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Chapter 1

Introduction

Invariant theory is a branch of abstract algebra, which, broadly speaking, studies

objects that remain unchanged under linear transformations. Its origin can be traced

to the works of Lagrange and Gauss at the end of the 18-th and beginning of 19-th

century. They studied quadratic binary forms and used discriminant to differentiate

distinct forms. The real invariant theory, however, began with the works of George

Boole and Otto Hessee. The early years of invariant theory saw a lot of effort invested

into the study of binary forms (homogeneous polynomials in two variables). It is

well known that a quadratic equation ax2 + 2bx + c has a double root if and only

if the invariant b2 − ac of the quadratic binary form ax2 + 2bxy + y2 is 0. Perhaps

inspired by results like this one, mathematicians early on were motivated by the idea

that any property of invariant polynomials can be described by vanishing of some

invariants. Results by Boole, Cayley and Einsenstein about invariants of quadratic

forms from the period of 1840 to 1850 can be found in [18]. The efforts in this

direction by Cayley, Aronhold, Clebsch and Gordan culminated in the development

of the “symbolic” method1. This method allows reduction of computations of binary

forms of degree n to n-th power of linear forms. The problem with that method,

which allowed computation of invariants, is that it was enormously hard to actually

realise it, except in some specific cases. That is one of the reasons research in the

field shifted towards finding “fundamental systems” of invariants, i.e. finite sets, such

that any invariant can be expressed as a polynomial of those fundamental invariants.
1https://en.wikipedia.org/wiki/Symbolic_method
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An example is the fundamental theorem of symmetric polynomials. In 1868 James

Gordan [23] proved that the set of invariants of binary forms of any degree n is

finitely generated. In 1890, Hilbert [25], in one of the most fundamental papers in

mathematics, generalised the result of Gordan to systems of several homogeneous

forms. His proof was, however, noncostructive and was not widely accepted at the

time. It even prompted Gordan to say the famous words:

“Das ist nicht Mathematik. Das ist Theologie.”

Whether or not he actually said that is not exactly clear, as earliest quotes of it

dates after his death in 1912. He was actually supportive of Hilbert’s ideas and

enforced some of his methods, so the widespread idea that he opposed his work in

invariant theory is most probably a myth. Anyway, Hilbert [26] came back in 1893

with a constructive proof of the theorem.

The problem of finite generation was a central one for invariant theory. The

question “Are all polynomials in d variables, invariant under the action of a subgroup

G of the matrix group, finitely generated?” was one of the main motivations behind

Hilbert’s 14-th problem [27]. Emmy Noether gave affirmative answer [44, 45] for

finite groups, and Nagata [43] constructed a counterexample for infinite groups.

Another important combinatorial question of invariant theory is how many in-

variants are there. It was answered by Molien’s formula [41], by providing a way to

calculate the number of generators of each degree.

After that, invariant theory was seemingly left with no big questions to answer,

and was presumed dead. This turned out to not be the case. To quote Rota [48],

“Like the Arabian phoenix arising from its ashes, classical invariant

theory, once pronounced dead, is once again at the forefront of

mathematics.”

The first revival of the theory was around 1935 with the works of Schur, Weyl

and Cartan. About that time it was realized that classical invariant theory can be

looked as a special case of theory of semi-simple groups. That was made evident by

Weyl’s [54] book Classical Groups, in which one of the main topics was the study
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of polynomial invariants in any number of variables under the action of classical

groups. There is a funny remark on that book by Howe [28],

“Most people who know the book feel the material in it is wonderful.

Many also feel the presentation is terrible. (The author is not among

these latter.)”

This still wasn’t enough to offer interesting problem and attract the attention of the

mathematical society. It was later, with the work of Mumford, who used elements

of invariant theory to solve problems of “moduli” of algebraic curves. His newer

approach to invariant theory was to study it in a more general setting - algebraic

groups acting on algebraic varieties. In his book [42] he generalized and modernized

the ideas of classical invariant theory.

In modern days, branches of mathematics such as Lie theory, algebraic geometry,

differential algebra and others are influenced by invariant theory. To again quote

Rota,

“Eventually, invariant theory was to become a victim of its own success:

the very term “invariant theory” is nowadays understood in such a wide

variety of senses that it has become all but meaningless.”

By that he probably meant that in order to talk about “invariant theory”, we need

a mathematical context.

But what about noncommutative invariant theory? It began in 1936 with Mar-

garete Wolf’s paper [55], in which she studied noncommutative symmetric poly-

nomials. Naturally, mathematicians were interested in what clasical invariant the-

ory results can be generalized to the noncommutative case. The answer was, not

many. Emmy Noether’s theorems [44, 45], for example, look nothing alike in the

noncommutative case. It was proved independently in the early 1980’s by Dicks and

Formanek [17], and [33], that the noncommutative algebra of invariants is finitely

generated only for finite groups, consisting of scalar matrices. The results were later

generalized by Koryukin [35] in 1984 to infinite groups.
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Seemingly that leaves “nothing to do” in noncommutative invariant theory. Per-

haps noncommutative invariant theory, like commutative one, was also dead? The

answer is, again, no.

In his 1984 paper [35], which was the main motivation behind our work, Koryukin

defined an action, which he called S-action. This allowed to “simulate” commuta-

tivity by acting on the positions of the elements in homogeneous polynomials. He

proceeded to prove that, equipped with this action, the algebra of invariants of non-

commutative polynomials, under the action of reductive groups, is finitely generated.

Koryukin’s result bring back one of the fundamental problems of invariant theory.

Problem 1.0.1. For fixed reductive group G, find a fundamental system of gener-

ators of the algebra of the noncommutative polynomials, invariant under the action

of G.

We provide answer to this problem when G is the symmetric group for polyno-

mials in any number of noncommuting variables d, and when G is the alternative

group and d = 3.

The structure of the thesis is as follows.

The second chapter contains all the preliminary notations, definitions and results

that we will need later on in the thesis. More specifically, section 2.2 contains

the classical results of commutative invariant theory, written in a more “modern

language”.

In section 2.3 we introduce some of the fundamental results in noncommutative

invariant theory and compare them to their commutative counterparts. Section 2.4

is devoted to Koryukin’s paper [35], the importance of which we already stated.

We formulated a result regarding finite generation of algebra of invariants with the

additional S-action, this is Theorem 2.4.24. In order to present this result and proof

to it, several technical lemmas, together with two other theorems, are necessary.

The last section 2.5 of the second chapter is devoted to Margarete Wolf’s results

in symmetric noncommutative polynomials. We have tried to present her results

from a more modern point of view and in language, consistent with everything

established so far, while also staying as faithful to the original as possible.
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The third and fourth chapter of the thesis contain our new results.

The former section 3.1 of chapter 3 is devoted to the results of our paper [10].

In it, we prove a noncommutative analogue 3.1.5 of the fundamental theorem of

commutative symmetric polynomials by constructing a finite generating set of ele-

mentary symmetric noncommutative polynomials. We do so by first proving that,

with Korykin’s S-action, for base field of any characteristic, the algebra of sym-

metric noncommutative polynomials in any number of variables is generated by the

power sums. We then prove an analogue 3.1.4 of Newton’s identities, relating the

power sums and the elementary symmetric polynomials. The main result 3.1.5 of

this section is true under the assumption that the base field is of characteristic either

0 or greater than the number of variables of the symmetric polynomials. We illus-

trate our ideas with plenty of examples and provide alternative proofs of the main

theorem in special cases of small number of variables (d = 2). The main techniques

used in this section were generalization of the commutative results and “lifting” a

fundamental set of the commutative algebra to the noncommutative.

The latter section 3.2 of chapter 3 contains the results of our paper [11]. We

explore the algebra of symmetric noncommutative polynomials, when the base field

is of non-zero characteristic, which is less than the number of variables. This is not

covered in Koryukin’s result 2.4.24. We give answers to two important problems.

First, we prove in Theorem 3.2.10 that in this instance, the algebra of invaraints is

not finitely generated. We do so by first reducing the problem for the case of the

characteristic being equal to the number of variables, and then conveying the prob-

lem to the algebra of indecomposables, i.e. the augmentation ideal 3.2.3, factored by

its square. The second question we answer in that section is the existence of minimal

generating set for the algebra of the symmetric noncommutative polynomials. We

prove in Theorem 3.2.12 that the power sums form a minimal generating set for the

algebra of symmetric noncommutative polynomials. The idea behind the proof is

illustrated by a concrete example 3.2.11.

In chapter 4 we again try to solve problem 1.0.1 for G being the alternating

group. We do so for the polynomials in 3 variables, invariant under the action of the

alternating group of order 3. We again try to “lift” results from the commutative case
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to the noncommutative, under the assumption that the noncommutative algebra is

equipped with Koryukin’s S-action. We obtain a generating set for said algebra for

fields of characteristic 0 or greater than 3 and use our result 3.2.10 to prove that if

the characteristic of the base field is 2 or 3, the algebra is not finitely generated.



Chapter 2

Preliminaries

2.1. Basic notations

Throughout the thesis, we use the following notations:

1. As usual, R and C are the fields of real and complex numbers, respectively.

2. For a set of variables Xd = {x1, . . . , xd} and field K, K[Xd] is the algebra of

the polynomials of d commuting variables with coefficients in K.

3. By Sym(d) and Alt(d) we denote the symmetric and alternative group of order

d, respectively.

4. GLd(K) denotes the general linear group of order d with matrix entries from

the field K.

5. For vector spaces V,W over a field F , Hom(V,W ) is the vector space of all

linear maps V → W .

6. If V is a vector space over a field F , HomV is the vector space of all endo-

morphisms from V to V .

7. For a field K, KXd is the vector space over K with basis x1, x2, . . . , xd.

7
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2.2. Commutative invariant theory

In classical invariant theory results are usually over the field of complex numbers C,

however most of the results remain true over any field K of characteristic 0.

Let Vd be the d-dimensional vector space with basis {v1, v2, . . . , vd} and

xi : Vd → C, i = 1, 2, . . . , d

be the linear functions defined by

xi(ξ1v1 + ξ2v2 + · · ·+ ξdvd) = ξi, ξ1, ξ2, . . . , ξd ∈ C.

These are called coordinate functions. The functions x1, x2, . . . , xd generate a sub-

algebra of the algebra of all C-valued functions on V . This algebra is denoted by

C[Xd] = C[x1, x2 . . . , xd] and is called the algebra of polynomial functions. Note

that there is an isomorphism φ from C[x1, x2 . . . , xd] onto the polynomial algebra

C[y1, y2, . . . , yd] defined by φ(fi) = yi, i = 1, 2, . . . , d.

Let the group of invertible matrices GLd(C) act on the vector space Vd. That

action induces an action of GLd(C) on C[Xd] by

g(f) : v → f
(
g−1(v)

)
, g ∈ GLd(C), f(Xd) ∈ C[Xd], v ∈ Vd. (2.1)

Definition 2.2.1. Let G be a subgroup of GLd(C). The algebra of G-invariants

are all the polynomials in C[Xd], which remain unchanged under the action of all

elements of G, that is

C[Xd]
G = {f ∈ C[Xd] | g(f) = f for all g ∈ G}.

It is more convenient to assume that GLd(C) acts canonically on the vector space

with basis Xd = x1, x2, . . . , xd and to extend that action diagonally on C[Xd] by

g
(
f(x1, x2, . . . , xd)

)
= f

(
g(x1), g(x2), . . . , g(xd)

)
, g ∈ GLd(C), f ∈ C[Xd]. (2.2)
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Both actions 2.1 and 2.2 yield the same algebra of invariants, as the groups are

isomorphic.

Perhaps the earliest example of a result in invariant theory that a student en-

counters is the fundamental theorem of symmetric polynomials. This is a basic

result in algebra, that illustrates some of the main questions in invariant theory.

Let K be a field of arbitrary characteristic. The symmetric group Sym(d) acts

on the vector space Xd by

σ(xi) = xσ(i), σ ∈ Sym(d), i = 1, . . . , d, (2.3)

which means that σ permutes the variables. A polynomial f ∈ K[Xd] is symmetric,

if it remains unchanged under the action of all the permutations of Sym(d). Let

e1 = x1 + x2 + · · ·+ xd,

e2 = x1x2 + x1x3 + · · ·+ x2x3 + x2x4 + · · ·+ xd−1xd,

...

ed = x1x2 . . . xd

(2.4)

be the elementary symmetric polynomials.

Theorem 2.2.2 (Fundamental theorem of symmetric polynomials). Every symmet-

ric polynomial f ∈ K[Xd]
Sym(d) can be written uniquely as a polynomial

f = p(e1, e2, . . . , ed)

in the elementary symmetric polynomials e1, e2, . . . , ed.

In the language of invariant theory, this gives us that the algebra K[Xd]
Sym(d) is

generated by the elementary symmetric polynomials, that is

K[Xd]
Sym(d) = K[e1, e2, . . . , en].

The “unique” part of the theorem means that the elementary symmetric polynomials
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e1, e2, . . . , ed are algebraically independent. Note that the generating set e1, e2, . . . , ed

isn’t unique. If we denote pk = xk
1 + xk

2 + · · ·+ xk
d to be the k-th power sum, then:

Lemma 2.2.3. The algebra of symmetric polynomials K[Xd]
Sym(d) is generated by

the first d power sums, that is

K[Xd]
Sym(d) = K[p1, p2, . . . , pd].

The question of finite generation has been fundamental to invariant theory from

the very start.

Definition 2.2.4. Let K be a field and A - a (commutative) associative algebra over

K. Then A is finitely generated if there exist elements a1, a2, . . . , an ∈ A, such that

each element of A can be written as polynomial in a1, a2, . . . , an with coefficients in

K.

Remark 2.2.5. Note that the above definition is equivalent to the following. If

φ : K[Xn] → A

is the evaluation homomorphism that maps xi to ai for i = 1, 2, . . . , n, then A is

finitely generated if φ is surjective. Applying the first isomorphism theorem, we

obtain that

A ∼= K[Xn]/Ker(φ).

The converse also holds. If A is isomorphic to a factor algebra K[Xn]/I for ideal I of

K[Xn], then each element a ∈ A is polynomial in the cosets xi+ I for i = 1, 2, . . . , n

and thus A is finitely generated.

Problem 2.2.6. Is the algebra K[Xd]
G finitely generated for all subgroups G of

GLd (K)?

This question was the motivation behind Hilbert’s 14-th problem [27]. When

the group G is finite and K has characteristic 0, an affirmative answer to Problem

2.2.6 was given by Emmy Noether [44] in 1916. When G is finite and K is a
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field of arbitrary characteristic, the answer is again yes, and it was also proved

by Emmy Noether [45] in 1926. In the general case, however, this is not true - a

counterexample was constructed by Nagata [43] in 1959. Bellow is Emmy Noether’s

first cited theorem.

Theorem 2.2.7 (Endlichkeitssatz of Emmy Noether [44]). Let K be a field of char-

acteristic 0 and G be a finite subgroup of Gld(K). Then the algebra of invariants

K[Xd]
G is finitely generated and has a system of generators f1, . . . , fm, where each

fi is homogeneous polynomial of degree bounded by the order of the group G.

A translation of the paper [44] by Colin McLarty [39] is very helpful towards

understanding this cornerstone theorem of invariant theory.

Theorem 2.2.8 (Noether normalization lemma [45]). Let K be a field of arbitrary

characteristic and A be finitely generated commutative K-algebra. There exist alge-

braically independent elements a1, a2, . . . , an ∈ A such that A is finitely generated

module over the polynomial ring K[a1, a2, . . . , an].

In Remark 2.2.5 we noted that an K-algebra is finitely generated if and only if

it is a factor algebra of polynomial algebra. We proceed to give an example why

that is not the same as A being isomorphic to a polynomial algebra (i.e. the kernel

of the evaluation homomorphism to be trivial).

Example 2.2.9. It is a basic result in the early algebra courses that

C ∼= R[x]/(x2 + 1)

and by 2.2.5, C is finitely generated R-algebra. Considered as a linear space over

the reals, C has dimension 2. If C was isomorphic to polynomial algebra, it would

have an infinite dimension over R, which is a contradiction.

Naturally, the following question in invariant theory arises.

Problem 2.2.10. For which subgroups G of Gld(K), the algebra of invariants

K[Xd]
G is isomorphic to a polynomial algebra?
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Definition 2.2.11. Let V be a finite dimensional vector space over a field K with

dimension n. A pseudoreflection is an invertible linear transformation

φ : V → V,

such that φ is not the identity, φ has a finite multiplicative order and φ fixes a

hyperplane.

Theorem 2.2.12 (Chevalley-Shephard-Todd [14, 49]). For a finite group G and

a field K of characteristic char(K) = 0, the algebra of invariants K[Xd]
G is iso-

morphic to a polynomial algebra, K[Xd]
G ∼= K[Yd] if and only if G is generated by

pseudoreflections.

The most recent generalisation of 2.2.12 is by Abraham Broer [12] in 2007 for

fields of positive characteristic.

From combinatorial point of view, the following question arises: how many in-

variants are there? To answer it, we introduce some definitions.

Definition 2.2.13. A ring R is said to be graded, if it can be decomposed as direct

sum

R =
∞⊕
i=0

Ri

of additive groups, such that RiRj ⊆ Ri+j.

An algebra A is said to be graded if it is graded as a ring.

There is a natural grading for the algebra of invariants K[Xd]
G for any group G:

K[Xd]
G = K ⊕ (K[Xd]

G)(1) ⊕ (K[Xd]
G)(2) ⊕ . . . ,

where (K[Xd]
G)(n) is the vector space of the homogeneous invariants of degree n.

Definition 2.2.14 ( [7], chapter 11). Let λ be an integer valued function on the

class of all finitely generated modules over a ring A and M be a finitely generated

graded A-module, M = M0 ⊕M1 ⊕ . . . . The Poincaré (or Hilbert) series of M with
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respect to λ is the generating function of λ(Mn)

H(M, t) =
∞∑
n=0

λ(Mn)t
n.

In the case of algebra of invariants K[Xd]
G, the integer valued function is the

dimension of the vector space of homogeneous invariants, and the Hilbert series is

H(K[Xd]
G, t) =

∞∑
n=0

dim(K[Xd]
G)(n)tn.

The coefficients in this power series gives the number of invariants of each degree.

Theorem 2.2.15 (Hilbert, Serre). The Hilbert series H(M, t), defined in 2.2.14, is

a rational function of t in the form

f(t)
s∏

i=1

(1− tki)
,

where f(t) ∈ Z[t].

A proof of that theorem can be found in [7], chapter 11, and it is by induction on

the number of generators of the module A. However, that is not Hilbert’s original

proof. It made use of his syzygy theorem [25].

The next theorem is a formula from 1897 that gives the explicit form of the

Hilbert series H(K[Xd]
G, t).

Theorem 2.2.16 (Molien formula [41]). Let char(K) = 0. For a finite group G,

H(K[Xd]
G, t) =

1

|G|
∑
g∈G

1

det(1− gt)
.

The results listed above are just some of the fundamental ones in classical in-

variant theory. In the next chapter we will see how they “translate” to the noncom-

mutative case.
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2.3. Noncommutative invariant theory

The first step of going from commutative algebra of invariants to noncommutative

is choosing a noncommutative alternative to the polynomial algbera K[Xd]. The

natural candidate is the free associative algebra, as it has the same universal property

as the polynomial algebra K[Xd]. Let us give a more general, categorical definition

of “free”.

Definition 2.3.1. Let C be an arbitrary category, X a set, F (X) a C-object and

i : X → F (X) be a set injection. F (X) is called a free object of X in C, if for every

C-object A and each mapping between sets f : X → A exists unique C-morphism

f̄ : F (X) → A, such that the following diagram

X F (X)

A
f

i

∃!f̄

is commutative, that is f̄ ◦ i = f . This is called universal property.

In the category of both unitary commutative and noncommutative associative

algebras, morphism is a homomorphism between the algebras.

Proposition 2.3.2 ( [19]). For an arbitrary set X, the polynomial algebra K[X] is

free in the category of all unitary commutative associative algebras.

We now define the free associative algebra K⟨Xd⟩ to be the free object in the

category of unitary associative algebras.

Proposition 2.3.3 ( [19]). Let X be a set and K a field. The algebra K⟨X⟩ with

basis all the words

xi1xi2 . . . xik , xik ∈ X, k = 0, 1, . . .

and multiplication concatenation of words with respect to elements of K

(xi1xi2 . . . xik)(xj1xj2 . . . xjs) = xi1xi2 . . . xikxj1xj2 . . . xjs ,

is free in the category of all unitary associative algebras.
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To emphasise, our noncommutative analogue for monomials in d variables are

words with the letters x1, . . . , xd ∈ Xd, and polynomials are linear combinations of

such words with coefficients in K.

In the commutative case, we have a natural way to compare monomials. There

are multiple ways to order noncommutative monomials.

Definition 2.3.4 ( [56]). An admissible ordering σ on the free monoid ⟨Xd⟩ is a

relation on ⟨Xd⟩ × ⟨Xd⟩, such that:

• Any two monomials w1, w2 ∈ ⟨Xd⟩ are comparable, w1 ≥σ w2 or w2 ≥σ w1 ( σ

is total order on ⟨Xd⟩);

• Any monomial is comparable with itself, w ≥σ w (σ is reflexive);

• If for two monomials w1, w2 ∈ ⟨Xd⟩, w1 ≥σ w2 and w2 ≥σ w1, then w1 = w2

(σ is antisymetric).

• If w1, w2, w3 ∈ ⟨Xd⟩, w1 ≥σ w2 and w2 ≥σ w3, then w1 ≥σ w3 (σ is transitive);

• If w1, w2 ∈ ⟨Xd⟩ are such that w1 ≥σ w2, for any w3, w4 ∈ ⟨Xd⟩,

w3w1w4 ≥σ w3w2w4 (σ is compatible with multiplication);

• Every descending chain of words w1 ≥σ w2 ≥σ . . . in ⟨Xd⟩ eventually stabilises

(σ is a well-ordering).

From this definition it follows that if σ is admissible ordering of ⟨X⟩, then for

any word w ∈ ⟨X⟩ w ≥σ 1.

One of the most intuitive ways to order the monomials in ⟨Xd⟩ is the lexicographic

order:

Example 2.3.5 ( [56]). An example of an ordering on ⟨Xd⟩ is the lexicographic

ordering, which we will denote with Lex. If w1, w2 are two words in ⟨Xd⟩, w1 ≥Lex w2

if either w1 = w2w for some word w ∈ ⟨Xd⟩ or w1 = wxiw
′ and w2 = wxjw

′′ for

some words w,w′, w′′ ∈ ⟨Xd⟩ and letters xi, xj ∈ ⟨Xd⟩ with i > j.

Remark 2.3.6. The lexicographic order is total, reflexive, antisymmetric and tran-

sitive order of the monomials in ⟨Xd⟩. It is not, however, an admissible order,
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because it does not satisfy the last two conditions of the definition 2.3.4. To see

that it isn’t compatible with multiplication, it suffices to look at the free monoid,

generated by two elements, ⟨x1, x2⟩. We have that x2
2 ≥Lex x2 but x2

2x1 ≤Lex x2x1.

We can also define an infinite descending chain in ⟨Xd⟩ by

x2x1 ⪈Lex x
2
2x1 ⪈Lex x

3
2x1 ⪈Lex . . . ,

which proves that the lexicographic order isn’t a well ordering.

Next is an example of admissible ordering of ⟨Xd⟩.

Definition 2.3.7 ( [56]). The degree-lexicographic ordering (or deg-lex ordering) on

⟨Xd⟩ is the ordering of the monomials in ⟨Xd⟩ first by degree (or length), and then

lexicographically.

This is the ordering we shall use, so we will just denote it by ≤ or ≥, without

any subscript. The infinite descending chain we saw in Remark 2.3.6 looks different

in the deg-lex ordering. We have that

x2x1 ≤ x2
2x1 ≤ . . . ,

so it is ascending chain.

Having a way to compare monomials in ⟨Xd⟩ allows us to define leading monomial

of a polynomial in K⟨Xd⟩.

Now that we have established the algebra K⟨X⟩, we can define algebra of invari-

ants for subgroups G of the general linear group GLd(K). The definition is similar

to the commutative case 2.2.1.

Let the group G ≤ GLd(K) act canonically on the vector space over K with

basis Xd and extend that action diagonally to K⟨Xd⟩ by

g
(
f(x1, x2, . . . , xd)

)
= f

(
g(x1), g(x2), . . . , g(xd)

)
, g ∈ G, f ∈ K⟨Xd⟩.
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Definition 2.3.8. Let G be a subgroup of the general linear group GLd(K) and

K⟨Xd⟩ be the free associative algebra. The algebra of G-invariants K⟨Xd⟩G consists

of all polynomials in K⟨Xd⟩ that are fixed by the action of all elements of G:

K⟨Xd⟩G = {f ∈ K⟨Xd⟩ | g(f) = f for all g ∈ G}.

The start of the noncommutative invariant theory was given by Margarete Wolf

[55] in 1936. Her work was primary concerned with the algebra of the symmetric

polynomials in non commuting variables K⟨Xd⟩Sym(d).

The results of Dicks and Formanek and Kharchenko show that unlike the com-

mutative case, where the algebra K[Xd]
G is finitely generated for every finite group

G, in the noncommutative this is only true for very specific groups.

Theorem 2.3.9 ( [17, 33]). Let G be a finite subgroup of GLd(K). The algebra of

invariants K⟨Xd⟩ is finitely generated if and only if G is a cyclic group of scalar

matrices.

This theorem is obtained as a corollary in Koryukin’s paper [35].

Theorem 2.3.10 ( [35]). Let G be an arbitrary (possibly infinite) subgroup of the

matrix group GLd(K). Let KYm be a minimal (with respect to inclusion) vector

subspace of Xd such that K⟨Xd⟩G ⊆ K⟨Ym⟩. Then K⟨Xd⟩G is finitely generated if

and only if G acts on KYm as a finite cyclic group of scalar matrices.

We will return to Koryuikin’s paper [35] shortly as it is central to our work and

results.

Next is the analogue of Chevalley-Shephard-Todd theorem 2.2.12.

Theorem 2.3.11 ( [32, 36]). The algebra K⟨Xd⟩G is free for any subgroup G of

GLd(K) and any field K.

Theorem 2.3.12 ( [32]). For finite subgroups G of GLd(K), there exists a Ga-

lois correspondence between the free subalgebras of K⟨Xd⟩, containing the algebra

of invariants K⟨Xd⟩G, and the subgroups of G. The subalgebra F of K⟨Xd⟩ with

K⟨Xd⟩G ⊆ F is free if and only if F = K⟨Xd⟩H for a subgroup H of G.
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Subalgebras of free algebras are not necessarily free, and here are two examples

of that.

Example 2.3.13 ( [15]). Let K be a field and K[x] be the polynomial algebra in

one variable. It is free, but the subalgebra K[x2, x3], generated by x2 and x3, is not.

Proposition 2.3.14 ( [15]). Let A be a free associative algebra. If I is any non-zero

ideal of A, such that the subalgebra B, generated by I is not equal to A, then B is

not free.

Very similar result is true for finitely generated algebras. A subalgebra of a

finitely generated algebra need not be finitely generated. This is true even for

commutative algebras. Here’s an example of that:

Example 2.3.15. Let K be a field and K[x, y] be the polynomial algebra in two

commuting variables x and y. It is immediate that this is a finitely generated

algebra by it’s definition. Consider the subalgebra K[x, xy, xy2, . . . ]. It is not finitely

generated.

Finally, Molien’s formula 2.2.16 has a direct analogue in the noncommutative

case. It was proved by Dicks and Formanek [17] in the same paper as Theorem

2.3.9.

Theorem 2.3.16 ( [17]). If G ⊆ GLd(K) is a finite group and the field K has

characteristic 0, then the Hilbert series can be calculated by

H
(
K⟨Xd⟩G, t

)
=

1

|G|
∑
g∈G

1

1− tr(g)t
.

2.4. Koryukin’s results

This section is devoted to Koryukin’s paper [35]. We already saw the importance

of it in Theorem 2.3.10. We will now delve into a comprehensive examination of all

the results.

In the paper [35], all considerations are for the tensor algebra F ⟨V ⟩. This algebra

is isomorphic to the free associative algebra.
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Definition 2.4.1. Let A be a set of noncommutative polynomials in the free as-

sociative algebra F ⟨Xd⟩. The least, with respect to inclusion, subspace of FXd,

containing A, is called the support space of A.

Lemma 2.4.2 (Koryukin’s Lemma 1). If a set of polynomials in the free associative

algebra F ⟨Xd⟩ is invariant relative to the action of a group G ≤ GLd(F ), meaning

AG = A, then the support space of A is also invariant under the action of G.

Definition 2.4.3. Let M ⊆ ⟨Xd⟩ be a set of monomials, A ⊆ K⟨Xd⟩ be a set of

polynomials in d noncommuting variables and xi ∈ {x1, . . . , xd} be a letter. We

say that xi has an occurance in M (in A), if xi is used in a monomial in M (in the

expression of a polynomial in A). We say that a sequence of letters xi1 . . . , xin , . . . is

compatible with M (with A), if there is at least one monomial of the form xi1 . . . xin

in M (a monomial of the form xi1 . . . xin is used in the expression of a polynomial in

A).

Definition 2.4.4. Let the symmetric group Sym(n) acts on the homogeneous com-

ponent of ⟨Xd⟩ of order n (that is the monomials of degree n) by the formula

(y1 . . . yn) ◦ σ = yσ−1(1) . . . yσ−1(n).

This action is called S-action.

It is important to note that this action is not the same as we defined in the

beginning of 2.2 and extended to noncommutative algebras in 2.3.8. This action is

not on the elements of the algebra itself, but rather the position of said elements.

For example, consider the monomial x1x2x1 ∈ ⟨x1, x2⟩ and let σ ∈ Sym(3) be the

permutation (12). Then

x1x2x
(12)
1 = x2x1x2

is the usual action, but the S−action of (12) is

x1x2x1 ◦ (12) = x2x1x1.
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Lemma 2.4.5 (Koryukin’s Lemma 2). Let M ⊆ ⟨Xd⟩ be a finite set of monomi-

als. If the multiplicative closure of M is closed under the S-action of the sym-

metric group on the homogeneous components, then any infinite sequence of letters

xj1 , . . . , xjn , . . . , having an occurance in M , is compatible with M .

Lemma 2.4.6 (Koryukin’s Lemma 3). Let R be finitely generated algebra, R =

K⟨f1, . . . , fn⟩ with f1, . . . , fn ∈ K⟨Xd⟩. If R is closed under the S-action of symmet-

ric groups, then any infinite sequence of letters xj1 , . . . , xjn , . . . having an occurrence

in the set of generators f1, . . . , fn, is compatible with it.

Definition 2.4.7. Let V be a vector space and φ ∈ HomV be an automorphism.

We call φ semisimple, if it is diagonalizable. It is called scalar, if it’s matrix is scalar

in a basis of V (meaning it’s diagonizable and it’s eigenvalues are all equal).

Lemma 2.4.8 (Koryukin’s Lemma 4). Let V be a finite-dimensional vector space

over F - algebraically closed field, and g ∈ HomV be an automorphism. If g is

not scalar, there exists a basis x1, x2, . . . , xn of V and an infinite letter sequence (of

elements of X) which is not compatible with the free associative algebra F ⟨X⟩g of

the invariants of g.

The next formulated Lemma in [35] is the following:

Lemma 5. Let K be extension of a field F , G a group of automorphisms of V over

F , W = V ⊗F K. Then the algebra F ⟨V ⟩G is finitely generated if and only if the

algebra F ⟨W ⟩G is finitely generated.

Instead of the tensor product W = V ⊗F K, since V ∼= F d, we have that

W = V ⊗F K ∼= Kn (see, for example, [20], page 363).

With said remarks, Lemma 5 becomes:

Lemma 2.4.9 (Koryukin’s Lemma 5). Let K be an extension of the field F , G ≤

GLd(F ), V = FXd and W = KYd. Then the algebra F ⟨Xd⟩G is finitely generated if

and only if K⟨Yd⟩G is finitely generated.

Theorem 2.4.10 ( [35]). Let G be an arbitrary (possibly infinite) subgroup of the

matrix group GLd(K). Let KYm be a minimal (with respect to inclusion) vector
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subspace of Xd such that K⟨Xd⟩G ⊆ K⟨Ym⟩. Then K⟨Xd⟩G is finitely generated if

and only if G acts on KYm as a finite cyclic group of scalar matrices.

Definition 2.4.11. Let GLd(K) be the matrix group and G ≤ GLd(K) its subgroup.

G is called almost special group, if the index [G : SLd(K)] of G over the group of

special matrices is finite.

Corollary 2.4.12 ( [35]). Let G ≤ GLd(K) be an almost special group. If the algebra

K⟨Xd⟩G is finitely generated, then G is a finite cyclic group of scalar matrices.

Remark 2.4.13. Dicks - Formanek - Kharchenko’s Theorem 2.3.9 follows directly

from Corollary 2.4.12 by applying it to a finite group G.

Definition 2.4.14. [30] Let G be a group and F be a field. A representation of

G over F is a homomorphism

ρ : G → GLn(F )

from G to the general linear group of order n for some n ∈ N.

Definition 2.4.15. [30] Let ρ : G → GLn(F ) be a representation. We say that ρ

is irreducible, if ρ has no nontrivial subrepresentation. A group is called irreducible,

if it has no reducible representation.

It is clear that if G is an irreducible group of matrices, it has no invariant eigen

subspaces.

Another Corollary of Theorem 2.4.10 is:

Corollary 2.4.16 ( [35]). Let G ≤ GLn(K) be an irreducible group. Then the

algebra of G− invariants K⟨Xd⟩G is either trivial, or not finitely generated.

Definition 2.4.17. The algebra K⟨Xd⟩, together with the S-action of the symmet-

ric group on the homogeneous components, is called S-algebra and is denoted by

(K⟨Xd⟩, ◦).

If F is a homogeneous subalgebra (ideal) of K⟨Xd⟩, closed under the S-action

of Sym(n) on the homogeneous components of F , then F is called a S−subalgebra
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(S-ideal). If F is S−(sub)algebra, it is called finitely generated S-algebra, if there

exists a finite subset W ⊆ F , such that the support space of W is F .

The action of Sym(n) on (K⟨Xd⟩)(n), the homogeneous component of degree n

of K⟨Xd⟩ and the action of G ≤ GLd(K) on K⟨Xd⟩ commute and
(
K⟨Xd⟩G, ◦

)
is a

S-algebra.

The second part of Koryukin’s paper answers the question if
(
K⟨Xd⟩G, ◦

)
is

finitely generated as a S-algebra for reductive groups G.

Definition 2.4.18. [40] If G ≤ GLn(K), G is called reductive, if all its rational

representations are completely reducible.

Lemma 2.4.19 (Highman’s Lemma [24]). Let Xd be a finite set of letters and

w1, w2, . . . , be an infinite sequence of words in ⟨Xd⟩. There exists a pair of natural

numbers i, j ∈ N, i < j and the word wi is a subsequence of the word wj (meaning

wi is obtained from wj by omitting some letters).

Theorem 2.4.20 (Koryukin’s Theorem 2, [35]). Let R = (K⟨Xd⟩, ◦) be a S-algebra.

Any increasing sequence of S-ideals I1 ⊆ I2 ⊆ . . . in R stabilizes.

Definition 2.4.21. Let R be a S-algebra, D a S-subalgebra of R and f1, . . . , fm

homogeneous elements of D. The S-ideal ID⟨f1, . . . , fm⟩ is the minimal homogeneous

S-ideal of D, which contains f1, . . . , fm.

If G is a fixed reductive group and h ∈ K⟨Xd⟩, denote by Mh the minimal (by

inclusion) vector space, containing h and invariant to G (meaning Mh has a basis

{hg | g ∈ G}. Denote by Nh the subspace of Mh wih basis {hg − h | g ∈ G}. Nh has

a codimension either 0 or 1. That means either Mh = Nh or (by reductivity) there

exist h∗ ∈ MG
h , such that Mh = Kh∗ +Nh. In either case, by reductivity 1,

h = h∗ + h′, h∗ ∈ MG
h , h

′ ∈ Nh. (2.5)

1The theory of reductive groups is, by nature, algebraically-geometrical. In order to see why the
decomposition is true, we need to go more deeply in a theory, which is for the most part, beyond
the scope of the thesis. It is recommended to check the literature on that topic, for example [40,51].
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Lemma 2.4.22 (Koyukin’s Lemma 6). Let (K⟨Xd⟩, ◦) be a S-algebra and G a

reductive group. Let f1, . . . , fm be homogeneous elements of the S-algebra of G-

invariants K⟨Xd⟩G. Then

K⟨Xd⟩G ∩ IK⟨Xd⟩⟨f1, . . . , fm⟩ = IK⟨Xd⟩G⟨f1, . . . , fm⟩.

Lemma 2.4.23 (Koryukin’s Lemma 7). Let (K⟨Xd⟩, ◦) be a S-algebra and R be its

S-subalgebra. Let f1, . . . , fm be homogeneous elements of R and R = IR⟨f1, . . . , fm⟩.

Then R = K⟨f1, . . . , fm⟩.

The last two lemmas easily prove the main result:

Theorem 2.4.24 (Koryukin’s Theorem 3). Let K be any field and G ≤ GLd(K)

be a reductive group. Then, the S-algebra of invariants
(
K⟨Xd⟩G, ◦

)
, is finitely

generated.

This theorem is the main motivation behind our paper [10]. The following ques-

tion immediately follows from it:

Problem 2.4.25. Let G be a fixed reductive subgroup of the general linear group

GLd(K). Find a finite generating set for the S-algebra
(
K⟨Xd⟩G, ◦

)
.

We will answer it in the case of G being the symmetric group Sym(d) in Section

3.1.

2.5. The results of Margarete Wolf on symmetric

noncommutative polynomials

Just like in the commutative case 2.3, the symmetric group Sym(d) acts on the free

associative algebra K⟨Xd⟩ by

σ : f(x1, x2, . . . , xd) 7→ f
(
xσ(1), xσ(2), . . . , xσ(d)

)
(2.6)

for all σ ∈ Sym(d) and f ∈ K⟨Xd⟩.
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Definition 2.5.1. A noncommutative polynomial f ∈ K⟨Xd⟩ is said to be symmet-

ric, if f remains unchanged under the action 2.6 of all the elements σ ∈ Sym(d).

As before, we will use the deg-lex 2.3.7 ordering of the monomials in ⟨Xd⟩. If

f ∈ K⟨Xd⟩ is a noncommutative polynomial, the deg-lex order allows us to define

leading monomial of f , and we denote it by f . The deg-lex ordering is admissible,

so for any two ponynomails f, g ∈ K⟨Xd⟩, the leading monomial fg of their product

fg is the product fg of their leading monomials.

The action of Sym(d) on the set of monomials ⟨Xd⟩ splits into orbits. If f ∈ ⟨Xd⟩

is a monomial, we adopt the standart notation

∑
f (2.7)

to be the summ of all monomials, obtainable by the action of Sym(d) on f . That

means we take sum over all the permutations σ ∈ Sym(d) \ St(f), which are not

in the stabilizer St(f) of the monomial f under the action of Sym(d). If we fix

a monomial h in each orbit, then the set
∑

h forms a basis for the algebra of

invariants K⟨Xd⟩Sym(d). In her paper [55], Margarete Wolf calls such polynomials

simple symmetric polynomials. She also provides a way to count the number of such

polynomials.

Margarete Wolf also provided a table with the number of simple symmetric

polynomials of degrees up to 8:
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Degree
N

um
be

r
of

di
st

in
ct

el
em

en
ts

in
a

te
rm

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 3 7 15 31 63 127

3 1 6 25 90 301 966

4 1 10 65 350 1701

5 1 15 140 1050

6 1 21 266

7 1 28

8 1

Total 1 2 5 15 52 203 877 4140

Theorem 2.5.2 (Margarete Wolf’s Main Theorem [55]).

(i) The algebra of invariants K⟨Xd⟩Sym(d) of the symmetric group of order d (the

algebra of symmetric noncommutative polynomials in d variables) is free and

has a system of homogeneous (simple symmetric polynomials) generators, such

that of each degree there’s atleast one generator.

(ii) Each free generating system of K⟨Xd⟩Sym(d) has the same number of generators

of each degree.

(iii) If {ei | i ∈ I} is a free generating set of simple symmetric polynomials for

the algebra K⟨Xd⟩Sym(d) and f ∈ K⟨Xd⟩Sym(d) is symmetric noncommutative

polynomial,

f =
∑

βjei1 . . . eik , βj ∈ K,

then the coefficients βj in that representation are uniquely determined lin-

ear combinations with integer coefficients of the coefficients of the polynomial

f(x1, . . . , xd).

In [55] are also included the polynomials in the generating set for lower degrees.

If we denote by H
(j)
k to be the j-th (in the deg-lex ordering) simple symmetric

generating polynomial of degree k, then
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H1 =
∑

x1,

H2 =
∑

x1x2,

H
(1)
3 =

∑
x1x

2
2, H

(1)
3 =

∑
x1x2x3,

H
(1)
4 =

∑
x1x2x1x3, H

(2)
4 =

∑
x1x

3
2, H

(3)
4 =

∑
x1x

2
2x3,

H
(4)
4 =

∑
x1x2x3x2, H

(5)
4 =

∑
x1x2x

2
3, H

(6)
4 =

∑
x1x2x3x4.

Margarete Wolf also calculated the number of free generators H
(j)
k for degrees

up to 6:

Degree

N
um

be
r

of
di

st
in

ct
el

em
en

ts
in

a
te

rm 1 2 3 4 5 6

1 1

2 1 1 1 1 1

3 1 4 12 33

4 1 8 44

5 1 13

6 1

Total 1 1 2 6 22 92

Her proof of the following Theorem makes use of [38].

Theorem 2.5.3 ( [55]). The algebra of the symmetric noncommutative polynomi-

als in two variables K⟨X2⟩Sym(2) has exactly one generator of each degree in any

homogeneous free generating set.

The results of Margarete Wolf’s paper [55] were generalized more than 30 years

later by Bergman and Cohn [9] in 1969. Different aspects of the theory of symmetric

function were studied in [1, 2, 3, 4, 5, 8, 13,16,21,22,29,31,34,46,47,52,53].
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Noncommutative symmetric

polynomials

3.1. Symmetric noncommutative polynomials as an

S-algebra

This section is based on our paper [10]. In it we describe our results about the

finite generation of the S-algebra of the symmetric noncommutative polynomials in

d variables
(
K⟨Xd⟩Sym(d), ◦

)
. More specifically, we give answer to question 2.4.25,

which was posed at the end of Section 2.4 by constructing a finite generation set.

Definition 3.1.1 ( [6]). Let n ∈ N+ be a non-zero integer. An (integer) partition

of n is a k-tuple λ = (λ1, . . . , λk) of non-zero integers λ1, . . . , λk, such that

n = λ1 + λ2 + . . . λk and λ1 ≥ λ2 ≥ · · · ≥ λk.

If λ is a partition of n, we denote it by λ ⊢ n.

Recall from the previous section 2.5 that the action of the symmetric group

Sym(d) splits the set of monomials ⟨Xd⟩ into orbit and the homogeneous component(
K⟨Xd⟩Sym(d), ◦

)(n)
of degree n of the algebra of symmetric polynomials, as a vector

space, has a basis
∑

v, where v ∈ ⟨Xd⟩(n). We can chose such an element in the

27
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orbit G(v), so that

degx1
(u) ≥ degx2

(u) ≥ · · · ≥ degxd
(u)

and
∑

u =
∑

v. We attach to it the partition λ =
(
degx1

(u), . . . , degx1
(u)
)
.

The S-action 2.4.4 ◦ allows us to further improve how u looks. There exists a

permutation σ ∈ Sym(n), such that

∑
u =

∑
xλ1
1 xλ2

2 . . . xλd
d ◦ σ.

We denote pλ =
∑

xλ1
1 . . . xλd

d and so

∑
u =

∑
pλ ◦ σ.

For partition λ = (n), we call

p(n) =
∑

xn
1 + xn

2 + · · ·+ xn
d , n = 1, 2, . . .

the (n-th) power sum and for λ = (1n), n ≤ d,

p(1n) =
∑

σ∈Sym(d)

xσ(1)xσ(2) . . . xσ(n)

are the noncommutative elementary symmetric polynomials. The next result is true

for field K of any characteristic.

Lemma 3.1.2. Let K be any field. The S-algebra of the symmetric noncommutative

polynomials in d variables is generated by the power sums p(n), n = 1, 2, . . . .

Lemma 3.1.2 helps us shrink the generating set of K⟨Xd⟩Sym(d), but still leaves

us with an infinite generating set {p(n) | n ∈ N}. In order to shrink it further,

we need a way to obtain all the noncommutative power summs from a finite set.

Recall that in the commutative case, this is done by the Newton identities (see, for

example, [50], or the Wikipedia page 1). In K[Xd]
Sym(d), if we denote e1, . . . , ed to

1https://en.wikipedia.org/wiki/Newton%27s_identities

https://en.wikipedia.org/wiki/Newton%27s_identities
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be the elementary symmetric polynomials 2.4, and pi, i = 1, 2, . . . , to be the power

summs, we have that

kek =
k∑

i=1

(−1)i−1ek−ipi, k ≤ d,

0 =
k∑

i=k−n

(−1)i−1ek−ipi, k > d.

(3.1)

Before we introduce our noncommutative analogue for Newton’s identities, recall

that a riffle shuffle2 is a permutation, originating in shuffling playing cards, where a

deck of cards is split into two decks and then the two smaller decks are interleaved.

Similarly, we define

Definition 3.1.3. For k ≤ d, we denote by Shi, i = 1, 2, . . . , k the set, consisting of

all the “shuffle” permutations σ ∈ Sym(k), meaning permutations σ, such that σ−1

fix the order of 1, 2, . . . , k − i and the order of k − i+ 1, k − i+ 2, . . . , k. For k > d,

Shi, i = 0, . . . , d consists of all the permutations σ ∈ Sym(k), which fix d+1, . . . , k,

and σ−1 preserves both the orders of 1, 2, . . . , d− i and d− i+ 1, d− i+ 2, . . . , d.

Recall that we defined S-action in 2.4.4 by σ ∈ Sym(n) to be

y1y2 . . . yn ◦ σ = yσ−1(1)σ = yσ−1(2) . . . σ = yσ−1(n) for yi ∈ Xd, i = 1, . . . , n.

The right action was by acting on the positions with σ−1 and that’s why we put

restraints on σ−1 in definition 3.1.3.

Lemma 3.1.4. In the free associative S-algebra
(
K⟨Xd⟩, ◦

)
, we have the following

two identities:

k!p(k) + (−1)kkp(1k) +
k−1∑
i=1

(−1)k−ii!

(
p(1k−i)p(i) ◦

∑
σ∈Shi

σ

)
= 0, k ≤ d,

and

d!p(k) + (−1)ddp(1d)p(k−d) +
d−1∑
i=1

(−1)d−ii!

(
p(1d−i)p(k−d+i) ◦

∑
σ∈Shi

σ

)
= 0

2https://en.wikipedia.org/wiki/Riffle_shuffle_permutation

https://en.wikipedia.org/wiki/Riffle_shuffle_permutation
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for k > d.

With the two lemmas 3.1.2 and 3.1.4, we can finally give the promised answer

to 2.4.25 in the case of G being the symmetric group of order d.

Theorem 3.1.5. For fields K of characteristic either 0 or greater than the number of

variables, the S-algebra of the symmetric noncommutative polynomials in d variables(
K⟨Xd⟩Sym(d), ◦

)
is freely generated by the elementary symmetric polynomials p(1i),

i = 1, 2, . . . , d.

In our paper we included several proofs for the special case of d = 2.

Theorem 3.1.6. Let K be a field with characteristic char(K) ̸= 2. The S-algebra(
K⟨X2⟩Sym(2), ◦

)
of the symmetric noncommutative polynomials in two variables is

finitely generated.

At the end of our paper [10], we formulated the following conjecture:

Conjecture 3.1.7. Let charK = p ≤ d. Then the S-algebra of the symmetric non-

commutative polynomials in d variables
(
K⟨Xd⟩Sym(d), ◦

)
is not finitely generated.

We gave prove to it in our paper [11] and will see it in the next section 3.2.

3.2. Infinite generation and minimal generating set

for the S-algebra of noncommutative symmet-

ric polynomials in the case p ≤ d

This section contains the results of our paper [11], where goal is to prove Conjecture

3.1.7 and to go further by constructing a minimal generating set for the S-algebra

(K⟨Xd⟩Sym(d), ◦).

Remark 3.2.1. If d′ > d, the projection K⟨Xd′⟩ → K⟨Xd⟩ which maps the extra

generators xd+1, . . . , xd′ to 0 induces a surjective map between the S-algebras of

the symmetric polynomials. Because of that, it is enough to only prove that the

S-algebra of the symmetric noncommutative polynomials
(
K⟨Xd⟩Sym(d), ◦

)
is not

finitely genereated for char(K) = p = d only. So we assume that p = d.
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We start by introducing some definitions that we will need in order to establish

our goal.

Definition 3.2.2 ( [37]). Let K be a field and A be an unitary associative algebra

over K. We say that the algebra A is augmented, if there is a homomorphism

of algebras ε : A → K, called augmentation map. The kernel Ker(ε) is called

augmented ideal.

Example 3.2.3 ( [37]). If G is a group and K[G] is the group algebra (the free

module over K with basis G), then the map

ε :
∑

rigi 7→
∑

ri

is augmentation map and its kernel is augmentation ideal.

Example 3.2.4. If A is graded algebra over a field K, A = A0 ⊕ A1⊕ and A0 =

K, the homomorphism ε : A → K which maps an element into its homogeneous

component of degree 0 is augmentation.

The last example can be applied to the associative algebra K⟨Xd⟩ and in that

case a polynomial f ∈ K⟨Xd⟩ maps to its constant term,

f =
∑

asx
j1
i1
. . . xjs

is
7→ a0.

This can be used in the case of S-algebra
(
K⟨Xd⟩, ◦

)
and that’s exactly how we will

use it.

If A is augmented algebra and we denote I+ to be the augmentation ideal of A,

we will also be interested in studying I+/(I+)2. In [37] the authors call I+/(I+)2

the space of indecomposables of A.

Example 3.2.5. Let G be a group and G′ = [G,G] be its commutator subgroup.

Let I+ be the augmentation ideal of the integral group ring Z[G]. Then

I+/(I+)2 ∼= G/G′.
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The group G/G′ is called the abealization of G.

Md :=
(
K⟨Xd⟩Sym(d), ◦

)+
/ ◦

(((
K⟨Xd⟩Sym(d), ◦

)+)2)
denotes the factor of the augmentation ideal by it’s square. We have that

Md =
⊕
n∈N

M
(n)
d

and thus Md is naturally graded. Each of its homogeneous components M
(n)
d is a

Sym(n)-module and so there is a natural S-action ◦ on M .

Lemma 3.2.6. The vector space Md is generated both as a ◦-module and vector

space, by the images of the power sums

pi = xi
1 + · · ·+ xi

d for i = 1, 2, . . . .

Note that this doesn’t imply the infinite generateness of
(
K⟨Xd⟩Sym(d), ◦

)
as some

power sums might be projected to zero. Theorem 3.1.5 shows that for p > d the

power sums pi for i > d are projected to 0.

We now consider the abelianization map π : K⟨Xd⟩ → K[Xd] and the map it

induces on the subalgebra of noncommutative polynomials

π : K⟨Xd⟩Sym(d) → π
(
K⟨Xd⟩Sym(d)

)
.

Lemma 3.2.7. The abelization map π sends a generating set of the S-algebra(
K⟨Xd⟩Sym(d), ◦

)
to a generating set of its image - the commutative algebra

π
((

K⟨Xd⟩Sym(d), ◦
))

⊂ K[Xd]
Sym(d).

We have that ∑
u =

∑
σ∈Sym(d)\Hu

ug =
∑

σ∈Sym(d)\Hu

g(u).

We need to be careful where u lies, as the stabilizer of u in K[Xd] and K⟨Xd⟩ is

different.
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Lemma 3.2.8. For any monomial u ∈ K⟨Xd⟩, there exist a integer constant cu ∈ N,

such that

π
(∑

u
)
= cu

(∑
π(u)

)
.

In the case of p = d, cu is 0 if and only if π(u) = xs
1x

s
2 . . . x

s
p for some s ≥ 1.

Lemma 3.2.9. Let char(K) = p = d. Then, the commutative algebra

π
(
K⟨Xd⟩Sym(d)

)
⊂ K[Xd]

Sym(d) = K[e1, . . . , ed]

is spanned (as a K-vector space) by all the products of elementary symmetric poly-

nomials em1
1 . . . emd

d , except all the powers emp of ep, m ≥ 1.

We can apply all the Lemmas to prove the main result we stated in the beginning

of the section.

Theorem 3.2.10. The S-algebra of the symmetric noncommutative polynomials(
K⟨Xd⟩Sym(d), ◦

)
is not finite generated for fields K of non-zero characteristic, less

or equal to the number of variables d.

Example 3.2.11. We will show that p3 does not belong to the S-algebra F of(
K⟨X2⟩Sym(2), ◦

)
, generated by the first two power sums p1 and p2.

Theorem 3.2.12. If 0 < p = char(K) ≤ d, the set {pi | i = 1, 2, . . . } of all the

power sums is a minimal generating set for the S-algebra
(
K⟨Xd⟩Sym(d), ◦

)
.
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Noncommutative alternating

polynomials

This section contains yet unpublished results. Our goal here is to extend our results

for symmetric polynomials to alternative ones.

Lemma 4.0.1. Any noncommutative alternative polynomial f ∈ K⟨Xd⟩Alt(d) can

be written as f = f1 + f2, where f1 is symmetric polynomial in d non commuting

variables and f2 is alternating, i.e. f2 changes sign whenever we exchange any two

variables.

If u ∈ ⟨X3⟩ is a monomial in 3 noncommuting variables, by
∑
Alt

u we denote the

alternating sum ∑
σ∈Alt(3)

(−1)σuσ.

It is obvious that every alternating polynomial can be expressed in terms of such

sums. If u ∈ ⟨X3⟩ is a monomial of degree n, u = xµ1

i1
i2

µ2 . . . ik
µk , where µ1 + µ2 +

. . . µk = n and i1, i2, . . . , ik ∈ 1, 2, 3, there exists a permutation ρ ∈ Sym(d), such

that u = xλ1
1 xλ2

2 xλ3
3 ◦ ρ, where λ1 + λ2 + λ3 = n, λ1 ≥ λ2 ≥ λ3 and

∑
Alt

u ◦ ρ =
∑

σ∈Alt(3)

(−1)σxλ1

σ(1)x
λ2

σ(2)x
λ3

σ(3) ◦ ρ.

Note that he leading monomial of any alternating polynomial (with Koryukin’s

S− action) is either xλ1
1 xλ2

2 or xλ1
1 xλ2

2 xλ3
3 , where λ1 ≥ λ2 ≥ 1 and λ1 ≥ λ2 ≥ λ3 ≥ 1,

34
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respectively.

If alternating polynomial has a leading monomial of the form
∑

Alt(3)

xλ1
1 xλ2

2 xλ3
3 for

which λ1 ≥ λ2 ≥ λ3 ≥ 1, then

∑
Alt(3)

xλ1
1 xλ2

2 xλ3
3 =

1

3
(−1)n−1

( n∑
i=1

∑
k+s+t=i

k≤λ1,s≤λ2,t≤λ3

∑
τ∈Shk,s,t

(−1)n−ixλ1−k
1 xλ2−s

2 xλ3−t
3 pi ◦ τ

)
.

(4.1)

where the sum runs over all the shuffles of k z′s into the x1’s, s z’s into the x2’s

and t z′s into the x3’s.

Remark 4.0.2. The terms for i = n and i = n− 1 in (4.1) are equal to 0. That is

obvious for i = n and not hard to see for i = n− 1.

Lemma 4.0.3. The algebra K⟨X⟩Alt(3) is generated, as a S-algebra, by the elemen-

tary symmetric polynomials e1, e2, e3 and the polynomials
∑
Alt

xλ1
1 xλ2

2 .

We denote sk = Σ
Alt(3)

xk−1
1 x2.

Lemma 4.0.4. The algebra K⟨X⟩Alt(3) is generated, as a S-algebra by the elemen-

tary symmetric polynomials e1, e2 and e3, as well as the alternating polynomials

sk =
∑
Alt

xk−1
1 x2, k = 2, 3, . . . .

The final step is reducing the generating set sk, k = 2, 3, . . . to a finite set. For

this, observe that for σ = (n, n− 1)(1, n− 2), we have that

(p1sn−1) ◦ σ + pn−2s2 + pn−3s3 =

= 2sn +
∑
Alt

xn−2
1 x2x3 +

∑
Alt

xn−3
1 x2

2x3 −
∑
Alt

xn−3
1 x2x3x1.

From this we obtain

sn =
1

2

(
(p1sn−1) ◦ σ + pn−2s2 + pn−3s3 −

∑
Alt

xn−3
1 x2

2x3

−
∑
Alt

xn−2
1 x2x3 ◦

(
id−(n− 2, n− 1, n)

))
.

(4.2)
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Since both
∑
Alt

xn−3
1 x2

2x3 and
∑
Alt

xn−2
1 x2x3 are obtained by polynomials of lower degree

(see 4.1), that gives us a finite generating set.

Theorem 4.0.5. Let char(K) = 0 or char(K) = p > 3. Then the S-algebra of the

alternative polynomials in 3 noncommuting variables
(
K⟨X3⟩Alt(3), ◦

)
is generated as

an S-algebra by the elementary symmetric polynomials p1i , i = 1, 2, 3, together with

the alternating polynomials s2 and s3.

Theorem 4.0.6. The S-algebra
(
K⟨X3⟩Alt(3), ◦

)
is not finitely generated for fields

K of characteristic 2 or 3.
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Conclusion

5.1. Main contributions

1. For a field K of arbitrary characteristic, it is proved that the S-algebra of the

symmetric noncommutative polynomials in d variables has a generating set,

consisting of the power sums pi =
d∑

k=1

xi
k for i = 1, 2, . . . .

2. A noncommutative analogue for the Newton’s identities is proved in the free

associative S-algebra
(
K⟨Xd⟩, ◦

)
. We relate the power sums pi to the non-

commutative elementary symmetric polynomials e(1i) =
∑

σ∈Sym(d)

xσ(1) . . . xσ(i),

for i ≤ d.

3. A noncommutative analogue for the fundamental theorem of symmetric poly-

nomials is proven. We prove that the elementary noncommutative polynomials

ei, i = 1, . . . , d, generate the S-algebra
(
K⟨Xd⟩Sym(d), ◦

)
for fields of charac-

teristic 0 or greater than the number of variables d.

4. The question about infinite generation of
(
K⟨Xd⟩Sym(d), ◦

)
when the field K

has a positive characteristic p, less or equal to the number of variables, is

reduced to the case when the characteristic is equal to the number of variables.

5. It is proven that Md :=
(
K⟨Xd⟩Sym(d), ◦

)+
/ ◦

(((
K⟨Xd⟩Sym(d), ◦

)+)2), ob-

tained by the factoring the augmentation ideal of the symmetric noncommu-

tative S-algebra by its square, is spanned both as a ◦-module and as a vector

37
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space, by the power sums pi for i = 1, 2, . . . .

6. We prove that the abealization map π : K⟨Xd⟩ → K[Xd] sends a gen-

erating set of the S-algebra of the noncommutative symmetric polynomi-

als
(
K⟨Xd⟩Sym(d), ◦

)
to generating set of its image, the commutative algebra

π
((

K⟨Xd⟩Sym(d), ◦
))

⊂ K[Xd]
Sym(d).

7. For char(K) = p = d we prove that π
((

K⟨Xd⟩Sym(d), ◦
))

is spanned by all

the products em1
1 . . . emd

d of the elementary symmetric polynomials, except the

powers emp of the p-th power sum ep.

8. We prove that for d ≥ char(K) = p > 0, the S-algebra of the noncommutative

symmetric polynomials
(
K⟨Xd⟩Sym(d), ◦

)
is not finitely generated.

9. In the same setting for char(K) = p = d we prove that the power sums {pi | i =

1, 2, . . . } are a minimal generating set for the S-algebra
(
K⟨Xd⟩Sym(d), ◦

)
. This

is done by proving that the power sum pn does not belong to the S-subalgebra

of
(
K⟨Xd⟩Sym(d), ◦

)
, generated by the power sums p1, . . . , pn−1.

5.2. Publications, related to the thesis

1. Boumova, S.; Drensky, V.; Dzhundrekov, D.; and Kassabov, M. (2022) “Sym-

metric polynomials in free associative algebras”, Turkish Journal of Mathemat-

ics: Vol. 46: No. 5, Article 4. https://doi.org/10.55730/1300-0098.3225

2. Boumova, S.; Drensky, V.; Dzhundrekov, D.; Kassabov, M. (2023) “Symmetric

Polynomials in Free Associative Algebras—II ”. Mathematics 2023, 11, 4817.

https://doi.org/10.3390/math11234817

The results from the above publications, have been presented in the following

talks:

1. “Symmetric polynomials in noncommuting variables”, Spring Science Session

of Faculty of Mathematics and Informatics, Sofia, March 27, 2021.
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2. “On the symmetric polynomials in noncommuting variables”, National Seminar

on Coding Theory “Acad. Stefan Dodunekov”, November 7-11, 2021.

3. “Symmetric polynomials in d noncommuting variables”, Annual Seminar on

Algebra and Geometry, November 14-17, 2021.

4. “ Symmetric polynomials in free associative algebras”, Spring Science Session

of Faculty of Mathematics and Informatics, Sofia, March 26, 2022.

5. “Symmetric polynomials in free associative algebras”, Annual Seminar on Al-

gebra and Geometry, August 28-September 2, 2021.

6. “Symmetric polynomials in free associative algebras (Part 2)”, National Semi-

nar on Coding Theory “Acad. Stefan Dodunekov”, Arbanasi, November 10-13,

2022.

7. “Alternative polynomials in free associative algebras”, Spring Science Session

of Faculty of Mathematics and Informatics, Sofia, March 25, 2023.
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