it describes an irreversible path in the evolution
of a population of particles. We note that the development of cancer resistance towards
medical treatment in many situations can be attributed to biological mutations. Thus,
the MSBPM and its decomposable variants rise as well suited candidates for modeling
the risk of cancer reemerging even when an apparently successful treatment is applied.
We note that the work in the following Chapter 3 can be considered as a further continu-
ation of [1] - [7]. A real-world example of a sequential decision problem (we discuss these
problems in Chapter 3) is the planning of cancer treatment administration throughout
time with respect to cost and benefit considerations. While the results from Chapter 3
are not yet ready for handling the nuances of this particular example, Chapter 3 is to be
understood as a step towards solving such problems.

Within this Chapter, we obtain systems of integral equations for the probability gen-
erating functions (p.g.f.s) of the MSBPM as well as for the probabilities of extinction
within the MSBPM. We obtain p.g.f.s for the production of particles from one class of
particle types within the process to another. For the general case the particles produced
need not necessarily be mutants, however, for particular cases of interest of the MSBPM,
such as the decomposable MSBPM (DMSBPM), we investigate only the production of
mutants. The DMSBPM can be used to model, for example, a “beneficial” mutation that
is reachable only after certain preceding mutations have occurred (see Figure 2.12 and
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Figure 2 within [61]) or other relevant mutation schemes. We obtain the distribution of
the random variable “time until first ’successful’ particle”/“time until first ’successful’
mutant” within the MSBPM, i.e., the time until the occurrence of a particle/mutant that
initiates a non-extincting process. We also obtain expressions for the hazard function
that is with respect to the occurrence of the first “successful” particle/mutant. We stress
that the proofs of the results within this Chapter do not depend on assumptions whether
a process is decomposable or not (although some statements are valid only for a decom-
posable process), decomposability is treated as a particular case where a particular set of
probabilities of mutation contains only zeros.

In addition to obtaining results for the case where the MSBPM starts with one particle
of age 0, we also obtain novel variants of our results for the case where the process starts
with one particle of age a, a 6= 0. We have so far not detected other authors that consider
initial particles with non-zero age. As can be seen from the various figures within the
dissertation, significant difference in the behavior of the investigated quantities can be
observed when we look at those t that are close to the beginning of the process. This
observation has the potential to be very useful with respect future research stemming
from Chapter 3, where optimization problems related to decision making are investigated
in the context of branching processes.

All results obtained within the Chapter can be computed with the help of the novel
Numerical Scheme 1 and Numerical Scheme 2 constructed in Subsection 2.2.7 of the
dissertation.

This Chapter is organized as follows. In Section 2.2, we define the Multi–type Sev-
astyanov Branching Processes through probabilities of Mutation between types (MSBPM)
and obtain various systems of equations for quantities of interest in the context of popu-
lations escaping extinction. More specifically, in Subsection 2.2.1 we define the MSBPM.
We then obtain the system of integral equations for the probability generating functions
(p.g.f.s) of the process in Subsection 2.2.2 as well as results the probabilities for extinc-
tion within Subsection 2.2.3. Next, in Subsection 2.2.4 we investigate the p.g.f.s for the
number of particles produced within the process from a class of particle types towards
all types within the process. We then continue with results concerning the occurrence of
the first “successful” particle produced from any type within a class of types within the
MSBPM in Subsection 2.2.5. In Subsection 2.2.6 we obtain expressions for the hazard
function defined with respect to the occurrence of the first “successful” particle. In Sub-
section 2.2.7 we provide two numerical schemes that can be used for computing obtained
systems of equations throughout Chapter 2. We finish this Section with specifications of
the example MSBPM that we use, in conjunction with the constructed numerical schemes,
for demonstrating results obtained within the Chapter. In Section 2.3, we investigate two
particular cases of the MSBPM. In Subsection 2.3.1, we consider the decomposable MS-
BPM (DMSBPM). Within the Subsection, we obtain variants of the novel results for the
MSBPM that are valid for the DMSBPM and also explore some additional results that
stem from the enforced decomposability. In Subsection 2.3.2, we consider the particular
case of the DMSBPM where there is no dependence of particle reproduction from particle
age.
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2.2 Multi–type Sevastyanov Branching Processes through

probabilities of Mutation between types (MS-

BPM)

The current Section contains novel, yet unpublished, results that extend our recent pub-
lication Vitanov & Slavtchova-Bojkova [7] (March 2022).

2.2.1 Notation and definition of the MSBPM

We begin with the introduction of some of the notation and prerequisites that we exten-
sively use throughout the dissertation:

1. Let W = {1, 2, . . . , n}. W denotes the set of possible particle types.

2. Denote δδδi =
(
δi1, . . . , δ

i
n

)>
, where δij = 0 if i 6= j and δij = 1 if i = j. We will use δδδi to

specify a single initial particle of type i that is of age 0. For a single initial particle

of type i that is of age a, a 6= 0, we will use δδδia. Again, we set δδδia =
(
δi1, . . . , δ

i
n

)>
with δij = 0 if i 6= j and δij = 1 if i = j, however, the subscript “a” in δδδia now
specifies the age of the initial particle.

3. We will be denoting the lifespan cumulative distribution function (c.d.f.) at t for
type i particles, of age 0, with Gi(t). If a type i particle is of age a, we will denote
the corresponding c.d.f., conditioned on the age of the particle, with Gi,a(t).

4. If X is some random variable (r.v.), we denote with X̃ an identical and independent

copy of X. Also, if XXX =
(
X1, . . . , Xn

)>
is a random vector, then X̃XX is an identical

and independent copy of XXX.

5. The probability generating function (p.g.f.) of a discrete r.v. X is given by E
[
sX
]

=∑∞
x=0 pxs

x, where |s| ≤ 1. The p.g.f. of a random vector XXX =
(
X1, . . . , Xn

)>
,

comprised of discrete r.v.s, is given by

E

[
n∏
i=1

sXi
i

]
=

∞∑
x1,...,xn=0

[
p(x1, . . . , xn)

n∏
i=1

sxii

]
,

where max{|s1|, . . . , |sn|} ≤ 1. The last requirement can be written as |sss| ≤ 1,
where sss = (s1, . . . , sn)>.

We define the novel branching process of main interest within the dissertation:

Definition 2.1. Define the Multi-type Sevastyanov Branching Process through proba-
bilities of Mutation between types (MSBPM) as the multi-type branching process satisfying:

1. Each particle type is uniquely associated with an integer from W and conforms to:
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(a) The lifespan of particles of type i, i ∈ W, is modeled by a (continuous) r.v.
τi. The corresponding cumulative distribution function (c.d.f.) is denoted by
Gi(t) = P(τi ≤ t), also Gi(0

+) = 0.

(b) The number of particles in the offspring of a type i, i ∈ W, particle of age a
is modeled by a (discrete) r.v. νi(a). We denote with pik(a) the probability that
a type i particle of age a has k, k ∈ N0, offspring particles (regardless of their
type). Thus, νi(a) is specified by given

{
pik(a)

}∞
k=0

,
∑∞

k=0 pik(a) = 1. We denote

the corresponding p.g.f. of νi(a) with fi(a; s) = E
[
sνi(a)

]
=
∑∞

k=0 pik(a)sk, |s| ≤
1.

2. Each daughter particle of a type i particle can be of any type j ∈W. The type of a
daughter particle is determined at birth. If i 6= j we say that a “mutation” occurs.
The probability that a daughter particle of a type i particle is a type j particle is
denoted by uij, uij ≥ 0,

∑n
j=1 uij = 1. Further:

(a) If type i cannot have daughters of type j we consider the corresponding uij as
uij = 0.

(b) Particles are not allowed to change their type within their lifespan.

3. All particles from all particle types evolve independently from one another, irrespec-
tive of generation.

4. Formally
{
ZZZ(t) =

(
Z1(t), Z2(t), . . . , Zn(t)

)>}
t≥0

, where ZZZ(t) stands for the MSBPM

at t and Zi(t) is the number of particles of type i that exist at t.

Figure 2.1: A diagram of the MSBPM depicting all possible paths of mutation within the process. Note
that some of the uij may be equal to 0 depending on context.
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From Definition 2.1, we can see the connection between the MSBPM and the multi-
type Sevastyanov branching process defined in Chapter VIII of [8]. Through pik(a) and uij,
as specified in Definition 2.1, we can construct an analogue of piααα(a) (see Chapter VIII of
[8] page 229 or Subsection 1.3.1 from the dissertation) that has the same interpretation.
This is done by setting

∑n
j=1 αj = k and piααα(a) := pik(a) k!

α1!...αn!
uα1
i1 . . . u

αn
in . For more

details about the nature of the connection between the two models, the reader is referred
to the discussion following Definition 2.1 in the dissertation.

2.2.2 Probability generating functions for the MSBPM

Definition 2.2. We denote the p.g.f. of a MSBPM, starting with one particle of type
i, i ∈W, that is of age 0, with:

Fi(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

where |sss| ≤ 1. We denote the p.g.f. of a MSBPM, starting with one particle of type i,
i ∈W, that is of age a, a 6= 0, with

Fi,a(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

Theorem 2.1. The following system of integral equations holds for the MSBPM, i ∈
W:

(2.1) Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirFr(t− y; sss)
)
dGi(y).

Corollary 2.1. Let a MSBPM start with one particle of type i, i ∈ W, that is of age
a, a 6= 0. Then

(2.2) Fi,a(t; sss) = si
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

∑
r∈W

uirFr(t− y; sss)
)
dGi,a(y).

2.2.3 Probabilities of extinction for the MSBPM

Definition 2.3. We define the probability of extinction until time t of a MSBPM
beginning with one particle of type i, i ∈W, that is of age 0, as:

qi(t) = P

(∑
j∈W

Zj(t) = 0 | ZZZ(0) = δδδi

)
.

Similarly, if the initial particle is of age a, a 6= 0:

qi,a(t) = P

(∑
j∈W

Zj(t) = 0 | ZZZ(0) = δδδia

)
.
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Theorem 2.2. The following system of integral equations holds for the MSBPM, i ∈
W:

(2.5) qi(t) =

∫ t

0

fi

(
y;
∑
r∈W

uirqr(t− y)
)
dGi(y).

Corollary 2.2. The following system of integral equations holds for the MSBPM, i ∈
W:

(2.6) qi,a(t) =

∫ t

0

fi

(
a+ y;

∑
r∈W

uirqr(t− y)
)
dGi,a(y).

Definition 2.4. We denote the probability of extinction of a MSBPM beginning with
one particle of type i, i ∈W, that is of age 0, as:

qi = P

(∑
j∈W

Zj(t) = 0 for some t > 0 | ZZZ(0) = δδδi

)
.

Similarly, if the initial particle is of age a, a 6= 0:

qi,a = P

(∑
j∈W

Zj(t) = 0 for some t > 0 | ZZZ(0) = δδδia

)
.

Definition 2.5. We define lim
y→∞

lim
t→∞

qi(t− y) = qi and lim
y→∞

lim
t→∞

qi,a(t− y) = qi,a.

Definition 2.5 is necessary for eliminating the ambiguity of the expression lim
y→∞

lim
t→∞

qi(t−y).

The alternative to Definition 2.5 is to set lim
y→∞

lim
t→∞

qi(t− y) = qi(b), where the choice of b

can be arbitrary.

Theorem 2.3. The following system of integral equations holds for the MSBPM, i ∈
W:

(2.7) qi =

∫ ∞
0

fi

(
y;
∑
r∈W

uirqr

)
dGi(y).

Corollary 2.3. The following system of integral equations holds for the MSBPM, i ∈
W:

(2.8) qi,a =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirqr

)
dGi,a(y).

Corollary 2.4. In the particular case where there is no dependence of particle repro-
duction from particle age, i.e., fi(y; s) = fi(s), i ∈ W, the systems of integral equations
(2.7) and (2.8) become the following system of equations, i ∈W:

(2.9) qi = qi,a = fi

(∑
r∈W

uirqr

)
.
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2.2.4 Number of particles produced from We towards W within
the MSBPM

Let We ⊆W be a subset of types within the MSBPM (the subscript “e” stands for “emit”).
Note that we allow We = W. The number of occurred mutations from We towards types
in W \We is a crucial quantity in the context of populations escaping extinction as the
types that have supercritical reproduction are usually modeled to be outside of We. We
investigate the production of mutants from We ⊂W towards W0 = W \We in Subsection
2.3.1 and Subsection 2.3.2. In the current Subsection, we derive more general results.
These general results concern general particle production, that is, the particles produced
from We can be of any type within W and are not necessarily mutants. Particular cases of
these results that correspond to particle production from We towards any subclass of W
within the MSBPM, can be straightforwardly obtained by appropriately setting uij = 0,
appropriately setting coordinates of sss ot 1, and realizing in some occasions that sX = 1
due to a relevant random variable X being always 0.

Definition 2.6. Denote with IWe
j (t) the number of particles (mutants or not) of type

j, j ∈ W, produced from particles with types from We until t within a MSBPM. We do
not count the initial particle within any of the IWe

j (t). For a MSBPM starting with one

particle of type i, i ∈W, that is of age 0, denote with hWe
i (t;sss) the following p.g.f.

hWe
i (t;sss) = E

(∏
j∈W

s
IWe
j (t)

j | ZZZ(0) = δδδi
)
,

where |sss| ≤ 1. We denote the corresponding p.g.f., when the MSBPM starts with one
particle of type i, i ∈W, that is of age a, a 6= 0, with

hWe
i,a (t;sss) = E

(∏
j∈W

s
IWe
j (t)

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

We note that unlike Fi(t;sss), which compactly contain information about the number
of particles, per type, that exist at t, hWe

i (t;sss) contain information about the number of
particles that have been produced until t (with respect to t some of the produced particles
may no longer exist).

Theorem 2.4. The following system of integral equations holds within the MSBPM:

1. For i ∈We

(2.10) hWe
i (t;sss) =

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi(y).

2. For i /∈We

(2.11) hWe
i (t;sss) =

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirh
We
r (t− y;sss)

)
dGi(y).
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Corollary 2.5. Let We = W. The following system of integral equations hold within
the MSBPM, i ∈W:

(2.12) hWi (t;sss) =
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W

uirsrh
W
r (t− y;sss)

)
dGi(y).

Corollary 2.6. Let a MSBPM start with one particle of type i, i ∈ W, that is of age
a, a 6= 0. Then the following system of integral equations holds:

1. For i ∈We

(2.13) hWe
i,a (t;sss) =

(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

∑
r∈W

uirsrh
We
r (t− y;sss)

)
dGi,a(y).

2. For i /∈We

(2.14) hWe
i,a (t;sss) =

(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

∑
r∈W

uirh
We
r (t− y;sss)

)
dGi,a(y).

Corollary 2.7. Let We = W. The following system of integral equations hold within
the MSBPM, i ∈W:

(2.15) hWi,a(t;sss) =
(
1−Gi,a(t)

)
+

∫ t

0

fi

(
a+ y;

∑
r∈W

uirsrh
W
r (t− y;sss)

)
dGi,a(y).

Next, we investigate IWe
j (t) and hWe

i (t;sss) as t→∞.

Definition 2.7. Denote with IWe
j the number of particles (mutants or not) of type j,

j ∈W, produced from particles with types from We during the whole MSBPM. We do not
count the initial particle within any of the IWe

j . For a MSBPM starting with one particle

of type i, i ∈W, that is of age 0, denote with hWe
i (sss) the following p.g.f.

hWe
i (sss) = E

(∏
j∈W

s
IWe
j

j | ZZZ(0) = δδδi
)
,

where |sss| ≤ 1. We denote the corresponding p.g.f., when the MSBPM starts with one
particle of type i, i ∈W, that is of age a, a 6= 0, with

hWe
i,a (sss) = E

(∏
j∈W

s
IWe
j

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

Remark 2.9. From Definition 2.7 it is evident that IWe
j := lim

t→∞
IWe
j (t) almost surely.

Considering this and the fact that there is a one-to-one correspondence between r.v.s and
p.g.f.s, it follows that hWe

i (sss) = lim
t→∞

hWe
i (t;sss) and hWe

i,a (sss) = lim
t→∞

hWe
i,a (t;sss).
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Definition 2.8. We define lim
y→∞

lim
t→∞

IWe
j (t− y) = IWe

j . Consequently lim
y→∞

lim
t→∞

hWe
i (t−

y;sss) = hWe
i (sss) and lim

y→∞
lim
t→∞

hWe
i,a (t− y;sss) = hWe

i,a (sss).

Definition 2.8 is necessary for eliminating the ambiguity of the expression lim
y→∞

lim
t→∞

IWe
j (t−

y). The alternative to Definition 2.8 is to set lim
y→∞

lim
t→∞

IWe
j (t − y) = IWe

j (b), where the

choice of b can be arbitrary.

Theorem 2.5. The following system of equations holds within the MSBPM, i ∈W:

1. Let i ∈We. Then

(2.18) hWe
i (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirsrh
We
r (sss)

)
dGi(y).

2. Let i /∈We. Then

(2.19) hWe
i (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirh
We
r (sss)

)
dGi(y).

Corollary 2.8. Let We = W. The following system of integral equations holds within
the MSBPM, i ∈W:

(2.20) hWi (sss) =

∫ ∞
0

fi

(
y;
∑
r∈W

uirsrh
W
r (sss)

)
dGi(y).

Corollary 2.9. Let a MSBPM start with one particle of type i, i ∈ W, that is of age
a, a 6= 0. Then the following system of integral equations holds:

1. Let i ∈We. Then

(2.21) hWe
i,a (sss) =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirsrh
We
r (sss)

)
dGi,a(y).

2. Let i /∈We. Then

(2.22) hWe
i,a (sss) =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirh
We
r (sss)

)
dGi,a(y).

Corollary 2.10. Let We = W. The following system of integral equations holds within
the MSBPM, i ∈W:

(2.23) hWi,a(sss) =

∫ ∞
0

fi

(
a+ y;

∑
r∈W

uirsrh
W
r (sss)

)
dGi,a(y).
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Corollary 2.11. In the particular case where there is no dependence of particle repro-
duction from particle age, i.e., fi(y; s) = fi(s), i ∈ W, the system of integral equations
(2.18), (2.19) from Theorem 2.5, and the system of integral equations (2.21), (2.22) from
Corollary 2.9, become the following system of equations:

1. Let i ∈We. Then

(2.24) hWe
i (sss) = hWe

i,a (sss) = fi

(∑
r∈W

uirsrh
We
r (sss)

)
.

2. Let i /∈We. Then

(2.25) hWe
i (sss) = hWe

i,a (sss) = fi

(∑
r∈W

uirh
We
r (sss)

)
.

2.2.5 Time until occurrence of the first “successful” particle
produced from We towards W within the MSBPM

We call a particle produced from We towards W “successful” if it initiates a non-extincting
MSBPM.

Definition 2.9. Denote with TWe
W the r.v. that is the time until occurrence of the

first “successful” particle produced from a type within We towards a type within W in a
MSBPM starting with some combination of particles with types within We. Without loss
of generality, we set the starting number of particles per type r ∈ We to be kr and the
starting number of particles per type r ∈W \We to be 0. We denote the so specified initial
state of the process as ZZZ(0) = ααα∗. We define TWe

W =∞ as the event that no “successful”
particles have been produced from We towards W in a MSBPM beginning with an initial
state ααα∗. Thus, we may write TWe

W ∈(0,∞]. If the MSBPM starts with a single particle of
type i, i ∈ We, of age 0, we use TWe

W,i as a shortcut notation. If the initial particle is of

age a, a 6= 0, we use TWe
W,i,a.

Theorem 2.6. Let the MSBPM start with kr particles per type r, r ∈ We. Let all
particles form ααα∗ have age 0. The distribution of TWe

W has the following properties:

(i) P
(
TWe
W > t | ZZZ(0) = ααα∗

)
=
∏

r∈We

[
hWe
r (t;qqq)

]kr
.

(ii) P
(
TWe
W =∞ | ZZZ(0) = ααα∗

)
=
∏

r∈We

[
hWe
r (qqq)

]kr
.

(iii) If at least one particle type within W is supercritical, we have

E
[
TWe
W | TWe

W <∞, ZZZ(0) = ααα∗
]

=

=
1

1−
∏

r∈We

[
hWe
r (qqq)

]kr ∫ ∞
0

[ ∏
r∈We

[
hWe
r (t;qqq)

]kr
−
∏
r∈We

[
hWe
r (qqq)

]kr]
dt,

if not, then the expectation does not exist.



20
Chapter 2. Multi-type continuous-time branching processes through probabilities of

mutation between types

Theorem 2.7. Let the MSBPM start with kr particles per type r, r ∈ We, let the
starting particles in ααα∗ have ages ar,c, c ∈ {1, 2, . . . , kr}, where ar,c is the age of the c-
th particle of type r. We allow ar,c to be 0. The distribution of TWe

W has the following
properties:

(i) P
(
TWe
W > t | ZZZ(0) = ααα∗

)
=
∏

r∈We

[∏kr
c=1 h

We
r,ar,c(t;qqq)

]
.

(ii) P
(
TWe
W =∞ | ZZZ(0) = ααα∗

)
=
∏

r∈We

[∏kr
c=1 h

We
r,ar,c(qqq)

]
.

(iii) If at least one particle type within W is supercritical, we have

E
[
TWe
W | TWe

W <∞, ZZZ(0) = ααα∗
]

=

=
1

1−
∏

r∈We

[∏kr
c=1 h

We
r,ar,c(qqq)

] ∫ ∞
0

[ ∏
r∈We

[ kr∏
c=1

hWe
r,ar,c(t;qqq)

]
−
∏
r∈We

[ kr∏
c=1

hWe
r,ar,c(qqq)

]]
dt,

if not, then the expectation does not exist.

2.2.6 Immediate risk of producing a “successful” particle from
We towards W within the MSBPM

We will study the immediate risk of escape facilitated by the particles with types within
We via the following hazard function:

Definition 2.10. Define for an initial particle of type i, i ∈We, the following hazard
function:

1. If the initial particle is of age 0

(2.26) gWe
W,i(t)dt = P

(
TWe
W,i ∈ (t, t+ dt] | TWe

W,i > t
)
.

2. If the initial particle if of age a, a 6= 0

(2.27) gWe
W,i,a(t)dt = P

(
TWe
W,i,a ∈ (t, t+ dt] | TWe

W,i,a > t
)
.

It is clear that for i ∈We

gWe
W,i(t)dt =

P
(
TWe
W,i ∈ (t, t+ dt], TWe

W,i > t
)

P
(
TWe
W,i > t

) .

Thus,

(2.28) gWe
W,i(t) =

F
(1)

TWe
W,i

(t)

P
(
TWe
W,i > t

) ,
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where F
(1)

TWe
W,i

(t) is the probability density function of TWe
W,i. Analogously, we can obtain

(2.29) gWe
W,i,a(t) =

F
(1)

TWe
W,i.a

(t)

P
(
TWe
W,i,a > t

) .
2.2.7 Numerical schemes for computing obtained systems of in-

tegral equations for the MSBPM

We organize the integral equations obtained so far into two tables. Table 2.1 contains all
integral equations that are for a MSBPM starting with a particle of age 0. We also put
into Table 2.1 the result of Theorem 2.8, i.e., equation (2.53), as it conforms to the same

pattern. Let us denote Bi(t;sss) =
∫ t

0
fi

(
y; Ci(t − y;sss)

)
dGi(y), where Ci(t − y;sss) is the

corresponding second argument of fi with respect to the entry of interest in Table 2.1.
Through Numerical Scheme 1, outlined below, we provide a general numerical method
immediately applicable to the integral equations listed. We note that Numerical Scheme
1 can trace its origin to [2], where a model consisting of two particle types is discussed.

Eq. Li(t;sss) Ai(t;sss) Bi(t;sss)

(2.1) Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t
0
fi

(
y;
∑

r∈W uirFr(t− y; sss)
)
dGi(y) i ∈W

(2.5) qi(t) = 0 +
∫ t

0
fi

(
y;
∑

r∈W uirqr(t− y)
)
dGi(y) i ∈W

(2.7) qi = 0 +
∫∞

0
fi

(
y;
∑

r∈W uirqr

)
dGi(y) i ∈W

(2.10) hWe
i (t;sss) =

(
1−Gi(t)

)
+

∫ t
0
fi

(
y;
∑

r∈W uirsrh
We
r (t− y;sss)

)
dGi(y) i ∈We

(2.11) hWe
i (t;sss) =

(
1−Gi(t)

)
+

∫ t
0
fi

(
y;
∑

r∈W uirh
We
r (t− y;sss)

)
dGi(y) i /∈We

(2.12) hWi (t;sss) =
(
1−Gi(t)

)
+

∫ t
0
fi

(
y;
∑

r∈W uirsrh
W
r (t− y;sss)

)
dGi(y) i ∈W

(2.18) hWe
i (sss) = 0 +

∫∞
0
fi

(
y;
∑

r∈W uirsrh
We
r (sss)

)
dGi(y) i ∈We

(2.19) hWe
i (sss) = 0 +

∫∞
0
fi

(
y;
∑

r∈W uirh
We
r (sss)

)
dGi(y) i /∈We

(2.20) hWi (sss) = 0 +
∫∞

0
fi

(
y;
∑

r∈W uirsrh
W
r (sss)

)
dGi(y) i ∈W

(2.53) Vi(t) = 0 +
∫ t

0
fi

(
y;
[∑

m∈We
uimVm(t− y)

]
+
[∑

r∈W0
uirqr

])
dGi(y) i ∈We

Table 2.1: Systems of integral equations for the case of a MSBPM starting with a particle
of age 0.

Numerical Scheme 1. Let Li(t;sss) be from Table 2.1. The corresponding system of
integral equations can be numerically computed via the following steps:

1. Let t = 0. For every i that participates in the corresponding system of integral
equations, compute the initial point Li(0;sss) = Ai(0;sss).
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2. Let t = kh, k = 1, 2, . . . , where h is the chosen step size. For every i that participates
in the corresponding system of integral equations compute

Li(kh;sss) ≈ Ai(kh;sss) +
k∑
j=1

fi

(
jh; Ci

(
(k − j)h;sss

))
·
(
Gi

(
jh
)
−Gi

(
(j − 1)h

))
.

Our second table, Table 2.2, contains all integral equations that are obtained for a
MSBPM starting with a particle of age a, a 6= 0. We also put into Table 2.2 the result
of Corollary 2.22, i.e., equation (2.54), as it conforms to the same pattern. We denote

Bi,a(t;sss) =
∫ t

0
fi

(
a+y; Ci(t−y;sss)

)
dGi,a(y), however, we stress that all Ci(t−y;sss) remain

as in Table 2.1. Numerical Scheme 2, outlined below, is applicable to all integral equations
listed within Table 2.2.

Eq. Li,a(t;sss) Ai,a(t;sss) Bi,a(t;sss)

(2.2) Fi,a(t; sss) = si
(
1−Gi,a(t)

)
+

∫ t
0
fi

(
a+ y;

∑
r∈W uirFr(t− y; sss)

)
dGi,a(y) i ∈W

(2.6) qi,a(t) = 0 +
∫ t

0
fi

(
a+ y;

∑
r∈W uirqr(t− y)

)
dGi,a(y) i ∈W

(2.8) qi,a = 0 +
∫∞

0
fi

(
a+ y;

∑
r∈W uirqr

)
dGi,a(y) i ∈W

(2.13) hWe
i,a (t;sss) =

(
1−Gi,a(t)

)
+

∫ t
0
fi

(
a+ y;

∑
r∈W uirsrh

We
r (t− y;sss)

)
dGi,a(y) i ∈We

(2.14) hWe
i,a (t;sss) =

(
1−Gi,a(t)

)
+

∫ t
0
fi

(
a+ y;

∑
r∈W uirh

We
r (t− y;sss)

)
dGi,a(y) i /∈We

(2.15) hWi,a(t;sss) =
(
1−Gi,a(t)

)
+

∫ t
0
fi

(
a+ y;

∑
r∈W uirsrh

W
r (t− y;sss)

)
dGi,a(y) i ∈W

(2.21) hWe
i,a (sss) = 0 +

∫∞
0
fi

(
a+ y;

∑
r∈W uirsrh

We
r (sss)

)
dGi,a(y) i ∈We

(2.22) hWe
i,a (sss) = 0 +

∫∞
0
fi

(
a+ y;

∑
r∈W uirh

We
r (sss)

)
dGi,a(y) i /∈We

(2.23) hWi,a(sss) = 0 +
∫∞

0
fi

(
a+ y;

∑
r∈W uirsrh

W
r (sss)

)
dGi,a(y) i ∈W

(2.54) Vi,a(t) = 0 +
∫ t

0
fi

(
a+ y;

[∑
m∈We

uimVm(t− y)
]

+
[∑

r∈W0
uirqr

])
dGi,a(y) i ∈We

Table 2.2: Systems of integral equations for the case of a MSBPM starting with a particle
of age a, a 6= 0.

Numerical Scheme 2. Let Li,a(t;sss) be from Table 2.2. The corresponding system of
integral equations can be numerically computed via the following steps:

1. Let t = 0. For every i that participates in the corresponding system of integral
equations, compute the initial point Li,a(0;sss) = Ai,a(0;sss).

2. Let t = kh, k = 1, 2, . . . , where h is the chosen step size. For every i that participates
in the corresponding system of integral equations compute

Li,a(kh;sss) ≈

≈ Ai,a(kh;sss) +
k∑
j=1

fi

(
a+ jh; Ci

(
(k − j)h;sss

))
·
(
Gi,a

(
jh
)
−Gi,a

(
(j − 1)h

))
.
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2.3 Particular cases of the MSBPM

Within this Section, we explore the Decomposable Multi-type Sevastyanov Branching Pro-
cess through probabilities of Mutation between types (DMSBPM) and the Decomposable
Multi-type Bellman-Harris Branching Process through probabilities of Mutation between
types (DMBHBPM). The DMSBPM is the process considered within our previous work
Vitanov & Slavtchova-Bojkova [7] (2022), while the DMBHBPM is an extension of the
process in our work Slavtchova-Bojkova & Vitanov [5] (2019). Both the DMSBPM and
the DMBHBPM are particular cases of the MSBPM where decomposability holds.

2.3.1 Decomposable Multi-type Sevastyanov Branching Process
through probabilities of Mutation between types (DMS-
BPM)

Within the current Abstract, we limit ourselves with presenting only core definitions
and results. The definition of the DMSBPM is similar to the definition of the MSBPM,
the difference being that within the DMSBPM, we consider two classes of types - class
W0 ⊂ W and class We = W \W0. Particles with types from We can produce particles
with types from W, while particles with types from W0 can only produce particles with
types from W0. The full formal formulation of the DMSBPM can be seen in Definition
2.11 in Subsection 2.3.1.1 of the dissertation. The DMSBPM can be used for modeling
irreversible paths in the evolution of a population escaping extinction.

Figure 2.12: A particular case of the DMSBPM where type 1 is reachable only after mutations leading
to type k, type k− 1, . . . , type 2 occur (assuming the process begins with particles with types from We).
A subcase of special interest arises when type 1 is the only supercritical type - types within We can be
used to model an existing badly adapted population approaching extinction, while the mutation path
towards type 1, provided by the types within W0, leads to possible escape from extinction.
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In order to avoid ambiguity, without loss of generality, we impose the following ordering
- if |W0| = b, then W0 = {1, 2, . . . , b} and We = {b + 1, b + 2, . . . , n}. We denote
sssW0 = (s1, . . . , sb, 1, . . . , 1)> and qqqW0 = (q1, . . . , qb, 1, . . . , 1)>. In our considerations below,
we assume that the i-th coordinate of sss is always equal to the i-th coordinate of sssW0 ,
i ∈ W0. Analogously, the i-th coordinate of qqq is always equal to the i-th coordinate of
qqqW0 , i ∈W0.

In the context of the DMSBPM, for clarity and convenience, we give the following
definition.

Definition 2.12. Given Definition 2.2, denote the p.g.f. of a DMSBPM starting with
one particle of type i ∈W as

1. For i ∈We

Fi(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

Fi,a(t;sss) = E
(∏
j∈W

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

2. For i ∈W0, due to the fact that there can be no mutations from W0 towards We

Fi(t;sssW0) = E
( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδi

)
,

Fi,a(t;sssW0) = E
( ∏
j∈W0

s
Zj(t)
j | ZZZ(0) = δδδia

)
,

where |sssW0| ≤ 1.

Corollary 2.12. For the DMSBPM, the following system of integral equations holds:

1. For i ∈We

Fi(t; sss) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
[ ∑
m∈We

uimFm(t− y; sss)
]
+

+
[ ∑
r∈W0

uirFr(t− y; sssW0)
])
dGi(y).

(2.30)

2. For i ∈W0

(2.31) Fi(t; sssW0) = si
(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
∑
r∈W0

uirFr(t− y; sssW0)

)
dGi(y).

Definition 2.13. Given Definition 2.6, for a DMSBPM starting with one particle of
type i, i ∈ W, denote the p.g.f.s for the numbers of mutants produced from We towards
W0, until t, as
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1. For i ∈We

hWe
i (t;sssW0) = E

( ∏
j∈W0

s
IWe
j (t)

j | ZZZ(0) = δδδi
)
,

hWe
i,a (t;sssW0) = E

( ∏
j∈W0

s
IWe
j (t)

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

2. For i ∈W0, due to the fact that there can be no mutations from W0 towards We

hWe
i (t;sssW0) = hWe

i,a (t;sssW0) = 1.

Corollary 2.18. For the DMSBPM the following system of integral equations holds:

1. For i ∈We

hWe
i (t;sssW0) =

(
1−Gi(t)

)
+

∫ t

0

fi

(
y;
[ ∑
m∈We

uimh
We
m (t− y;sssW0)

]
+
[ ∑
r∈W0

uirsr

])
dGi(y).

(2.40)

2. For i ∈W0

hWe
i (t;sssW0) = 1.

Definition 2.14. Given Definition 2.7, for a DMSBPM starting with one particle of
type i, i ∈ W, denote the p.g.f.s for the numbers of mutants produced from We towards
W0, during the entire process, as

1. For i ∈We

hWe
i (sssW0) = E

( ∏
j∈W0

s
IWe
j

j | ZZZ(0) = δδδi
)
,

hWe
i,a (sssW0) = E

( ∏
j∈W0

s
IWe
j

j | ZZZ(0) = δδδia

)
,

where |sss| ≤ 1.

2. For i ∈W0, due to the fact that there can be no mutations from W0 towards We

hWe
i (sssW0) = hWe

i,a (sssW0) = 1.

Corollary 2.20. The following system of equations holds within the DMSBPM, i ∈W:

1. For i ∈We

hWe
i (sssW0) =

∫ ∞
0

fi

(
y;
[ ∑
m∈We

uimh
We
m (sssW0)

]
+
[ ∑
r∈W0

uirsr

])
dGi(y).(2.42)
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2. For i ∈W0

(2.43) hWe
i (sssW0) = 1.

Proposition 2.1. Let each particle type from We, within the DMSBPM, be either
subcritical or critical. Then for i ∈We

(2.45) qi = hWe
i (qqqW0) =

∫ ∞
0

fi

(
y;
[ ∑
m∈We

uimh
We
m (qqqW0)

]
+
[ ∑
r∈W0

uirqr

])
dGi(y)

and

(2.46) qi,a = hWe
i,a (qqqW0) =

∫ ∞
0

fi

(
a+ y;

[ ∑
m∈We

uimh
We
m (qqqW0)

]
+
[ ∑
r∈W0

uirqr

])
dGi,a(y).

Definition 2.15. Denote with TWe
W0

the r.v. that is the time until occurrence of the
first “successful” mutant produced from a type within We towards a type within W0 in a
DMSBPM starting with some combination of particles with types within We. Without loss
of generality, we set the starting number of particles per type r ∈We to be kr and denote

the initial state of the process as ZZZ(0) = ααα∗ =
(
0, . . . , 0, Zb+1(0) = kb+1, . . . , Zn(0) = kn

)>
.

In ααα∗, without loss of generality, we have set |W0| = b and we have arranged for the types
from W0 to correspond to the first b coordinates. We define TWe

W0
=∞ as the event that no

“successful” mutants occur during a DMSBPM beginning with an initial state ααα∗. Thus,
we may write TWe

W0
∈(0,∞]. If the DMSBPM starts with a single particle of type i, i ∈We,

of age 0, we use TWe
W0,i

as a shortcut notation. If the initial particle is of age a, a 6= 0, we

use TWe
W0,i,a

.

Definition 2.17. Define for an initial particle of type i, i ∈We, the following modified
hazard function:

1. If the initial particle is of age 0

ĝWe
W0,i

(t)dt = P
(
TWe
W0,i
∈ (t, t+ dt] | TWe

W0,i
> t,

∑
c∈We

Zc(t) > 0
)
.

2. If the initial particle if of age a, a 6= 0

ĝWe
W0,i,a

(t)dt = P
(
TWe
W0,i,a

∈ (t, t+ dt] | TWe
W0,i,a

> t,
∑
c∈We

Zc(t) > 0
)
.

We obtain

ĝWe
W0,i

(t) =
F

(1)

TWe
W0,i

(t)

P
(
TWe
W0,i

> t
)
− P

(
TWe
W0,i

> t,
∑

c∈We
Zc(t) = 0

) .
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Definition 2.18. For i ∈We, denote

Vi(t) = P
(
TWe
W0,i

> t,
∑
c∈We

Zc(t) = 0
)
,

Vi,a(t) = P
(
TWe
W0,i,a

> t,
∑
c∈We

Zc(t) = 0
)
.

Theorem 2.8. The probability Vi(t) of the event that jointly the first “successful”
mutant does not occur before or at t and there are no particles from We left at t, for
a DMSBPM starting with a particle of age 0, satisfies the following system of integral
equations:

(2.53) Vi(t) =

∫ t

0

fi

(
y;
[ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

])
dGi(y), i ∈We.

Corollary 2.22. The probability Vi,a(t) of the event that jointly the first “successful”
mutant does not occur before or at t and there are no particles from We left at t, for a
DMSBPM starting with a particle of age a, a 6= 0, satisfies the following system of integral
equations:

(2.54) Vi,a(t) =

∫ t

0

fi

(
a+ y;

[ ∑
m∈We

uimVm(t− y)
]

+
[ ∑
r∈W0

uirqr

])
dGi,a(y), i ∈We.

2.3.2 Decomposable Multi-type Bellman-Harris Branching Pro-
cess through probabilities of Mutation between types (DMB-
HBPM)

The DMBHBPM is a particular case of the DMSBPM where there is no dependence
of particle reproduction capabilities from particle age. The full formal definition of the
DMBHBPM can be seen in Definition 2.19 in Subsection 2.3.2.1 of the dissertation. The
results for the DMBHBPM are analogous to the results for the DMSBPM, however the
dependence from particle age is dropped within fi.
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CHAPTER 3

Sequential decision problems with branching process

based dynamics

3.1 Chapter overview and organization

In this Chapter, we incorporate branching processes into optimization problems known
as Sequential Decision Problems (SDPs). For our modeling of SDPs, we use Warren
B. Powell’s “Universal Modeling Framework” developed in [82] (2022). Our motivation
for this choice of framework can be summarized as follows: 1) The “Universal Modeling
Framework” is an attempt to unify the 15 communities discussed in the Introduction
of the dissertation (Section 1.5, pages 23 - 24). This may prove beneficial in future
research, where we may consider complicating the branching process based SDPs that
we investigate; 2) The “Universal Modeling Framework” is straightforwardly connected
to Approximate Dynamic Programming (ADP; see [74], [76], [78]) and Reinforcement
Learning (RL; see [203], [82]). ADP and RL rely on simulations in order to produce
solutions (of varying quality) for complex SDPs. We envision future research stemming
from this dissertation, regarding SDPs with branching process based dynamics, as simu-
lations based; 3) For our purposes, the “Universal Modeling Framework” is conceptually
and notationally close to the discussions within the Markov decision processes commu-
nity (see Puterman [70] (2005)). This is a good starting point for considering SDPs with
Bienaymé-Galton-Watson (BGW) branching process dynamics as the BGW process is
Markovian within standard definitions.

Our modeling of SDPs within this dissertation is heavily based on the ideas developed
in [82] and [78] and as such shares the strengths and weaknesses of the “Universal Modeling
Framework”. We note that, with respect to our purposes, we have made some minor
contributions to the presentation in [82], those contributions being Proposition 3.1 and
Proposition 3.2 from Subsection 3.2.7, as well as the inclusion of the discount factor γ in
some equations and statements.

In Section 3.2 and Section 3.3, we present the “Universal Modeling Framework” by
adapting parts of the presentation in [82]. In Section 3.4, Section 3.5, and Section 3.6, we
obtain our novel results that incorporate certain branching processes into SDPs within
the “Universal Modeling Framework”. The results from Section 3.4, Section 3.5, and

29



30 Chapter 3. Sequential decision problems with branching process based dynamics

Section 3.6, have not been published yet. In Section 3.7, we outline, but do not apply or
investigate the properties of, a general ADP algorithm that can be used as a starting point
for developing a specialized ADP algorithm for finding the solution of the SDP discussed
within Section 3.6. We stress that in the dissertation, we do not consider stochastic
differential equations within the optimization problems investigated.

The standard notion of “state” within the branching processes community postulates
that the state of a branching process at t is to be understood as the number of particles,
per type, that exist at t. With respect to a so defined “state” the BGW branching process
as well as the Bellman-Harris branching process with exponential lifespans are Markovian.
The scarce literature dedicated to combining specifically branching processes and SDPs,
see [77], [199], [200], [201], [202], concentrates its efforts on branching processes that are
Markovian under the standard notion of state. The papers listed, effectively, discuss multi-
type Bienaymé-Galton-Watson branching processes. Our novel idea within Section 3.6 is
to consider a novel definition of the state of the MSBPM (the MSBPM is generally non-
Markovian under the standard notion of “state” since particle reproduction can depend on
particle age). Under the newly defined “state”, we prove that the MSBPM is Markovian.
This and the following considerations within Section 3.6 formally allow us to apply ADP
and RL for the purpose of finding solutions of the corresponding SDP.

We note that [202] develops a model-free RL algorithm for a SDP with BGW branching
process based dynamics. Contrary to [202], our agenda is to exploit a specified branch-
ing process model (such as the MSBPM) as much as possible. We note that while RL
algorithms are usually model-free, ADP algorithms are usually model-based. This is
why we outline a general ADP algorithm in Section 3.7 of the dissertation as an illus-
tration of possible future research - although we successfully incorporate the (generally
non-Markovian) MSBPM into SDPs within the “Universal Modeling Framework”, devis-
ing practical computational algorithms requires substantial further research. We hope
that the computational tractability of the MSBPM, via Numerical Scheme 1 and Numer-
ical Scheme 2, together with the theoretical foundation laid within the dissertation, will
facilitate future success.

Within Section 3.4, we consider the paper of S. R. Pliska from 1976, [77]. [77] discusses
a SDP with BGW branching process based dynamics and provides a theorem that allows
us to efficiently obtain the solution of the (finite-horizon) SDP, described within Section
2 and Section 3 of the paper, via a Dynamic Programming algorithm (see, [67], [68], [69],
[70]). Although [77] acknowledges that the algorithm obtained is a Dynamic Programming
algorithm, the proof of Theorem 3.1. from [77] uses conditional expectations and does
not use Bellman’s optimality equation (see Section 3.3). Within Section 3.4, we recast
the discussion in [77] into the more contemporary “Universal Modeling Framework” and
provide a novel proof of Theorem 3.1 from [77] that is based on Bellman’s optimality
equation.

In Section 3.5, we consider the Multi-type Bellman-Harris Branching Process through
probabilities of Mutation between types (MBHBPM; a special case of the MSBPM) with
exponential lifespan distributions. The MBHBPM with exponential lifespan distributions
is Markovian under the classical definition of state. Our novel contribution for this case
is that we formally incorporate the process in SDPs within the “Universal Modeling
Framework” and show that a result analogous to the Theorem 3.1. from [77] holds.
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We stress that the algorithms obtained in Section 3.4 and Section 3.5, that allow
for efficiently finding the solutions of the corresponding SDPs, discussed within these
sections, have a limited scope of application. More precisely, these algorithms easily
become non-applicable upon introducing further (appropriately modeled with respect to
the “Universal Modeling Framework”) dependencies within the discussed SDPs. However,
for such complex SDPs, we can still consider the ADP and/or RL approach.

We note that the field of Controlled Branching Processes (CBPs; see [115], [124], [181],
[182], [120], [121]) contains ideas that are close to the ideas found within the discussion
of sequential decision problems. The relationship between CBPs and SDPs is that a CBP
is a branching process and as such can be used as a model of uncertainty within a SDP.

This Chapter can also be viewed as a continuation of the efforts within [1]-[7], as well
as Chapter 2, to model cancer evolution and populations escaping extinction. Indeed,
this context can benefit much from an introduction of SDPs as SDPs provide a way for
planning appropriate actions in advance. This can be very beneficial, for example, within
the case of administering cancer therapies as the different costs and expected results
associated with different therapies have to be considered by the recipient and medical
personnel. SDPs model the outcomes of the choices available to us, thus, depending on
our objectives, they have the potential to become a useful tool for finding the best way
available for forcing a population into extinction or for maximizing its chance of survival.

The Chapter is organized as follows. In Section 3.2, we introduce relevant concepts
from the “Universal Modeling Framework” proposed by Warren B. Powell in [82]. In Sec-
tion 3.3, we discuss Bellman’s optimality equation. In Section 3.4, we recast the model
from [77] into the “Universal Modeling Framework” and utilize Bellman’s optimality equa-
tion to provide a novel proof for Theorem 3.1 from [77]. In Section 3.5, we consider the
MBHBPM with exponential lifespan distributions, construct a corresponding SDP and
prove a result similar to Theorem 3.1 from [77] for this case. In Section 3.6, we consider
the MSBPM and construct a SDP with MSBPM based dynamics. In Section 3.7 within
the dissertation, we outline an ADP approach for solving the constructed SDP with MS-
BPM based dynamics. We finish with Section 3.8, where we give illustrative examples of
SDPs with branching process based dynamics.

3.2 Modeling of Sequential Decision Problems (SDPs)

Within this Section, we introduce the “Universal Modeling Framework” developed by
Warren B. Powell in [82] (2022) and [80]. We follow primarily Chapter 9 (page 467) from
[82], however, we have streamlined the presentation in accordance with our purposes.

Recall the 15 mathematical communities, discussed in Section 1.5 within the disserta-
tion, that consider Sequential Decision Problems (SDPs). Each of these communities has
its distinctive toolset and perspective when working with deterministic and/or stochastic
optimization. The choice of community/communities within which to develop and asso-
ciate our work is thus of paramount importance. The “Universal Modeling Framework”
aims at covering the particularities encountered within all of the 15 communities that
work with SDPs in a unified way. This may facilitate a more easy incorporation of ideas
from the aforementioned communities into subsequent future research that continues the
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work within this dissertation. The framework (as well as the presentation in [82] and
[78]) is also oriented towards the use of simulations and computer resources - we believe
this approach towards solving complicated SDPs to hold great promise, considering that
closed-form solutions are rare for SDPs.

Having in mind our discussion in Section 1.2 of the Abstract (that corresponds to De-
scription 1.1 in Section 1.5 from the dissertation), in what follows, we make the following
arrangement:

Notational Choice 1. We index the decision epochs with t, t = 0, 1, 2, . . . . Any
variable indexed with t is understood as a variable corresponding to decision epoch with
index t. When we talk about intervals, e.g. interval (t, t+1), we understand the interval
between epochs with index t and index t+ 1. We assume that the distance between two
decision epochs can vary between any two neighboring epochs but cannot be 0 or ∞. If
there is a final epoch, its index is T .

Following [82] (page 470), there are 5 components when modeling any sequential deci-
sion problem: 1) Exogenous information variables; 2) Decision/action/control variables;
3) Transition function; 4) State variables; 5) Objective function. For the purposes of the
Abstract, we give here a very quick overview of these concepts. For mode details and
relevant discussions, see Section 3.2 within the dissertation or Chapter 9 from [82].

1. The Exogenous information variables capture all of the stochasticity of the system
we are trying to model, with the possible exception of stochasticity related to the
initial state. The exogenous information is generically denoted with Wt.

2. Decision/action/control variables model our possible interactions with the system.
Decisions made at t are denoted as xt and the space of all possible decisions is
denoted with X (or Xt). Decisions can affect the future evolution of the system. A
policy π, π ∈ Π, where Π is the set of all policies, defines a decision function Xπ(·)
(or Xπ

t (·)) that outputs decision xt for a given state of the system St.

3. The Transition function describes how the systems evolves between neighboring
decision epochs.

4. The State variables contain all necessary information so that the evolution of the
system is Markovian. We denote the state at t as St and the space of all possible
states as S (or St).

5. The Objective function specifies a relevant performance metric. We write the objec-
tive function via the Contribution function C(St, xt) (or Ct(St, xt)) which outputs
the result, with respect to our metric, of applying decision xt onto state St. Let γ
be a discount factor (γ ≤ 1). If the initial state S0 is probabilistic, the objective
function can be written as

F π(S0) = ES0EWt,...,WT |S0

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
,

if not then we may write

F π(S0) = EWt,...,WT |S0

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
,
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or more compactly

(3.1) F π(S0) = E

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
.

We are now ready to formalize our definition of a SDP. Definition 3.2, that we give
below, constitutes an aggregation of the discussion within Chapter 9 from [82]. When
writing Definition 3.2, we keep in mind Notational Choice 1.

Definition 3.2. A finite-horizon Sequential Decision Problem (finite-horizon SDP)
within the “Universal Modeling Framework”, with final decision epoch T , is characterized
by the sequence

(S0, x0,W1, S1, . . . , St, xt,Wt+1, St+1, . . . , ST ).

The objective of a finite-horizon SDP is to find a policy that satisfies

max
π∈Π

ES0EW1,...,WT |S0

{
T∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
.

An infinite-horizon Sequential Decision Problem (infinite-horizon SDP) within the “Uni-
versal Modeling Framework” is characterized by the sequence

(S0, x0,W1, S1, . . . , St, xt,Wt+1, St+1, . . . ).

The objective of an infinite-horizon SDP is to find a policy that satisfies

max
π∈Π

ES0EW1,W2,...|S0

{
∞∑
t=0

γtCt
(
St, X

π
t (St)

)
|S0

}
.

If the set of all policies, Π, is infinite, we write “sup” instead of “max”.

Within the dissertation, we will be interested only in finite-horizon SDPs. We leave
the topic of incorporating branching processes into infinite-horizon SDPs for future con-
siderations.

We stress that, as stated in [82], page 482, (vi), Definition 3.1 for state variables within
the dissertation (i.e., the policy-dependent version of Definition 9.4.1 from [82]) implies
that all properly modeled, with respect to the “Universal Modeling Framework”, dynamic
systems are Markovian by construction.

Next, we provide Proposition 3.1 and Proposition 3.2 independently of the discussion
within [82]. We actively use these propositions, as well as the considerations following
them, in subsequent Sections within the dissertation.

Proposition 3.1. For any fixed policy π, a SDP within the “Universal Modeling
Framework” constitutes a discrete-time (possibly non-stationary) Markov chain with re-
spect to t = 0, 1, . . . , T .

The following is also true
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Proposition 3.2. A discrete-time, with respect to t = 0, 1, . . . , T , possibly non-stationary,
Markov chain can be viewed as a SDP within the “Universal Modeling Framework”.

Perhaps the most difficult moment when modeling a dynamic system as a SDP within
the “Universal Modeling Framework” is verifying that the defined state variables, deci-
sion variables, exogenous information variables, contribution and objective functions, and
transition function, all satisfy the assumptions of a SDP within the framework. More
specifically, proving the conditional independence of the transition function between t
and t+ 1 from states and decisions prior to t can be especially problematic in the general
case. Proposition 3.1 and Proposition 3.2 provide us with a way of checking that our
model is indeed a SDP within the “Universal Modeling Framework” - what we need to
do is verify that for every fixed policy π the resulting process is a discrete time Markov
chain with respect to t = 0, 1, . . . , T .

3.3 Bellman’s optimality equation for SDPs within

“Universal Modeling Framework”

Within this Section, we adapt the discussions in Chapter 14 from [82] and Chapter 3
from [78]. Similarly to the presentation for Markov Decision Processes (MDP) within
Section 4.3 in [70], we will first define Bellman’s optimality equation within the “Universal
Modeling Framework” and then, we will show its relevance with respect to solving SPDs.
In the current Section, we focus only on aspects of the discussion that we will need when
incorporating branching processes into SDPs.

Definition 3.3. In the context of a SDP within the “Universal Modeling Framework”,
as given by Definition 3.2, define (the expectation form of) Bellman’s optimality equation
at t as

(3.2) Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.

Vt(St) is also known as the value function as it gives us the value of being in state St
at t. If we write equation (3.2) for consecutive t it is evident that the Markov property
is implied, which is to be expected knowing that all dynamic systems considered within
the “Universal Modeling Framework” are Markovian. When using (3.2), we keep in mind
that the exogenous information, if any, may or may not depend on St and xt (and does
not depend on states and decisions prior to t). If there is exogenous information affecting
our system, its influence is captured by the expectation in (3.2).

Denote

F π
t (St) = E

{
T−1∑
t′=t

γt
′−tCt′

(
St′ , X

π
t′(St′)

)
+ γT−tCT (ST )|St

}
and

F ∗t (St) = max
π∈Π

F π
t (St).

The following theorem, without γ, can be found in Subsection 14.12.1 of [82]. Within the
dissertation, we incorporate γ into the proof given within [82].
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Theorem 3.1. Let Vt(St) be a solution to Bellman’s optimality equation (3.2)

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE

{
Vt+1(St+1)|St, xt

})
.

Then, for a finite-horizon SDP

F ∗t (St) = Vt(St).

Algorithms based on Bellman’s optimality equation often (but not always) suffer from
the so-called curses of dimensionality. More specifically, depending on the setting at hand,
non-specialized algorithms may require iterating over all possible states and/or decisions.
This quickly becomes impractical for discrete multi-dimensional state and decision spaces
and is not an option when considering continuous state and decision spaces. Incorporation
of branching process into SDPs, thus, needs to be done with care as the usual state space
associated with a branching process, i.e., the number of particles, per type, that exist at
t, is countably infinite and possibly multi-dimensional.

3.4 SDPs with underlying BGW branching process

dynamics

To the best of our knowledge, stochastic sequential decision problems, where the dynamics
is generated specifically by a branching process (the case of the Bienaymé-Galton-Watson
branching process is investigated), are considered for the first time in [77] (1976). Our
contributions within this Section are: 1) We recast the Markov decision process from
[77] into SDP Model 1 within “Universal Modeling Framework”; 2) We provide a novel
proof for Theorem 3.1 from [77] that is based on Bellman’s optimality equation. These
contributions have not been published yet.

Definition of SDP Model 1. Define SDP Model 1 as the finite-horizon Sequential
Decision Problem that satisfies:

1. We observe a BGW branching process at successive times indexed with t = 0, 1, 2, . . . , T .

2. Let k be the number of particles types within the BGW branching process. The state
space St consists of all k-dimensional vectors whose coordinates are non-negative
integers. The t index in St indicates that there are probability distributions and
p.g.f.s associated with each type that may change with t (after a decision has been
made). The state of the process at t is also called the “generation” or the “popula-
tion” at t. The state of the process at t is given by SSSt = (S1,t, S2,t, . . . , Sk,t)

>, where
all Si,t are with values in N0 and Si,t is the (non-negative) number of particles of
type i that exist at t. The initial state SSS0 is deterministic.

3. Each particle type i has a specific finite set of possible decisions (actions) X̃i asso-

ciated with it. Hence, the decision space is given by X = X̃1 × X̃2 × · · · × X̃k. We
denote the decisions made at t with xxxt = (x1,t, x2,t, . . . , xk,t)

>.
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4. Let ci(xi,t) be the individual contribution (reward) received for a type i parti-
cle after making decision xi,t for all particles of type i at t. We assume that
−∞ < ci(xi,t) < ∞ for all i and that ci(·) do not depend on t. If we let ccc(xxxt) =(
c1(x1,t), . . . , ck(xk,t)

)>
, then the generation contribution at t is Ct

(
SSSt,xxxt) =

∑k
i=1 Si,t·

ci(xi,t) = SSS>t ccc(xxxt). At t = T no decisions are made, instead a terminal cccT =(
c1, . . . , ck

)>
is collected, hence the generation contribution at t = T is CT (SSST ) =

SSS>T cccT .

5. The decision selected for a particle affects the number of offspring, per type, that
the particle has in the next generation.

(a) For each k-dimensional vector qqq = (q1, . . . , qk)
> of non-negative integers, let

pi(qqq, xi,t) be the probability that a type i particle, whose corresponding deci-
sion is xi,t, will produce exactly q1 type 1 offspring, . . . , qk type k offspring,∑

qqq pt(qqq, xi,t) = 1.

(b) Corresponding to each pi(·, xi,t) is the row vectormmmi(xi,t) =
(
mi1(xi,t), . . . ,mik(xi,t)

)
,

where mij(xi,t) equals the expected number of type j offspring produced by a
single particle of type i under decision xi,t. We assume that mij(xi,t) <∞ for

all xi,t ∈ X̃i and i, j = 1, . . . , k. Given xxxt ∈ X , we organize the expectations
into matrix M(xxxt) = (mmm1(x1,t), . . . ,mmmk(xk,t))

>.

6. Denote a policy by π. The set of possible policies, with respect to X , is Π. Denote
the decision function at t, corresponding to policy π, with Xπ

t (·).
7. A discount factor γ is given.

8. We want to obtain the maximum expected T-period discounted reward given by

max
π∈Π

E

{
T−1∑
t=0

γtCt(SSSt, X
π
t (SSSt)) + γTCT (SSST )|SSS0

}
.

Definition 3.4. Let XXX be a k-dimensional vector. The maximum return operator R
is given by

RXXX = max
xxx∈X

{
ccc(xxx) + γM(xxx)XXX

}
.

We denote the n-fold composition of R as Rn and R0 is understood as the identity oper-
ator.

Within Theorem 3.2 below, we provide a novel proof of Theorem 3.1 from [77] using
Bellman’s optimality equation (3.2). We note that the original proof of Theorem 3.1 from
[77] is based on conditional expectations.

Theorem 3.2. For SDP Model 1, the value function Vt(SSSt) satisfies

(3.9) Vt(SSSt) = SSS>t RT−tcccT , t = 0, 1, . . . , T − 1.

Policy π, with corresponding Xπ
t (·), that computes decisions xxxt satisfying

(3.10) ccc(xxxt) + γM(xxxt)RT−t−1cccT = RT−tcccT , t = 0, 1, . . . , T − 1,

is optimal.
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3.5 SDPs with underlying exponential lifespan MB-

HBPM dynamics

Our contributions within this Section are: 1) We provide a proof that the multi-type
Bellman-Harris branching process with exponential lifespans, as well as the MBHBPM
with exponential lifespans, are discrete-time Markov chains with respect to t = 0, 1, . . . , T ;
2) For these processes, we construct SDPs within the “Universal Modeling Framework”;
3) We show that a theorem similar to Theorem 3.2 holds for the newly constructed SDPs.
These contributions have not been published yet.

Proposition 3.4. A multi-type Bellman-Harris branching process with exponential
lifespan distributions for all particle types, with states defined as the number of particles,
per type, that exist at moment t, is a discrete-time Markov chain with respect to the
moments in time indexed by t = 0, 1, . . . , T .

Definition of SDP Model 2. Define SDP Model 2 as the finite-horizon SDP that
corresponds to the definition of SDP Model 1 upon which the following modifications are
applied:

1. We observe a MBHBPM at epochs indexed with t, t = 0, 1, 2, . . . , T . Regardless of
t, lifespan distributions for particles of each type must be exponential.

2. Let k be the number of types of particles within the MBHBPM. The state space
St consists of all k-dimensional vectors whose coordinates are non-negative integers.
The t index in St indicates that there are probability distributions and p.g.f.s associ-
ated with each type that may change with t (after a decision has been made). How-
ever, although lifespan distribution may change their parameters they must continue
to be exponential. The state of the process at t is also called the “generation” or the
“population” at t. The state of the process at t is given by SSSt = (S1,t, S2,t, . . . , Sk,t)

>,
where all Si,t are with values in N0 and Si,t is the (non-negative) number of particles
of type i that exist at t. The initial state SSS0 is deterministic.

5. The chosen decision xxxt affects the lifespan distributions (however the distributions
remain exponential), the distributions for the number of particles in the offspring,
and the probabilities for mutation within the offspring, of all particles that exist at
t. Thus, the types of all particles that exist at t are modified as a consequence of
xxxt. Particles that exist at t can create only particles that are of the modified types,
hence only the modified types are being propagated until t+ 1.

(a) Corresponding to the i-th coordinate of xxxt is the row vector
mmmi(xi,t) =

(
mi1(xi,t), . . . ,mik(xi,t)

)
, where mij(xi,t) denotes the expected num-

ber of type j particles at t + 1 within a MBHBPM with exponential lifespan
distributions starting at t with a single particle of type i under decision xi,t. We

assume that mij(xi,t) < ∞ for all xi,t ∈ X̃i and i, j = 1, . . . , k. Given xxxt ∈ X ,
we organize the expectations into matrix M(xxxt) = (mmm1(x1,t), . . . ,mmmk(xk,t))

>.

Proposition 3.5. SDP Model 2 is a SDP within the “Universal Modeling Framework”.
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Theorem 3.3. For SDP Model 2, the value function Vt(SSSt) satisfies

(3.16) Vt(SSSt) = SSS>t RT−tcccT , t = 0, 1, . . . , T − 1.

Policy π, with corresponding Xπ
t (·), that computes decisions xxxt satisfying

(3.17) ccc(xxxt) + γM(xxxt)RT−t−1cccT = RT−tcccT , t = 0, 1, . . . , T − 1,

is optimal.

3.6 SDPs with underlying MSBPM dynamics

Our contributions within this Section are: 1) We construct a novel state space and show
that, with respect to it, the multi-type Sevastyanov branching process, as well as the
MSBPM, constitute discrete-time Markov chains with respect to t = 0, 1, . . . , T ; 2) For
these processes, we construct SDPs within the “Universal Modeling Framework”. The
contributions of this Section have not been published yet.

Definition 3.5. Let there be k types. For each type denote with Di the set of all
2-tuples of the following form:

1. The first element of the tuple is an integer. We denote this integer with r, r ∈ N0.

2. The second element of the 2-tuple is a r-tuple. We denote this r-tuple with lll. Each
element li of lll is a non-negative real number, i.e., li ∈ R+. The numbers within lll are
ordered from smallest to largest. Duplication is allowed in which case duplicating
numbers are written next to each other.

At t, associate with each Di probability distributions. We will not write these distributions
explicitly, but will consider them implicitly known. Denote Di with associated distributions
at t as Di,t. For the collection of k types at t, denote Dkt = D1,t ×D2,t × · · · × Dk,t.

Proposition 3.6. A multi-type Sevastyanov branching process, with states defined as
the elements of Dkt , is a discrete-time Markov chain with respect to t = 0, 1, . . . , T .

Definition of SDP Model 3. Define SDP Model 3 as the finite-horizon SDP that
corresponds to the definition of SDP Model 1 upon which the following modifications are
applied:

1. We observe a MSBPM, as defined in Definition 2.1, at epochs indexed with t, t =
0, 1, 2, . . . , T .

2. Let k be the number of types of particles within the MSBPM. The state space is
Dkt . The t index in Dkt indicates that there are probability distributions and p.g.f.s
associated with each type that may change with t (after a decision has been made).
The state of the process at t is also called the “generation” or the “population”
at t. The state of the process at t is given by SSSt = (S1,t, S2,t, . . . , Sk,t)

>, where
Si,t ∈ Di,t with the interpretation of the first component of Si,t being the number of
particles of type i that exist at t and the interpretation of the second component of
Si,t being the ages of each particle of type i that exists at t. The initial state SSS0 is
deterministic.
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5. The chosen decision xxxt affects the lifespan distributions, the distributions for the
number of particles in the offspring, and the probabilities for mutation within the
offspring, of all particles that exist at t. Thus, the types of all particles that exist
at t are modified as a consequence of xxxt. Particles that exist at t can create only
particles that are of the modified types, hence only the modified types are being
propagated until t+ 1. xxxt does not affect the age of particles that exist at t.

Proposition 3.7. SDP Model 3 is a SDP within the “Universal Modeling Framework”.

Unfortunately, for SDP Model 3 there is no analogue of Theorem 3.2 that allows for
efficiently finding the solution. Currently the only algorithms available to us are generic
dynamic programming algorithms that require iterating the entirety of the state and
decision space. As the state space associated with Definition 3.5 requires information
about particle age, iterating over all possible states is practically impossible.

We highlight that stochastic SDPs (and generally stochastic problems) are one of the
most difficult optimization problems within the field of optimization. Nice and compact
results are seldom available and different problems may require specialized algorithms
solely designed for them. The mere existence of the 15 fragmented communities, dis-
cussed in Section 1.5 of the dissertation, that deal with sequential decision problems,
testifies to the lack of an overarching approach that can handle a sufficiently large class
of problems. In this context, the successful incorporation of the MSBPM (and other
branching processes) into SDPs within the “Universal Modeling Framework” is a signifi-
cant development, as it provides us with Bellman’s optimality equation as a possible tool
to be used when searching for solutions.

The validity of Bellman’s optimality equation within the “Universal Modeling Frame-
work” allows us to consider approaches such as Approximate Dynamic Programming
(ADP; see [78]). Within the dissertation, we outline a general ADP algorithm based
around the “post-decision state”. This algorithm can serve as a starting point for the de-
velopment of a more specialized ADP algorithm targeted at SDPs with branching process
based dynamics.
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Conclusion

Approbation

Results from the dissertation have been presented at: FMI Spring Scientific Session
(March 2019, 2021, Sofia, Bulgaria), National Seminar on Probability and Statistics (June
2019, Sofia, Bulgaria), 21st European Young Statisticians Meeting (29 July - 02 August
2019, Belgrade, Serbia), Sofia University Young Researchers Conference (February 2020,
Sofia, Bulgaria), The 19th Conference of the Applied Stochastic Models and Data Analy-
sis International Society ASMDA2021 and DEMOGRAPHICS2021 WORKSHOP (June
2021, Athens, Greece), The 5th International Workshop on Branching Processes and their
Applications - IWBPA 2021 (April 2021, Badajoz, Spain).

The following publications were written during the writing of the dissertation:

1. M. Slavtchova-Bojkova, K. Vitanov. Modelling cancer evolution by multi-type age-
dependent branching processes. Comptes rendus de l’Acade’mie bulgare des Sci-
ences, 71, 10, 1297-1305, (2018).

2. M. Slavtchova-Bojkova, K. Vitanov. Multi-type age-dependent branching processes
as models of metastasis evolution. Stochastic Models, 35, 284-299, (2019),
https://doi.org/10.1080/15326349.2019.1600410.

3. K. Vitanov, M. Slavtchova-Bojkova. On decomposable multi-type Bellman-Harris
branching process for modeling cancer cell populations with mutations. 21st Euro-
pean Young Statisticians meeting - Proceedings, 113-118, (2019).

4. K. Vitanov, M. Slavtchova-Bojkova. Modeling escape from extinction with decom-
posable multi-type Sevastyanov branching processes. Stochastic Models, (2022),
https://doi.org/10.1080/15326349.2022.2041037.

Scientific contributions

Within this dissertation the novel Multi–type Sevastyanov Branching Processes through
probabilities of Mutation between types (MSBPM) is developed and explored in the con-
text of populations escaping extinction. Unlike previous works in the field, the MSBPM
and the results obtained do not depend on assumptions about mutations being small
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quantities or particular lifespan distributions nor on assumptions of non-decomposability
or particular reproduction rates. As such, the novel MSBPM and the associated novel re-
sults constitute a continuous-time extension and/or generalization of previously obtained
results by other authors concerning populations escaping extinction (see, e.g., [61], [62],
[64], [65]) as well as a continuation of our previous results in the same field within Vitanov
& Slavtchova-Bojkova [7] (2022) as well as preceding papers [1] - [6]. Various systems of
equations have been obtained - systems of equations for the probability generating func-
tions (p.g.f.s) of the process, for the probabilities of extinction, for the p.g.f.s of particle
production from one class of particle types to another. Results concerning the time until
occurrence of the first “successful” particle as well as the immediate risk of a “successful”
particle emerging have also been obtained. To the best of our knowledge, such an in-depth
investigation of the topic has not been done previously for multi-type, continuous-time
branching processes (excluding our earlier work in [7] as well as preceding papers [1] -
[6]). Aforementioned results have been obtained for the case of the MSBPM starting with
one particle of age 0 and for the case of the MSBPM starting with one particle of age a,
a 6= 0. The latter case, to the best of our knowledge, has not been explored previously in a
systematic manner within the context of branching processes. Particular cases of decom-
posable MSBPMs have also been considered in the manner described above. Numerical
schemes for calculating all obtained systems of equations have been developed.

Multi-type Bienaymé-Galton-Watson (BGW) branching processes, multi-type Bellman-
Harris branching process with exponential lifespan distributions, multi-type Sevastyanov
branching process, as well the MSBPM and its variants, have been successfully incorpo-
rated into Sequential Decision Problems (SDPs) within the “Universal Modeling Frame-
work” developed in [82]. To the best of our knowledge, with the exception of the BGW
branching process, branching processes have not been considered in the context of SDPs
(within the “Universal Modeling Framework” or in other modeling frameworks). This
incorporation formally opens the gate for techniques such as Approximate Dynamic Pro-
gramming (ADP) and Reinforcement Learning (RL) to be applied onto SDPs with under-
lying branching process based dynamics. A novel proof of Theorem 3.1 from [77], concern-
ing an efficient algorithm for finding the solution of SDPs with multi-type BGW branch-
ing processes dynamics, that uses Bellman’s optimality equation, has been obtained. An
analogous novel result for the case of the multi-type Bellman-Harris branching process
with exponential lifespan distributions, as well as for the case of the Multi-type Bellman-
Harris Branching Process through probabilities of Mutation between types (MBHBPM)
with exponential lifespan distributions, has been identified. A novel state space has been
constructed for the purpose of successfully incorporating the MSBPM and the multi-type
Sevastyanov branching process into SDPs within the “Universal Modeling Framework”.

Note regarding used software

All computations within the dissertation are done via code written in Python 3.8.13 [209].
The code uses the NumPy 1.20.3 [210] and SciPy 1.6.2 [211] libraries. Figures, that do
not contain nodes, are created with Matplotlib 3.5.1 [212]. Figures that contain nodes
are created with yEd 3.20.1 [213].
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[120] M. G. Velasco, I. Garćıa, G. P. Yanev. Controlled Branching Processes. John Wiley
& Sons (2018).
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