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Introduction  

 

 

Game theory is a concept that scientists can harness to predict how rational 

people will make decisions that help them make effective, data-driven decisions in 

strategic circumstances.  

Data scientists can apply game theory based on the type of decision problem they 

are dealing with: https://www.dezyre.com/article/is-game-theory-important-for-data -

scientists/139   

Game modeling and big data modeling find common points of joint applications 

in geo-sciences and geo-data. The author (Bruce, 2013) outlines mechanisms for 

applying game theory models to big data analytics and decision making in geosciences 

and geodata. The author proposes the use of strategic, competitive game theory models 

for the purpose of spectral band clustering using hyperspectral imagery. The proposed 

system uses conflict data filtering based on mutual entropy and the interaction process 

of multiple group strategies in a conflict environment, which aims to maximize the 

benefit of multiple groups from the whole system. The proposed system uses the Nash 

equilibrium to find a stabilizing solution to the clustering problem and implements the 

model under the assumption that all players are rational. The author uses the proposed 

group clustering as a component in a multifunction fusion decision (MCDF) system for 

automatic land cover classification with hyperspectral imagery.  

From this point of view, we will consider some different types of games and 

present methodologies for searching for equilibria by solving Riccati equations. 

Through the considered types of games, we show how, under different conditions, an 

equilibrium party can be found in a competitive environment. We use stabilizing 

solutions for the Riccati equations to reach the Nash equilibrium: https://www.igi-

global.com/chapter/applied-game-theory-in-business-analytics/107224   

The first and second chapters of the current thesis project are devoted to finding 

equilibrium in linear quadratic games by creating methods and algorithms for searching 

for stabilizing solutions of the corresponding Riccati equations. These studies could be 

the basis for developing game models with applications in big data analysis (machine 

learning.) Studies in this direction appear when applying the concept of finding optimal 

Nash strategies under the conditions of a classification task (Moy and co-authors, 2023; 

https://www.dezyre.com/article/is-game-theory-important-for-data%20-scientists/139
https://www.dezyre.com/article/is-game-theory-important-for-data%20-scientists/139
https://www.igi-global.com/chapter/applied-game-theory-in-business-analytics/107224
https://www.igi-global.com/chapter/applied-game-theory-in-business-analytics/107224
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Wang et al., 2019). In the first chapter, we consider a linear quadratic stochastic game 

analyzed by Zhu and Zhang, for which we construct an iterative method for finding a 

stabilizing solution of a system of four nonlinear matrix equations.  

The first chapter uses methods, algorithms, and examples from (Ivan Ivanov, 

2012; Ivelin Ivanov, 2016). At the same time, the proposed methods complement the 

research in (Ivelin Ivanov, 2016). In the second chapter we consider antagotistic games 

and game models on positive systems. Methods are proposed for finding a stabilizing 

non-negative solution to the corresponding Riccati equation. The results are published 

in three articles, two of which are indexed in Scopus.  

The authors (Koziarski et al., 2020) and many others analyze the difficulties in 

modeling multiclass and imbalanced big data. The goal in chapter three is to develop a 

data-driven approach to conducting big data classification analysis. We formulate an 

optimization model that searches for the best training set, in a particular sense, for 

models performing classification analysis. To solve the optimization task, we propose 

an algorithm that has been applied to different sets of big data. The results were reported 

at an international conference and supported by two publications indexed in Scopus 

(https://www.scopus.com/authid/detail.uri?authorId=57208207140 ).  

The markings in the abstract retain the numbering and citations, according to the 

text of the PhD Thesis. 

 

 

 

 

 

 

            

  

https://www.scopus.com/authid/detail.uri?authorId=57208207140
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          Chapter One. Linear quadratic differential stochastic games  

 

Linear quadratic games in which Riccati equations are solved in order to reach 

equilibrium parties have been widely studied in the scientific literature. An example of 

such studies can be cited (Azevedo-Perdicoulis, Jank, 2005), (Basar, Olsder, 1999), 

(Broek, Engwerda, Schumacher, 2003), (Engwerda 2005). A major role in the theory is 

given to stochastic differential games, in which Ito's lemma is used, applied to 

differential systems with disturbances in the system state and control (Yu, 2012), (Zhu, 

Zhang, 2013), (Zhu, Zhang, Bin, 2014). The intensive study of the generalized Riccati 

equations is based on their wide applicability – for example, when researching and 

constructing optimal financial portfolios one goes through the solution of an appropriate 

generalized Riccati equation – (Yao, Zhang, Zhou, 2006; Costa, de Paulo 2007; Costa, 

de Oliveira, 2012). 

In this chapter, we introduce the concept of game theory and its use as a decision-

making tool in a competitive situation among players. We search for the equilibrium 

point by searching for a stabilizing solution for a system of two Riccati equations and 

two more additional equations, as derived by the authors in (Zhu, Zhang, 2013). 

The goal in this chapter is to describe and propose methods and algorithms for 

searching for a stabilizing solution to a system of Riccati equations, whose solutions 

lead to finding the equilibrium point in the considered game model. 

 

1.2. Linear Quadratic Differential Stochastic interference games with state and 

control-dependent noise 

 

We consider a linear quadratic stochastic game studied by Zhu and Zhang in 

their paper in (Zhu, Zhang, 2013). The existence of equilibrium in the solution 

terminology of a system of matrix equations is presented by the authors in Theorem 2 

(Zhu, Zhang, 2013). Authors Zhu and Zhang do not present a method or algorithm for 

finding a solution to these equations. We will propose an approach to calculate the 

sought solution. The considered system of Riccati equations seeks a solution that sets 

the Nash equilibria in a stochastic differential game described by Zhu and Zhang. The 

approach proposed here allows one to consider a stochastic differential game with 

different numbers of players. The proposed method does not depend on the number of 

players.  

In this section, we will describe an algorithm published by (Ivelin Ivanov and V. 

Tanov, 2018, (Ivelin Ivanov and V. Tanov, 2018, An Iterative Method for an 

Equilibrium Point of Linear Quadratic Stochastic Differential Games with State and 

Control-Dependent Noise) for finding of the corresponding solution According to Zhu 

and Zhang, the Nash equilibrium is the solution 𝑋1 ,̃ 𝑋2̃ of the following system of two 

coupled nonlinear matrix equations: 

  

𝑅1 (X1, X2):= X1�̅�0  + �̅�0
𝑇
X1 + �̅�1

𝑇
X1�̅�1 + �̅�1  − (X1B1 + �̅�1

𝑇
X1C1)  

                        × (𝑅11 + 𝐶1
𝑇𝑋1𝐶1)

{−1}(𝐵1
𝑇𝑋1 + 𝐶1

𝑇𝑋1�̅�1)   = 0  
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                                    𝐹1 = −(𝑅11 + 𝐶1
𝑇𝑋1𝐶1)

{−1}(𝐵1
𝑇𝑋1 + 𝐶1

𝑇𝑋1�̅�1)      

                                      (𝑅11 + 𝐶1
𝑇𝑋1𝐶1)  > 0                                             (1.4)                              

           𝑅2 (X1, X2) = X2�̃�0  + �̃�0
𝑇
X2 + �̃�1

𝑇
X2�̃�1 + �̅�2     

                  −(X2B2 + �̃�1
𝑇
X2C2) (𝑅22 + 𝐶2

𝑇𝑋2𝐶2)
{−1}(𝐵2

𝑇𝑋2 + 𝐶2
𝑇𝑋2�̃�1)   = 0  

                                            𝐹2 = −(𝑅22 + 𝐶2
𝑇𝑋2𝐶2)

{−1}(𝐵2
𝑇𝑋2 + 𝐶2

𝑇𝑋2�̃�1)   

(𝑅22 + 𝐶2
𝑇𝑋2𝐶2)  > 0      label{H17Eq.10}  (2.4) 

 under notations:   

  �̅�0 = A0  + B2F2,       �̅�1 =   A1  + C2F2 ,  

  �̃�0  = A0  + B1F1,       �̃�1 =   A1  + C1F1 , 

  �̅�1  = Q1  + F2
T𝑅12F2,       �̅�2 =   Q2  + F1

T𝑅21F1. 

  

Moreover,  A0 and A1 are real  nxn matrices, Q1 and Q2 are real symmetric  nxn 

matrices,  B1 and C1 are real nx𝑚1  matrices , B2 and C2 are real  nx𝑚2  matrices, 

𝑅11  and 𝑅21 are real 𝑚1x𝑚1 матрици, and 𝑅12  and 𝑅22 are real  𝑚2x𝑚2 matrices.  

The following definitions are known. Matrix A is said to be stable if all its 

eigenvalues lie in the left half-plane, about the y-axis. We will use the notation X > Y 

or X≥Y if X – Y is a positive definite matrix, i.e., with positive eigenvalues or X – Y is 

a positive semidefinite matrix, i.e. with non-negative eigenvalues.  

We present experimental results that show that the proposed game-theoretic-

algorithmic approach significantly leads to the desired equilibrium. 

 

           1.3. An iterative method  

We construct an iterative algorithm for solving the defined system of nonlinear 

matrix equations and inequalities (1.4). A matrix series of solutions of this system is 

constructed, which converges to a stabilizing solution for two Riccati equations. This 

stabilizing solution leads to finding a Nash equilibrium for the game under 

consideration. We present experimental results that show that the proposed game-

theoretic-algorithmic approach leads to the desired equilibrium.  

 

We write the Riccati equations 𝑅1 (X1, X2) = 0 and  𝑅2 (X1, X2) = 0 as a 

general Riccati equation but with a larger dimension: 

  ℛ(𝑿) =    𝒜0
𝑇𝐗  +  𝐗  𝒜0 +   Π1(𝐗 ) + 𝒬   

  − 𝒮  (𝐗)  [ℜ (𝐗)]{−1}[𝒮 (𝐗)]T = 𝟎                                    (1.5)  

              where 

ℜ (𝐗) = 𝑅 + 𝒞𝑇 𝐗 𝒞 = 𝑑𝑖𝑎𝑔(𝑅11 + 𝐶1
𝑇  𝑋1𝐶1, 𝑅22 + 𝐶2

𝑇 𝑋2𝐶2)  

𝒮  (𝐗) =  𝐗  ℬ +𝒜1 𝑇 𝐗 𝒞   

                                   = diag ( X1B1 + �̅�1
TX1C1, X2B2 + �̃�1

TX2C2) 

 Π1(𝐗 ) =  𝒜1 𝑇 𝐗 𝒜1 = diag ( �̅�1
TX1�̅�1 , �̃�1

TX2 �̃�1 )  

      𝒜0   = diag ( A̅0  , Ã0) ;        𝒜1   = diag ( A̅1  , Ã1) ;   

     ℬ =  diag ( B1  , 𝐵2)  ;            𝒞 =  diag ( C1  , 𝐶2)  ;  

     𝑅 =  diag ( R11  , R22)  ;           𝒬 =  diag ( �̅�1  , �̅�2)  ;  

      𝐗 =  diag ( X1  , 𝑋2)  ; 
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The considered Riccati equation (1.5) is of the same form as equation (1.1). The 

idea implemented here is to use the Lyapunov iteration method (1.3) to the system of 

equations (1.5). For initial matrix we choose X(0) = [ X1
(0), X2

(0)] and calculate 

𝐹1
(0)
= −(𝑅11 + 𝐶1

𝑇𝑋1
(0)
𝐶1)

−1

(𝐵1
𝑇𝑋1

(0)
+ 𝐶1

𝑇𝑋1
(0)
�̅�1)    

�̃�1 =   A1  + C1𝐹1
(0)

  

                       𝐹2
(0)
= −(𝑅22 + 𝐶2

𝑇X2
(0)𝐶2)

−1

(𝐵2
𝑇X2

(0) + 𝐶2
𝑇X2

(0)�̃�1)                     (1.6) 

                         �̅�1 =   A1  + C2𝐹2
(0)

  

𝐹1
(0)
= −(𝑅11 + 𝐶1

𝑇𝑋1
(0)
𝐶1)

−1

(𝐵1
𝑇𝑋1

(0)
+ 𝐶1

𝑇𝑋1
(0)
�̅�1)   

 

We construct the following matrix series редица      {𝐗(𝐤)}𝟎
∞     as follows. 

We assume that the matrix 𝐗(𝐤) is known. We will calculate 𝐗(𝐤+𝟏)  by 

successively calculating: 

          �̃�1 =   A1  + C1𝐹1
(𝑘−1)

 ;           �̅�1 =   A1  + C2𝐹2
(𝑘−1)

      

                        𝒜1 = diag ( A̅1  , Ã1)       

𝒮 (𝐗(𝐤)) =  𝐗(𝐤) ℬ +𝒜1 𝑇𝐗(𝐤)𝒞    

 ℱ𝐗(𝐤)= [ℜ (𝐗(𝐤))]
−1
[𝒮 (𝐗(𝐤))]

T
=   diag (𝐹1

(𝑘), 𝐹2
(𝑘) )                                 

                                                    =    diag (𝐹1  (𝐗
(𝐤)), 𝐹2 (𝐗

(𝐤)) )   

�̃�0  = A0  + B1𝐹1
(𝑘)

  �̅�0 = A0  + C2𝐹2
(𝑘),                                             (1.7) 

𝒜0 = diag ( A̅0  , Ã0)    

�̅�1 =  Q1 + (𝐹2
(𝑘))

𝑇

 𝑅12𝐹2
(𝑘)   ;     �̅�2 =  Q2 + (𝐹1

(𝑘))
𝑇

 𝑅21𝐹1
(𝑘)

 

 𝒬 =  diag ( Q̅1  , Q̅2)    

After these notations, we apply the following iteration method: 

                𝑀(𝐗(𝐤))  =(𝒜0 +  ℬℱ𝐗(𝐤)  )
T
 𝐗(𝐤+𝟏) + 𝐗(𝐤+𝟏) (𝒜0 +  ℬ ℱ𝐗(𝐤)  )    

               +  𝐓(𝐗(𝐤))  +   Π(𝐗(𝐤))(𝐗
(𝐤) )   = 𝟎                                                          (1.8) 

                under notations  

    T(Z)  =  ( 
𝑰

𝐅(𝐗(𝐤)) 
)

𝑻

 (
𝑸 𝟎
𝟎 𝑹

)  ( 
𝑰

𝐅(𝐗(𝐤)) 
)  

                 Π(𝐗(𝐤))(𝐗
(𝐤) ) =  ( 

𝑰
ℱ𝐗(𝐤)  

)
𝑻

 (
𝒬 𝟎
𝟎 𝑅

)  ( 
𝑰

ℱ𝐗(𝐤)  
) .        

At the suggestion that 𝒜0, 𝒜1 , 𝒬  are given matrices with corresponding 

properties, that the convergence of iteration (1.8) and tjeir properties are derived in the 

nest theorem:    
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Theorem 1.3 (a generalization of Theorem 1.2)  Assume there exist symmetric 

matrices   𝐗  ̂and  𝐗(𝟎) , for which   ℛ( 𝐗  ̂) ≥ 𝟎   and 𝐗(𝟎) >  𝐗  ̂, ℛ(𝐗(𝟎) ) <  𝟎  and 

𝒜0 +  𝐁 𝐅(𝐗(𝟎)) is a stable matrix, where 𝐅(𝐗(𝟎))  =  [𝐑 (𝐗(𝟎))]
{−1}

[𝐒 (𝐗(𝟎))]
T
 . Under 

the above conditions, matrix sequence {𝐗(𝐤)}𝟎
∞    , constructed by (1.8) satisfies the 

properties:   

(i)  𝐗(𝐬) >  𝐗(𝐬+𝟏) , 𝐗(𝐬) >  𝐗  ̂ and   ℛ(𝐗(𝐬) ) <  0 , s=0,1,2, ... 

(ii)   𝒜0  +  𝐁 𝐅(𝐗(𝐬)) is a stable matrix for  s=0,1,2, ... 

(iii)   𝐥𝐢𝐦{𝐬→∞} 𝐗
(𝐬) =  𝐗 ̃ is a solution of Riccati equation  ℛ(𝐗) = 𝟎 with the property  

𝐗 ̃ ≥  𝐗  ̂. Moreover, if  𝐗(𝟎) ≥  𝐗  for all solutions  𝐗 to ℛ(𝐗) = 𝟎, then  𝐗 ̃ is a 

maximal solution.   

(iv) The eigenvalues to matrix 𝒜0  +  𝐁 𝐅(𝐗 ̃) are in the closed left half-plane relative 

to the ordinate axis (the ordinate axis is included). If  ℛ( 𝐗  ̂) > 𝟎 , then the 

eigenvalues of  𝒜0  +  𝐁 𝐅(𝐗 ̃) are in the left open half-plane relative to the y-axis. 

We will conduct experiments with several examples of finding the stabilizing 

solution of the Riccati equation (1.5), using for this purpose the iterative method 

introduced through the formulas (1.6) -(1.8). In the experimental part, we use the 

Anaconda environment with Python 3.7. We present formula (1.8) in a more convenient 

form for programming and execution of the iteration: 

              (𝒜0 +  𝐁 𝐅(𝐗(𝐤)) )
T

 𝐗(𝐤+𝟏) + 𝐗(𝐤+𝟏)  (𝒜0 +  𝐁 F(X(k)) ) +  𝒬          (1.9)   

      +( 𝐅(𝐗(𝐤)) )
T

 𝐑 𝐅(𝐗(𝐤)) + (𝒜1  +  C 𝐅(𝐗(𝐤)) )
T

 𝐗(𝐤)  (𝒜1  +  C 𝐅(𝐗(𝐤)) ) = 0  

The iterative formula (1.9) is called the Lyapunov formula because at each step 

a Lyapunov matrix equation about the unknown 𝐗(𝐤+𝟏) is solved. The dissertation 

presents an algorithm for the implementation of iteration formula (1.9).  

We will present an example realized by this algorithm. The matrix coefficients 

of system (1.4) are presented in Python terminology for each example. 

 

Example 1.1. 

import numpy as np  

n=3 

m1=2 

m2=3 

A0 = np.matrix([[-1.5, 0.17,-0.049],[0.07, -1.42, -0.027],[0.04, -0.11,-1.47]]) 

A1 = np.matrix([[0.7, 0.19,-0.04],[0.24, 0.9,0.9],[0.3, 0.1,0.15]]) 

Q1=0.3*np.matlib.identity(n) 

Q2=0.025*np.matlib.identity(n) 

B1= np.matrix([[0.0, 0.],[0.05, 0.1],[0.04, 0.15]]); 

C1= np.matrix([[0., 0.1],[1.1, 0],[0., 0.02]]); 

B2= np.matrix([[0.1, 0.5 , 0.4],[0., 0, 0.08],[0., 0., 2.2]]) 

C2 = np.matrix([[0.1, 0. , 0.],[0., 1.5, 0.0],[0.1, 0.05, 0.0]]) 
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R11 = np.matlib.identity(m1);    

R11[0,0]=4.0     

R11[m1-1,m1-1]=5.0 

R21 = np.matlib.identity(m1)/2. 

R21[1,1]=10. 

R22 = np.matlib.identity(m2) 

R22[0,0]=2. 

R22[m2-1,m2-1]=8. 

R12 = np.matlib.identity(m2)/2. 

R12[1,1]=2.  

R12[m2-1,m2-1]=3. 

 

When executing Example 1.1, the specific values are n=3, tol=1.0e-8. 

We choose 𝑋1
(0)

 = diag [6,6,6], 𝑋2
(0)

 = diag [9,9,9]. At these values, we check 

whether the conditions of the Theorem are fulfilled, namely 𝑅1 (𝑋1
(0)
, 𝑋2
(0)
) <

0   , 𝑅2 (𝑋1
(0)
, 𝑋2
(0)
) < 0.  

When executing Example 1.1, the specific values are n=3, tol=1.0e-8. 

We choose 𝑋1
(0)

  = diag [6,6,6], 𝑋2
(0)

 = diag [9,9,9]. At these values, we check 

whether the conditions of the Theorem are fulfilled, namely 𝑅1 (𝑋1
(0)
, 𝑋2
(0)
) <

0 , 𝑅2 (𝑋1
(0)
, 𝑋2
(0)
) < 0. For the lower bound of the matrix sequence  we 

choose  �̂�1  =  �̂�2 = diag [0.0002, 0.0002, 0.0002],  and     𝑅1 (�̂�1 , �̂�2 ) > 0   ,     

𝑅2 (�̂�1 , �̂�2 ) > 0.  Moreover, the matrix  𝒜0, + 𝐁 𝐅(𝐗(𝟎)) is stable, i.e., it has 

eigenvalues with negative real parts. The theorem’s conditions are satisfied and 

we can apply iteration (1.9) for chosen matirces  (𝑋1
(0)
, 𝑋2
(0)
).  

For both solutions  �̃�1, �̃�2  (which are 3x3 matrices) we obtain:   

 

�̃�1 = (
0.13952043
0.04144027
0.02188102

 0.04144027
0.15624824
0.03732627

0.02188102 
0.03732627
0.14154421

),  

 

�̃�2    =  (
0.0120035
0.003909 
0.00222309

0.003909 
0.01359531
0.0036183

0.00222309
0.0036183
0.01226303

). 

 

 The solutions �̃�1, �̃�2  are obtained after 25 iteration steps of formula 

(1.9) and have the properties derived in the theorem – the matrix 𝒜0 +  𝐁 𝐅(𝐗 ̃) 

is stable. But we are looking for the Nash equilibrium, which is obtained after 

calculating the matrices 𝐹1  (𝐗 ̃), 𝐹2  (𝐗 ̃):  

 𝐹1  (𝐗 ̃) = ( 
−0.02010912 −0.04090623 −0.0385815
−0.00398803 −0.00569488 −0.00583653

 ) 
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 𝐹2  (𝐗 ̃) = ( 
−0.00138726 −0.00071184 −0.00050222
−0.01597642 −0.02063644 −0.01883039
−0.00125061 −0.00132644 −0.00351967

 ) 

 

The conducted experiments confirm the applicability of the proposed iteration 

formula (1.8) (which is equivalent to (1.9)) for finding a stabilizing solution of the 

Riccati equation (1.5). 

           

 

          Scientific contributions in the first chapter: 

 

The proposed iteration method through formulas (1.6) -(1.8) is new and finds a 

solution to the nonlinear matrix system (1.4). The found solution equations leads to a 

Nash equilibrium for a linear quadratic stochastic game studied by (Zhu, Zhang, 2013). 

The proposed iterative method is published in (Ivelin Ivanov и V. Tanov, 2018, An 

Iterative Method for an Equilibrium Point of Linear Quadratic Stochastic Differential 

Games with State and Control-Dependent Noise, Ann. Acad. Rom. Sci.,2018).  

            

            Authors’s publication on the first chapter 

 

Ivelin G. Ivanov, Vladislav Tanov, An Iterative Method for an Equilibrium 

Point of Linear Quadratic Stochastic Differential Games with State and Control-

Dependent Noise, Mathematics, and its Applications / Annals of AOSR, 10(2), 202-210, 

2018. (Scopus) 
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Chapter two. Linear quadratic game models with two players  

 

The author's published contributions in the second chapter are in the field of 

positive games. We reflect the part of the dissertation work describing these scientific 

contributions. 

    

           2.4. Game models for positive games 

Differential systems of the type 

𝑑𝑥 = 𝐴𝑥 𝑑𝑡 + 𝐵1𝑢1𝑑𝑡 + 𝐵2𝑢2 𝑑𝑡,   𝑥(0) = 𝑥0,                           (2.18) 

are called positive if, for all non-negative initial states 𝑥0 and non-negative control 

functions 𝑢1 and 𝑢2, then the state vector x(t) is non-negative at any instant. 

        We introduce two functionals (i=1,2): 

     𝐽𝑖(𝑢1, 𝑢2) = ∫ (𝑥𝑇𝑄𝑖𝑥 + ∑ 𝑢𝑗
𝑇2

𝑗=1 𝑅𝑖𝑗𝑢𝑗) 𝑑𝑡
∞

0
,  за 𝑖 = 1,2,        (2.19) 

each of them must be minimize, under the influence of the function 𝑢𝑖, which is the 

strategy of the i-th player. 

Ще разгледаме матричното Рикатиево уравнение:  

  0 = −(𝐴
𝑇 0
0 𝐴𝑇

) (
𝑋1
𝑋2
) − (

𝑋1
𝑋2
)𝐴 − (

𝑄1
𝑄2
) + (

𝑋1
𝑋2
) (𝑆1 𝑆2) (

𝑋1
𝑋2
), (2.20) 

where  (−𝐴) is an 𝑛 х 𝑛   𝑍-матрица, 𝑆𝑗 = 𝐵𝑗𝑅𝑗𝑗
−1𝐵𝑗

𝑇 (𝑆𝑗 = 𝑆𝑗
𝑇)  is a nonpositive matrix 

for 𝑗 = 1,2, and 𝑄𝑗 is a symmetric square nonnegative matrix on dimension n,  𝑅𝑗𝑗 is a 

symmetric square negative definite matrix of corresponding dimension, 𝐵𝑗 is a non-

negative matrix of dimension n x m_j, for j=1,2, and 𝑋1 and 𝑋2  are  unknown matrices. 

We will use matrices of different orders.  

To control positive systems of the above type, it is necessary to solve an equation 

of the type (2.20). Newton's method was applied to the solution of equation (2.20) and 

this was done by Jank, Kremer in (Jank, Kremer, 2005).  

When we write A>0 (A≥0) for a matrix A with dimension n x m we mean 𝑎𝑖𝑗>0 

(𝑎𝑖𝑗≥0) for each 1≤i≤n and 1≤j≤m, i.e. the matrix elements are positive (non-negative). 

When we write A>B (A≥B) for matrices A and B of dimension n x m we mean 𝑎𝑖𝑗>𝑏𝑖𝑗 

(𝑎𝑖𝑗≥𝑏𝑖𝑗) for each 1≤i≤n and 1≤j≤m. For the considerations, the matrices 𝑄𝑘 and 𝑆𝑘 are 

𝑄𝑘≥0, and 𝑆𝑘≤0, k=1,2. In the course of reasoning, we will use the fact that the matrix 

equation AXB=C is equivalent to the linear system (𝐵𝑇⨂𝐴 ) 𝑣𝑒𝑐 𝑋 = 𝑣𝑒𝑐 𝐶, where 
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vec means the transformation of the corresponding matrix into a column vector, 

following the columns of the matrix .   

A real n x n matrix A will be called a Z-matrix if there exists a real number s and 

a matrix C≥0 n x n matrix such that A=s𝐼𝑛 -C, where 𝐼𝑛 is a unit matrix of order n. A 

real n x n nonsingular matrix A=(𝑎𝑖𝑗) is called an M-matrix if 𝑎𝑖𝑗≤0 for i≠j and 𝐴−1 ≥

0.  

We consider linear quadratic differential games for positive linear systems with 

the inverse information structure and two players. Newton's accelerated method for 

obtaining the stabilizing solution of the two Riccati equations is presented in (Jank, 

Kremer, 2005), where convergence properties of the method are proved. Furthermore, 

the Lyapunov iteration method for computing the Nash equilibrium point is presented 

in (Baeva, 2016). Moreover, the convergence properties of the iteration formula are 

derived and proved. The implementation of the algorithm is illustrated on some 

numerical examples. The following theorem on the properties of non-negative matrices 

is known:   

Theorem 2.1. For a Z-matrix A the following statements are equivalent:  

(i) 𝐴 is an M-matrix.  

(ii) 𝐴−1 ≥ 0. 

(iii) 𝐴𝑣 > 0 for any vector 𝑣 > 0. 

(iv) All eigenvalues of the matrix A have positive real parts, i.e. the matrix (-A) 

is a stable matrix.  

The emphasis in this section on positive games is on developing fast and efficient 

methods for finding Nash equilibria by solving Riccati equations. We have published 

such studies in the following two of our publications (I. Ivanov, N. Netov, V. Tanov, 

Iteratively Computation the Nash Equilibrium Points in the Two-Player Positive Games, 

2016), (Ivelin Ivanov, V. Tanov, Computing the Nash Equilibrium for LQ Games on 

Positive Systems Iteratively, 2018). 

2.4.1.Newton’s method  

Newton's method for solving the equation (2.20) is studied and presented 

in (Jank, Kremer, 2005) by an iterative formula: 

     −𝐾𝑖+1(𝐴 − 𝑆𝐾𝑖) − (𝐷 − 𝐾𝑖𝑆)𝐾𝑖+1 = 𝑄 + 𝐾𝑖𝑆𝐾𝑖 ,   

 𝑖 = 0,1,2…,                                                                                                        (2.21) 
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where 𝐷 = (𝐴
𝑇 0
0 𝐴𝑇

),  𝑄 = (
𝑄1
𝑄2
),  𝑆 = (𝑆1 𝑆2). The convergence of the method is 

proved by the following theorem (Theorem 5 from Jank, Kremer, 2005). 

The iteration formula we propose and for which we prove convergence is the 

following:  

−𝐴(𝑘)𝑇 𝑋1
(𝑘+1) − 𝑋1

(𝑘+1)𝐴(𝑘) = �̃�1
(𝑘)   , 

𝐴(𝑘) =  𝐴 − 𝑆1 𝑋1
(𝑘) − 𝑆2𝑋2

(𝑘)
, 

          �̃�1
(𝑘) = 𝑄1 + 𝑋1

(𝑘)
𝑆1𝑋1

(𝑘)
+ 𝑋2

(𝑘)
𝑆12𝑋2

(𝑘)
 ,  

          and  

         −𝐴(𝑘)𝑇 𝑋2
(𝑘+1) − 𝑋2

(𝑘+1)𝐴(𝑘) = �̃̃�2
(𝑘) ,      

                               �̃̃�2
(𝑘) = 𝑄2 + 𝑋2

(𝑘)
𝑆2𝑋2

(𝑘)
+ 𝑋1

(𝑘+1)
𝑆21𝑋1

(𝑘+1)
 .  

The last iteration process is investigated for convergence and sufficient 

conditions guaranteeing this convergence are derived (Theorem 2, I. Ivanov, N.Netov, 

V.Tanov, 2016).   

 

2.4.3.Implicit iteration formulas  

According to the research done by Ma and Lu (Ma, Lu, 2016), here we 

will introduce a modification of the Newton method considered by (2.21): 

−𝒴𝑘(𝛾𝐼 + 𝐴 − 𝑆𝑋𝑘) = (𝛾𝐼2𝑛 − 𝐷)𝑋𝑘 −  𝒬                              (2.30)  

(𝛾𝐼2𝑛 + 𝐷 − 𝒴𝑘𝑆)𝑋𝑘+1 = 𝒴𝑘(𝛾𝐼 − 𝐴) −  𝒬  

              𝑋0= 0 , k=0,1,2, … , 𝛾 < 0.  

We call the last formula (2.30) Linearized Implicit Newton Iteration and will use 

the abbreviation LINI. We will present two statements that introduce properties of 

nonnegative matrices, and these properties will be useful in the following reasoning.  

We rewrite the matrix function  ℛ (𝒳) of the type    ℛ (𝒳) = (
𝑅1(𝑋1, 𝑋2)

𝑅2(𝑋1, 𝑋2)
)  ,  

were   

            𝑅1(𝑋1, 𝑋2) =  − A
T X1 – X1 A + X1 S1 X1  +  X1S2 X2  − Q1  

 

  𝑅2(𝑋1, 𝑋2) =  − A
T X2  − X2 A + X2 S1 X1  +  X2S2 X2  − Q2 . 

 

General equation ℛ (𝒳) = 0 is equivalent to the sum of the two equations 

𝑅1(𝑋1, 𝑋2) = 0 and 𝑅2(𝑋1, 𝑋2) = 0 . We can use the cell (block) structure of the matrix 
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coefficients in (2.30) to justify the following formulas that define a new iteration 

method. We will call it the Alternately Linearized Implicit Decoupled Iteration (ALIDI) 

method. The long name reveals its qualities – it uses linear matrix equations, implicitly 

reaches the solution, and each iteration equation is independent of the others: 

 

𝑌1
(𝑘)
( 𝛾𝐼𝑛 + 𝐴 − 𝑆1𝑋1

(𝑘) − 𝑆2𝑋2
(𝑘)) = (𝛾𝐼𝑛 − 𝐴

𝑇) 𝑋1
(𝑘) − 𝑄1           (2.31)   

 

𝑌2
(𝑘)
( 𝛾𝐼𝑛 + 𝐴 − 𝑆1𝑋1

(𝑘) − 𝑆2𝑋2
(𝑘)) = (𝛾𝐼𝑛 − 𝐴

𝑇) 𝑋2
(𝑘) − 𝑄2           (2.32)   

 

 (𝛾𝐼𝑛 + 𝐴
𝑇 − 𝑌1

(𝑘)𝑆1)𝑋1
(𝑘+1) = 𝑌1

(𝑘)(𝛾𝐼𝑛 − 𝐴 + 𝑆2𝑋2
(𝑘)) − 𝑄1        (2.33)   

 

(𝛾𝐼𝑛 + 𝐴
𝑇 − 𝑌2

(𝑘)𝑆2)𝑋2
(𝑘+1) = 𝑌2

(𝑘)(𝛾𝐼𝑛 − 𝐴 + 𝑆1𝑋1
(𝑘)) − 𝑄2         (2.34)   

 

𝑋1
(0) = 𝑋2

(0) = 0,    k=0,1,2, ……,  , 𝛾 < 0. 

 

Iterative method (2.31) - (2.34) was derived, studied and published here (Ivelin 

Ivanov, V. Tanov, 2018, pp. 230-244).  

We will continue with the study of the proposed iterative method (2.31) -( 2.34) 

and the derivation of its properties related to the convergence of the method. We will 

derive these properties under some assumptions that we will formulate in the following 

theorem and by using the research of Bai et al. (Bai et al., 2006). 

In the following theorem, proved in our publication, we will derive sufficient 

conditions for the convergence of the proposed method. 

Theorem 2.4. (Ivelin Ivanov, V.Tanov, 2018, стр. 230-244) We assume that the 

matrix (–A) is an M-matrix and  𝑄1 ≥ 0, 𝑄2 ≥ 0 and 𝑆1 ≤ 0, 𝑆2 ≤ 0, 𝛾 < 0   , such 

that   (- γ In −  A) is an M-matrix, and  (γ In −  A)   is nonpositive. We assume    the  

symmetric nonnegative matrices exist �̂�1, �̂�2 , such that   𝑅𝑖(�̂�1, �̂�2) ≥ 0 , i=1,2 and  

− A + S1 �̂�1 +  S2  �̂�2  is an M-matrix. We construct matrix sequences  

{𝑋1
(𝑘)}, {𝑋2

(𝑘)},   𝑘 = 0,… ,∞, throught (2.29) -( 2.32). The following properties are 

satisfied:   

(i)  �̃�𝑖 ≥ 𝑋𝑖
(𝑘+1) ≥ 𝑌𝑖

(𝑘) ≥ 𝑋𝑖
(𝑘)   , i=1,2 ,  k=0,1,  ….;  

(ii) 𝑅𝑖(𝑋1
(𝑘), 𝑋2

(𝑘)) ≤ 0,   𝑅𝑖(𝑌1
(𝑘), 𝑌2

(𝑘)) ≤ 0 , 𝑅𝑖(𝑋1
(𝑘+1), 𝑋2

(𝑘+1)) ≤ 0, i=1,2,   

k=0,1, ….; 
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(iii) The matrix sequences {𝑋1
(𝑘)}, {𝑋2

(𝑘)},   𝑘 = 0,… ,∞,  are convergent to 

minimal nonnegative solution (�̃�1, �̃�2 ) to couple of Riccati equations  𝑅1(𝑋1, 𝑋2) = 0 

and 𝑅2(𝑋1, 𝑋2) =0, for which  �̃�𝑖 ≤ �̂�𝑖   and the matrix A − S1 �̃�1 −  S2  �̃�2  is stable. 

The theorem is presented without a proof.  

Numerical examples    

We will apply the described iterative methods for finding the equilibrium on two 

examples with specific data.  

Example 2.5. We describe the matrix coefficients A, Bi, Qi and Rii for i=1,2 in 

the Matlab environment. 

A=abs(randn(n))/99;    s=max(abs(eig(A)))+4.5;  gamma= -5.0; 

for  i=1:n,    A(i,i)=-(A(i,i))-s;   end 

B1  = abs(randn(n,1))/2; 

B2 = eye(n,n);      B2(n,n)=n/3; 

Q1=zeros(n,n);   Q1(1,1)=n/2;   Q1(n,n)=1.5; 

Q2 = 2 Q1;    R11=-1;   R22 = -eye(n,n);   

R22(1,1)=-50;     R_{22}(n,n) = -30;  

We run Example 2.5 for different values of n, and 100 iterations for a fixed value 

of n. We choose 𝑋1
(0) = 𝑋2

(0) = 0  , and establish 𝑅𝑖(𝑋1
(0), 𝑋2

(0)) =  −𝑄𝑖 ≤ 0,, i.e. the 

matrix is non-positive. We select the two square matrices:  

�̂�1 =

(

 
 

0.3 0.01
0.01 0.3

⋯
…

0.01 0.01
0.01 0.01

⋮ ⋮ ⋱ ⋮ ⋮
0.01 0.01
0.01 0.01

⋯
…

0.3 0.01
0.01 0.3 )

 
 

 , 

�̂�2 =

(

 
 

0.5 0.01
0.01 0.5

⋯
…

0.01 0.01
0.01 0.01

⋮ ⋮ ⋱ ⋮ ⋮
0.01 0.01
0.01 0.01

⋯
…

0.5 0.01
0.01 0.5 )

 
 

. 

 

The conditions of Theorem 2.4 are satisfied for the matrices �̂�1, �̂�2, т.е. �̂�1 ≥

𝑋1
(0), �̂�2 ≥ 𝑋2

(0) ,  𝑅𝑖(𝑋1
(0), 𝑋2

(0)) ≤ 0, 𝑅𝑖(�̂�1, �̂�2) ≥ 0, i=1,2.  The matrix (− A +

 S1 �̂�1 +  S2  �̂�2)  is a nonsingular M-matrix. The calculated solution �̃�1, �̃�2 satisfies 

the following inequalities �̃�1 ≤ �̂�1, �̃�2 ≤ �̂�2 and additionally (− A + S1 �̃�1, +  S2  �̃�2)   

is an M-matrix. In Table 2.2.  results of the experiments are described. The proposed 
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implicit method through formulas (2.31) -( 2.34) is faster although it takes a higher 

average number of iteration steps. 

Example 2.6. We determine the matrix coefficients: 

                 A=abs(randn(n))/10;         s=max(abs(eig(A)))+4.5;  gamma= -5.0;  

                 for   i=1:n,    A(i,i)=-(A(i,i))-s;     end 

                 B1 = abs(randn(n,1))/2; 

                 B2 = eye(n,n);     B2(n,n)=abs(randn); 

                 Q1=zeros(n,n);       Q1(1,1)=n/2;    Q1(n,n)=1.5; 

                 Q2 = 2 Q1;             R11=-1; 

                 R22 = -eye(n,n);       R22(1,1)=-80;     R22(n,n)=-90; 

Tables 2.2 and 2.3 present the results for different values of n. 100 

replicates were done for a particular value of n. The maximum number of 

iteration steps to reach the solution (maxIt), the average number of iteration 

steps (avIt), and the CPU time to complete all iterations (CPU) are reported. The 

results for the Newton method (2.21) and ALIDI method (2.31)-(2.34) are 

described.  

Table 2.2.  

 Newton NI (2.21) ALIDI (2.31)-( 2.34) 

N maxIt avIt CPU maxIt avIt CPU 

8 4 3.1 0.31sec. 6 5.01 0.125 sec. 

16 4 3.27 0.43 sec. 10 5.5 0.19 sec. 

24 5 3.57 0.73 sec. 17 6.67 0.37 sec. 

32 5 3.67 1.16 sec. 14 8.06 0.73 sec. 

 

              Table  2.3.  

 Newton NI (2.21) ALIDI (2.31)-( 2.34) 

N maxIt avIt CPU maxIt avIt CPU 

15 4 3.2 0.39 sec. 8 5.11 0.1 sec. 

25 4 3.38 0.73 sec. 12 6.9 0.29 sec. 

40 6 3.69 1.66 sec. 10 8.85 0.89 sec. 

55 6 3.66 3.25 sec. 22 10.8 2.03 sec. 

 

          2.5.An improved iterative method  

In our next publication (Ivelin Ivanov, Vladislav Tanov, 2020) we improve the 

iteration formula (2.31) -(2.34) and propose a new modification:  

𝑌1
(𝑘)
( 𝛾𝐼𝑛 + 𝐴 − 𝑆1𝑋1

(𝑘) − 𝑆2𝑋2
(𝑘)) = (𝛾𝐼𝑛 − 𝐴

𝑇) 𝑋1
(𝑘) − 𝑄1             (2.35)   

 

𝑌2
(𝑘)
( 𝛾𝐼𝑛 + 𝐴 − 𝑆1𝑋1

(𝑘) − 𝑆2𝑋2
(𝑘)) = (𝛾𝐼𝑛 − 𝐴

𝑇) 𝑋2
(𝑘) − 𝑄2             (2.36)   

 

 (𝛾𝐼𝑛 + 𝐴
𝑇)𝑋1

(𝑘+1) = 𝑌1
(𝑘)(𝛾𝐼𝑛 − 𝐴 + 𝑆1 𝑌1

(𝑘) + 𝑆2𝑋2
(𝑘)) − 𝑄1          (2.37)   
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(𝛾𝐼𝑛 + 𝐴
𝑇)𝑋2

(𝑘+1) = 𝑌2
(𝑘)(𝛾𝐼𝑛 − 𝐴 + 𝑆1𝑋1

(𝑘) + 𝑆2𝑋2
(𝑘)) − 𝑄2            (2.38)   

 

𝑋1
(0) = 𝑋2

(0) = 0,    k=0,1,2, ……, , 𝛾 < 0. 

 

We derive the following properties for iterative process (2.35) -(2.38):   

Theorem 2.5. (Ivelin Ivanov, Vladislav Tanov, 2020) We suppose the matrix   

(–A) is an M-matrix and  𝑄1 ≥ 0,𝑄2 ≥ 0 and 𝑆1 ≤ 0, 𝑆2 ≤ 0, 𝛾 < 0  , such that (- γ In −

 A) is an M-matrix and  (γ In −  A)   is nonpositive.  In addition, there exist symmetric 

nonnegative matrices  �̂�1, �̂�2 , with   𝑅𝑖(�̂�1, �̂�2) ≥ 0 , i=1,2 and  − A + S1 �̂�1 +  S2  �̂�2  

is an M-matrix. We construct the matrix sequences  {𝑋1
(𝑘)}, {𝑋2

(𝑘)},   𝑘 = 0,… ,∞, 

according to iterations (2.35) -( 2.38). The following properties of the matrix sequences 

are satisfied:   

(i)  �̃�𝑖 ≥ 𝑋𝑖
(𝑘+1) ≥ 𝑌𝑖

(𝑘) ≥ 𝑋𝑖
(𝑘)

    , i=1,2 ,  k=0,1,  ….;  

(ii) 𝑅𝑖(𝑋1
(𝑘), 𝑋2

(𝑘)) ≤ 0,   𝑅𝑖(𝑌1
(𝑘), 𝑌2

(𝑘)) ≤ 0 , 𝑅𝑖(𝑋1
(𝑘+1), 𝑋2

(𝑘+1)) ≤ 0, i=1,2,   

k=0,1, ….; 

(iii) The matrix sequences  {𝑋1
(𝑘)}, {𝑋2

(𝑘)},   k=0,…,∞  converge to the minimal  

nonnegative solution �̃�1, �̃�2   of the couple of Riccati equations  𝑅1(𝑋1, 𝑋2) = 0 and 

𝑅2(𝑋1, 𝑋2) =0, for which �̃�1 ≤ �̂�𝑖  .  

(iv) If  − A + S1 �̂�1 +  S2  �̂�2  is an M-matrix, and the solution  �̃�1 , �̃�2  is left-right 

stable solution to the couple of Riccati equations 𝑅1(𝑋1, 𝑋2) = 0 and 𝑅2(𝑋1, 𝑋2) =0.   

The proof follows similar reasoning to Lemma 2.8. 

Example 2.7. We take the matrix coefficients:  (description in Matlab)   

A=[-2.74 0.06 0.015 0.099; 

       0.2 -2.5 0.064 0.08; 

       0.004 0.15 -2.56 0.09; 

       0.14 0.12 0.21 -2.57]; 

 

B1=[0.5938; 0.2985; 0.49; 0.98]; 

B2=[2.8  0   0  0; 

         0  2.9  0  0; 

         0   0  2.84 1.5; 

         0   0  1.5 1.3];  

Q1=eye(n,n)/2;   Q1(1,1)=n/2;    Q1(n,n)=1.5; 

Q2 =.5 * Q1;         R11=-1.909; 

R22 = -eye(n,n); R22(1,1)=-50; R22(n,n)=-30; 

S1=B1*inv(R11)*B1'; 

S2=B2*inv(R22)*B2'; 
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The results are given in Table 2.4.  

Table 2.4. 

  

 ALIDI (2.31) -( 2.34) (2.35) -( 2.38) 

𝛾 avIt CPU avIt CPU 

-5 402 2.67sec. 431 2.7 sec. 

-3 256 1.76 sec. 278 1.78 sec. 

-1 112 0.82 sec. 112 0.79 sec. 

-0.5 40 0.37 sec. 39 0.34 sec. 

-0.25 80 0.62 sec. 77 0.57 sec. 

 

 

Contributions in Chapter Two:  

 

The contributions in the second chapter are the proposed two new iterative 

methods for finding a solution of a cellular Riccati equation with special coefficients: 

• iteration method (2.31) -( 2.34),  

• iteration method (2.35) -( 2.38).  

For the two iteration methods, properties for their convergence are theoretically 

derived. Both methods are distinguished by a clear implementation scheme and easy 

computer implementation. Experiments demonstrate their effectiveness.  

 

Publications of the author on the second chapter. 

 

1.Ivan Ivanov, Nikolay Netov, Vladislav Tanov, Iteratively Computation the 

Nash Equilibrium Points in the Two-Player Positive Games. International Journal of 

Mathematical and Computational Methods, 1, 378-381, 2016 

2.Ivelin Ivanov, Vladislav Tanov, Computing the Nash Equilibrium for LQ 

Games on Positive Systems Iteratively, Mathematics and its Applications / Annals of 

AOSR, 10(2), 230-244, 2018. (Scopus) 

3.Ivelin Ivanov, Vladislav Tanov, A Nonsymmetric Nash-Riccati Equation and 

Decoupled Schemes for a Stabilizing Solution, Applied Mathematics E-Notes, 

20(2020), 357-366, Applied Mathematics E-Notes, 20(2020), 357-366. (Scopus) 
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          Chapter Three. Optimization of unbalanced sets   

 

           Methods and algorithms  

 

Imbalanced datasets, also known as class imbalance, are common in the field of 

machine learning (Samuel, 1959) with applications in various fields, for example, 

detection of cardiovascular and liver diseases, oil spills in satellite imagery, and tasks 

of information retrieval and filtering, and others (Raskutti and Kowalczyk, 2004) (Wu 

and Chang, 2003). The task of improving the performance of class imbalance problems 

consisting of a majority class (larger number of observations) and a minority class is a 

very important aspect for various optimization problems. The goal is to reach an 

optimized, balanced subset through majority class optimization to be used for prediction 

with high accuracy values. 

Bohacik and Zabovsky studied probabilistic realization with a given controlled 

discretization using expertise in the field of heart disease (Bohacik and Zabovsky, 

2019). The algorithmic methodology is implemented in a Waikato environment for 

knowledge analysis as a NaïveBayes class with the Fayyad-Irani numerical attribute 

discretization (Fayyad and K. B. Irani, 1993). The study was based on k-fold (k=10) 

cross-validation and used sensitivity, specificity, and their sum as measures. Sensitivity 

(True Positive Rates) represents the ability of the algorithm to identify true positive (TP) 

cases with respect to all positive results, with the following expression: TP/(TP+FN). 

False negatives (FN) will be considered negative cases when, they are positive. The 

specificity indicates the ability of the algorithm to identify cases of true negative rates 

(TN) with respect to all negative results as follows: TN/(TN+FP). False positives (FPs) 

will be considered positive cases when they are negative. Bohacik and Zabovsky use 

the sum of sensitivity and specificity as an overall scoring system for comparing 

algorithms (Bohacik and Zabovsky, 2019). 

The experiments we conduct are on several data sets used by other authors and 

freely available on the Internet, shown in Table 3.1. The results of the experiments show 

an advantage over the above-mentioned data handling methods, such as resampling, 

bootstrap and selection of statistically significant variables (feature selection). We will 

consider the following hypothesis: The unbalanced set optimization algorithm is 

effective in improving the prediction accuracy with classification models. The 

hypothesis is tested against a specific set of measures obtained for standard evaluation 

of classification models, such as Accuracy, Precision, Recall and F1 Score. 

            Table 3.1 

Datasets Charecte-

ristics 

Classes and Number 

of observations 

Source  

Diabetes 8 Class 0 – 500 

Class 1 - 268 

link 

Statlog Heart 13 Class 1 – 150 

Class 2 - 120 

link 

https://gist.github.com/ktisha/c21e73a1bd1700294ef790c56c8aec1f
http://archive.ics.uci.edu/ml/datasets/statlog+(heart)
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Indian Liver 

Patient Dataset  

(ILPD) 

10 Class 1 – 416 

Class 2 - 167 

links 

In this chapter, we will formulate an optimization problem for conducting big 

data classification analysis. In the following sections, we will consider an algorithm for 

solving the optimization problem, i.e. an algorithm for the optimization of imbalanced 

datasets, and we will compare it with the results achieved by the two authors, using the 

same datasets and coresponding classification algorithms for RF, SVM, KNN, DT, NB 

and LR. The results of the research and the conducted analysis were published in Data 

Centric Optimization Method to Imbalanced Datasets, as part of the International 

Conference on Mathematical and Statistical Physics, Computational Science, 

Education, and Communication (Vladislav Tanov, Ivan Ivanov, 2023) and the article 

Data-Centric Optimization Approach for Small, Imbalanced Datasets, published in the 

Journal of Information and Organizational Sciences (JIOS) (Vladislav Tanov, 2023). 

 

3.1.  A model and algorithm for the optimization of imbalanced binary datasets 

(Data Centric Optimization - DCO) 

We formulate the following model. We know a data set X in which the 

observations from the different classes are known. We divide into two sets Xtrain and 

Xtets in the ratio Xtrain: Xtets = 80:20 or Xtrain: Xtets = 70:30. In this division, 

observations from each class fall into both sets. We will use the Xtrain set to build a 

classification model, while the evaluation indicators for the model will be checked on 

the Xtets. We select a model for classification analysis with values of the relevant input 

parameters. 

To maximize the function Acc(Xtest)  

under conditions  

1.Construction of the Xtrain set appropriately.  

2.Selection of the parameters of the classification model.  

The function Acc(Xtest) measures the accuracy of the classification analysis, 

after Xtrain and Xtets are defined, the model is built on Xtrain, and the overall accuracy 

(accuracy) is calculated on Xtest by the formula 

Acc(Xtest) =  
∑ 𝑐𝑚𝑖𝑖
𝑘
𝑖=1

∑ 𝑐𝑚𝑖𝑗
𝑘
𝑖,𝑗=1

  ,  

where    𝐶𝑀 = (𝑐𝑚𝑖𝑗) is a confusion matrix containing the c-class of the observations.   

The solution of each optimization problem is sought empirically (at least for 

now), depending on the techniques for dividing a given set into two sets and the options 

for choosing the parameters of a selected classification model.  

Here we will propose a DCO algorithm for solving the defined optimization 

problem (Vladislav Tanov, 2023). 

The main task of DCO is to examine and divide the unbalanced binary set, or set 

with binary class imbalance, into a balanced subset using undersampling or the so-called 

sample shuffle. This idea follows the information gain example discussed by Shaltout 

et al. They use information gain as a methodology for selecting statistically significant 

variables based on entropic magnitude as a measure of disorder (Shaltout et al., 2020). 

https://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)
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For this purpose, the unbalanced set optimization algorithm preserves the integrity of 

the minority class and selects an optimized subset of the majority class, so that the 

applied classification algorithm reaches the highest accuracy values. The optimization 

follows the logic of minimizing the errors that the calcification model admits during the 

validation of the predicted values, called model error rate (mer). In other words, DCO 

filters out the so-called "bad" or "noisy" rows from the subset of the majority class. 

Following the classical approach, the balanced subset is divided into training and 

test with a ratio of 80 to 20, respectively. The process continues until mer reaches 0 or 

the number of positive random variables (between 0 and 100) is used up in selecting 

subsets from the majority class. DCO experiments were done with the following 

computer specifications: (RAM: 16GM, CPU: 2.6GHz 6-Core Intel Core i7) as follows: 

We define the following parameters:  

- i ∈ {0….100} 

- ri – random under-sampling integer 

- n – length of the given dataset  

- m – minority class length 

- R – list of integers 

- Dn – given dataset 

- Xn – random variable (# of variables in Dn) 

- Yn – response variable (# of classes in Dn), Y = 1,…K, where K>=2 

- Di,m – balanced, under-sampled data sub-set:  

Di,m = ([X1,Y1],….[Xn,Yn] | ri , m), where [X,Y] is independent of Dn 

- mer - model error rate, mer = 100 

- To and Vo – optimized train and validation sub-sets 

ALGORITHM: DCO OPTIMIZATION PHASE 

1 Initialization of variables listed above. 

set optimized = False 

2 while not optimized 

3  draw random integer – ri  

4  if random integer (ri) not in list of integers (R) 

5   append random integer (ri) to R 

6   Di,m = undersample(Dn | ri , m) 

7   split Di,m  into train and validation sets (80/20): 

Ti, Vi = train_test_split (Di,m | .20) 

8   Ci = build classifier 

9   fit train set to Ci and calculate false positive error (FPE) and 

false negative error (FNE). Keep track of Ci error: 

errorCi = Ci (Ti, Vi) = Σ [(FPEi | Ci, Di,m),(FNEi | Ci, Di,m)] 

10   evaluate current model error rate (mer) 

if mer is greater than errorCi 

11    mer = errorCi 

To = Ti 

Vo = Vi 

12  if lenght of R is greater than 100: optimized = True 

13 end  
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 3.1.1. Bootstrap procedure in classifying models 

 

Diabetes is a very common disease that requires constant monitoring and control 

to avoid fatal consequences. Azberbg and co-authors conducted experiments to predict 

patients with diabetes using the algorithmic method of "random forest" (Random Forest, 

RF). RF is widespread and is considered one of the standard methods in the use of 

supervised models, supervised machine learning. Their experiment aggregates a 

collection of models constructed and trained based on the bootstrap procedure to divide 

the data into training and test subsets, using replacement, or the so-called bootstrap 

samples with replacemetn. Each iteration is based on a random selection of variables 

that build a rotation matrix, with combinations of variables. This leads to the generation 

of different variations of the calcification patterns defined in equation 3.4 (Azbeg et al., 

2022).  

In tables 3.1.1-1 and 3.1.1-2 we will present and compare the results obtained by 

Azberbg and co-authors algorithmic (ACA) method with the results obtained from the 

experiments with the application of the algorithm for optimization of imbalanced sets 

(Data Centric Optimization - DCO). 

 

 Table 3.1.1-1 

Datasets Classes and Number 

of observations 

ACA  

Accuracy of RF(%) 

DCO  

Accuracy of RF(%) 

Diabetes 1 Class 0 – 500 

Class 1 – 268 

78.65 87.04 

Diabetes 2 Class 0 – 1316 

Class 1 – 684 

99.5 99.65 

Diabetes 3 

(1 and 2) 

Class 0 – 1816 

Class 1 – 952 

99.8 100 

  

The experiment done by Azberbg and co-authors used an algorithmic (ACA) 

method by comparing the results obtained when testing with the Diabetes1 set with the 

following classification algorithms for machine learning, such as the model with support 

vectors (Support Vector Machines, SVM), the model of the nearest neighbors (K-

Nearest Neighbor, KNN), the Decision Tree-badged (DT), the Adaptive Boosting 

(ADABoost) model, the Artificial Nearal Network (ANA) model and the Logistic 

regression (LR). Table 3.1.0 we will present and compare the results obtained by SVM, 

KNN, DT, ADABoost, ANN, LR, DL and ACA (RF) with our proposed algorithm for 

optimization of unbalanced sets (Data Centric Optimization - DCO) applied on the set 

Diabetes1 .  

Azberbg and co-authors do additional experiments with the Diabetes2 sets, and 

a combination of Diabetes1 and Diabetes2 that they call Diabetes3 (Diabetes1 + 

Diabetes2). In this way, the authors create sets with a higher number of observations, 

which is standard for capturing the accuracy of the models under consideration (Bailly 

et al., 2022).  
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Table 3.1.1-2 

Authors Publications Applied 

Algorithm 

Accuracy (%) 

Wei et al. 2010 г. SVM 73 

Panwar et al. 2016 г. KNN 78 

Ramezankhani et al.  2016 г. DT 74 

Mingqi, Xiaoyang 

and Dongdong 

2020 г. ADABoost 79.2 

Pradhan et al. 2020 г. ANN 80.4 

Tigga и Garg 2021 г. LR 75.32 

Ihnaini et al. 2021 г. DL 72.7 

Azbeg et al. (ACA) 2022 г. RF 85.9 

DCO 2023г. RF 87.04 

 

As seen in the above table, DCO gives better results than the applied methods in 

the experiments of Azberbg and co-authors (ACA). As would be expected, the accuracy 

of the models increases with the increase of observations in the sets, which is the main 

idea in the experiment of Azberbg and co-authors. Here the question arises, upon a more 

in-depth evaluation of the results, how good these two approaches are. 

When we look at and analyze Figure 3.1.1 with the confusion matrix of the 

models, we notice that the high accuracy of the method of Azberbg and co-authors 

(ACA), in predicting Diabetes 1 multiple, is due to the greater percentage of correctly 

predicted values when the patients did not have diabetes, or the specificity, making 

errors only 15% (19 of 125) of the time. But when a patient has diabetes, or the 

sensitivity of the method to predict cases with diabetes, their method makes mistakes 

~33% of the time (22 of 67). This means that their method will assign diabetes treatment 

to every 33 patients out of 100 who visit the clinic, i.e. this method actually fails to 

predict well enough. 

This is due to the unbalanced set, which provides prerequisites for constructing 

biased models, and in this case the method of Azberbg and co-authors is biased towards 

diabetic patients. At the same time, DCO gives better results, with the specificity of the 

method being 87%, i.e. makes mistakes 13% (7 out of 54) of the time. At the same time, 

when patients have diabetes, DCO makes mistakes only 9% (5 out of 54) of the time, 

which is almost four (3.66) times less misdiagnoses compared to Azberbg et al.'s 

method.  

 

            3.1.2. Selection of statistical variables (feature selection) 

Singh and co-authors experimented with the Indian Liver Patient dataset (ILPD), 

which is publicly available at the UCI Machine Learning Repository: ILPD (Indian 

Liver Patient Dataset). The ILPD set contains 416 observations with patients with liver 

disease (Class 1) and 167 (Class 2) observations with patients without liver disease (UCI 

Machine Learning Repository). On the ILPD set, two statistical variable selection 

methodologies are applied along with 10-fold cross-validation, namely correlation-
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based feature selection, which selects variables by addition or deletion, while not reach 

a drop in grade. Singh and co-authors used the Waikato Environment for Knowledge 

Analysis, WEKA (Singh, Bagga, Kaur, 2020), which is considered one of the most 

practical publicly available data analysis software (Written, Frank, Hall, 2022). 

 

Figure 3.1.2 

  

As can be seen in Table 3.1.2-1 with and without the application of statistical 

variable selection, logistic regression (LR) gives the highest results with and without the 

application of statistical variable selection, as the accuracy, accuracy, of LR is 74.36% 

and 72.5% respectively. The Random Forest (RF) algorithm achieved lower accuracy 

values of 71.87% and 71.53%, respectively (Singh, Bagga, Kaur, 2020). 

                 Table 3.1.2-1 

Set Classes and 

Oservations  

Singh  

Accuracy LR 

(%) 

Singh  

Accuracy 

RF(%) 

 

DCO  

Accuracy  

RF(%) 

No FS FS No FS FS  

Indian Liver 

Patient 

dataset 

(ILPD) 

Class 1 – 416 

Class 2 – 167 
72.5 74.4 71.53 71.9 92.54 

This shows that the applied statistical variable selection methodology achieves 

poorer results compared to our proposed algorithm for the optimization of unbalanced 

sets (Data Centric Optimization - DCO). DCO in combination with RF reaches a much 

higher accuracy of 92.54%, as seen in Table 3.1.2-1.  

Table  3.1.2-2 

Set: 

Indian Liver Patient 

dataset 

(ILPD) 

DCO  

Evaluation  

AUC = 92.5 

Accuracy Precision Recall F1 

Клас 1 (34) 92.54 91.43 94.12 92.75 

Клас 2 (33) 92.54 93.75 90.91 92.31 
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In Table 3.1.2-2, we provide additional test measures for overall model 

evaluation, namely Precision, Recall, F1 Score, and Area Under Curve (AUC). 

           

            3.1.3. A probabilistic realization with a given controlled discretization 

 

Bohaick and Zabovsky are experimenting with a probabilistic approach to 

decision support for heart disease diagnosis (Bohaick, Zabovsky, 2019). The Centers 

for Disease Control and Prevention (CDC) associates the term "heart disease" with 

several types of heart disease (the most common being coronary artery disease), which 

is the leading cause of death in United States (CDC, 2022). To do this, Bohaick and 

Zabovsky used the Statlog Heart set, which is publicly available in the University of 

California, Irvine database. The Statlog Heart set consists of 120 observations (Class 2) 

diagnosed with heart disease and 150 observations (Class 1) without diagnosed heart 

disease (UCI Machine Learning Repository: Statlog Heart). 

Experiment results with Bohaick and Zabovsky's proposed algorithm are 

compared with several machine learning algorithms such as NB, artificial neural 

networks (NN), artificial neural networks with multilayer perceptron (MLP), and the 

Decision Tree-badged (DT) model). They use the sum of the sensitivity and specificity 

of the test patterns as a measure of comparison (Bohaick, Zabovsky, 2019). In Table 

3.1.3-1, we compare their published results with the results obtained from our proposed 

Data Centric Optimization (DCO) algorithm. 

As seen in Table 3.1.3-1, Bohaick and Zabovsky's methodology achieves the 

highest sensitivity and specificity scores of 0.90 and 0.842 (total 1.742), respectively, 

compared to the other machine learning algorithms. 

           Table 3.1.3-1   

  

 

 

 

 

 

 

 

 

 

Our proposed imbalanced set optimization (DCO) algorithm significantly 

outperforms theirs, reaching test sensitivity and specificity of 0.96 and 1.0 (total 1.96). 

In addition to test measures for overall model evaluation, namely Precision, Recall, F1 

Score, F1 as well as Area Under Curve (AUC), in Table 3.1.3- 2 we report the following 

results obtained by DCO. 

 

 

 

The Set: 

Statlog Heart 

Sensitivity Specificity Sum 

Algorithms 

NB-Mod 0.900 0.842 1.742 

NB 0.840 0.817 1.657 

MLP 0.880 0.800 1.680 

DT 0.840 0.692 1.532 

NN 0.773 0.717 1.490 

DCO 0.96 1.00 1.96 
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 Table 3.1.3-2 

  

 

 

 

 

 

 

3.1.4. A particle swarm optimization method for selecting statistically significant 

variables 

Dubey, Sinhal, and Sharma developed experiments using a particle swarm 

optimization method for selection to arrive at an optimal set of categorical variables, 

also known as Improved Auto Categorical Particle Swarm Optimization (IACPSO). 

Particle Swarm Optimization (PSO) automates the approach to choosing the optimal 

values of the controlled parameters at each iteration. Dubey, Sinhal, and Sharma analyze 

the behavior and impact of optimal numerical parameters in various machine learning 

algorithms (Dubey, Sinhal, and Sharma, 2022). 

Dubey, Sinhal and Sharma take an unusual approach to split the set into training 

and test subsets using a ratio of 75/25. To ensure a proper comparison between their 

method, IACPSO, and our presented Data Centric Optimization (DCO) algorithm, we 

conducted experiments using both the standard 80/20 training and test subset split ratio 

and and 75/25 applied to the same Statlog, Cleveland, and Hungarian sets. The 

following Table 3.1.4 presents the results and comparisons between the two 

methodologies. 

Table 3.1.4 

 Cleveland Statlog Hungarian 

MLA AC PR SV FS MC

C 

A

C 

P

R 

SV FS MCC AC PR SV FS MC

C 

LR 87 87 87 87 74 91 92 89 90 81 88 88 88 88 77 

LR + 

IACSPO 
96 97 97 97 89 98 99 97 99 95 97 98 98 98 92 

LR - DCO 

(75/25) 
94 92 97 94 89 98 97 100 98 97 94 93 96 95 89 

LR - DCO 

(80/20) 
96 93 100 97 93 98 96 100 98 96 98 95 100 98 95 

DT 82 83 83 82 65 83 85 81 82 65 82 83 82 82 65 

DT + 

IACSPO 
92 93 94 93 83 93 96 94 96 83 93 93 94 93 92 

DT - DCO 

(75/25) 
93 91 94 93 86 95 94 97 95 90 96 96 96 96 92 

DT - DCO 

(80/20) 
96 93 100 97 93 96 92 100 96 92 98 96 100 98 95 

RF 87 87 87 87 71 89 90 87 88 61 86 87 86 87 69 

RF + 

IACSPO 
97 97 98 97 90 97 98 98 98 89 97 98 98 98 88 

RF - DCO 

(75/25) 
96 94 97 96 91 97 97 97 97 93 92 96 89 92 85 

RF - DCO 

(80/20) 
99 100 97 99 97 98 97 100 98 97 98 100 96 98 96 

SVM 87 87 87 87 74 87 87 86 87 73 87 87 87 87 74 

 

The set:  

Statlog Heart 

DCO  

Evaluation  

AUC = 97.9 

Accuracy Precision Recall F1 

Class 1 (24) 97.9 1.00 95.83 97.87 

Class 2 (24) 97.9 96.0 1.00 97.96 
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SVM + 

IACSPO 
97 97 98 97 90 97 98 98 98 89 97 98 98 98 88 

SVMGS 89 89 89 89 77 89 93 86 88 78 89 89 89 89 77 

SVMGS + 

IACSPO 
98 97 96 97 90 98 99 98 97 90 97 97 97 97 90 

SVM - 

DCO 

(75/25) 

94 94 94 94 88 97 94 100 97 94 94 93 96 95 89 

SVM - 

DCO 

(80/20) 

100 100 100 100 100 98 96 100 98 96 95 91 100 95 91 

KNN 76 76 75 76 51 76 73 75 75 50 77 76 76 76 53 

KNN + 

IACSPO 
92 92 91 92 84 92 92 93 90 81 91 91 91 89 80 

KNN - 

DCO 

(75/25) 

94 94 94 94 88 97 94 100 97 94 94 93 96 94 89 

KNN - 

DCO 

(80/20) 

96 96 96 96 93 96 96 96 96 92 98 96 100 98 95 

NB 87 87 87 87 74 91 92 89 90 81 88 88 88 88 76 

 NB + 

IACSPO 
92 93 92 91 83 94 95 94 92 85 92 92 92 91 82 

NB- DCO 

(75/25) 
93 91 94 93 86 97 94 100 97 94 100 100 100 100 100 

NB- DCO 

(80/20) 
100 100 100 100 100 98 96 100 98 96 100 100 100 100 100 

Analyzing Table 3.1.4, we can see a total of 90 measures for the three datasets, 

Statlog, Cleveland and Hungarian, which include 5 metrics, Accuracy (AC), Precision 

(PR), Sensitivity (SV), f1 score (F1 Score, FS) and Matthew's correlation coefficient 

(MCC). This equates to 15 measures for each implemented machine learning algorithm, 

6 MLA, (3 sets multiplied by 30 - 5 metrics for each algorithm). Taking a closer look at 

the listed measures, we can see that our proposed Data Centric Optimization (DCO) 

algorithm outperforms the IACPSO method 75.56% (68/90) percent of the time with an 

average of 5.62 points for each measure. With minor exceptions for LR, DT and SVM, 

where 13.33% (12/90) of the time IACPSO gave better results, and 11.11% (10/90) of 

the time when DCO and IACPSO gave the same results. 

 

3.2. An algorithm for optimization of multi classes imbalanced datasets (Data 

Centric Multiclass Optimization - DCMO). 

The classification of unbalanced data, class imbalance, manifests itself in two 

aspects. The first case is when we have two classes with a negative and a positive class 

label, or a binary class imbalance. In the second case, we have more than one class, or 

multiclass imbalance. For example, given a given data set of the format (Xi, yi), where 

Xi is the ith observation, then yi is the ith class label, as follows yi  {1…K} (Aly, 

2005).  

Koziarski, Wozniak, and Krawczyk propose a new oversampling technique 

called the combined cleaning and resampling (MC-CCR) algorithm. The proposed 

method uses an approach to model the regions suitable for oversampling, which are less 

affected by disjunct definitions, small disjuncts, and deviations when applying the 

synthetic minority oversampling technique, SMOTE. The goal is to reduce the effect of 
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overlapping class distributions on the performance of machine learning algorithms 

(Koziarski, Wozniak, Krawczyk, 2020). 

Their experiments are based on 19 multiclass unbalanced sets publicly available 

in the Knowledge Extraction based on Evolutionary Learning database (KEEL, 2011). 

Koziarski, Wozniak, and Krawczyk apply the Decision Tree (DT) model, the Naïve-

Bayes (NB) model, and the K-Nearest Neighbor (KNN) model. Their algorithm for 

combined cleaning and resampling, MC-CCR, is compared with state-of-the-art 

multiclass set oversampling methods such as the synthetic minority oversampling 

technique (SMOTE-all, S-SMOTE), SMOTE combined with an iterative-partition filter 

(SMOTE-IPF), the Mahalanobis Distance Oversampling (MDO) technique, as well as 

the Synthetic Minority Oversampling technique, SMOM (Koziarski, Wozniak, 

Krawczyk, 2020). 

So far in Section 3.1, we have considered the proposed algorithm for the 

optimization of unbalanced sets with binary class imbalance. In the following sections, 

we will look at the multi-class variant of the unbalanced set optimization algorithm, or 

the multi-class unbalanced set optimization algorithm (Data Centric Multiclass 

Optimization - DCMO). The results obtained from the experiments with DCMO will be 

compared and compared with the results presented by Koziarski, Wozniak and 

Krawczyk, obtained from their combined cleaning and resampling (MC-CCR) 

algorithm. To ensure a correct comparison, we use the same sets and their applied 

classification algorithms – DT, KNN, and NB. 

We declare the following parameters: 

- i ∈ {0….100} 

- ri – random under-sampling integer 

- ki ∈ {1….99} – odd number generator 

- ori,k – odd random dataset-split integer 

- n – length of the given dataset  

- m – minority class length 

- R – list of integers 

- OR – list of odd integers 

- Dn – given dataset 

- Nc – number of calsses in the dataset 

- Xn – random variable (# of variables in Dn) 

- Yn – response variable (# of classes in Dn), Y = 1,…K, where K>=2 

- Di,m – balanced, under-sampled data sub-set:  

Di,m = ([X1,Y1],….[Xn,Yn] | ri , m), where [X,Y] is independent of Dn 

- Ti,k , Vi,k – train and validation datasets 

- score = 0 – optimal multicalss clasifier score metric 

- min_optimal_score: 

o if desired minimal multicalss clasifier score:  

▪ min_optimal_score ∈ {0….100} 

o otherwise, None 

- To and Vo – optimized train and validation sub-sets 



 

29 
 

ALGORITHM: DCMO OPTIMIZATION PHASE 

1 Initialization of variables listed above. 

set optimized = False 

set odd_int_end = False 

2 while not optimized 

3  draw random integer – ri  

4  if ri not in list of integers (R) 

5   append random integer (ri) to R 

6   Di,m = undersample(Dn | ri , m) 

7   while not odd_int_end: 

         draw odd random integer – ori,k  

         if  ori,k not in list of off intergers (OR) 

                append odd random integer(ori,k) to OR  

8                   split Di,m  into train and validation sets (80/20): 

               Ti,k, Vi,k = train_test_split (Di,m | ori,k, .20) 

9                  Ci,k = build classifier 

10                  fit train set to Ci,k and calculate F1 Score. Keep track: 

               avg scorei,k = Ci,k (Ti,k, Vi,k) = Σ [(F1i,k | Cik, Di,m,k)]/Nc 

11                  evaluate current model avg scorei,k  

               if avg scorei,k is greater than score 

12                 score = avg scorei,k 

             To = Ti,k 

             Vo = Vi,k  

13                       if lenght of OR is greater or equal than 50 

                     OR score >= optimal_score:  

                             odd_int_end = True 

14  if lenght of R is greater than 100 

OR score >= optimal_score:  

      optimized = True 

15 end  

  

In Table 3.6.1, we compare the results published by Koziarski, Wozniak, and 

Krawczyk with the results obtained by our presented Data Centric Multiclass 

Optimization (DCMO) algorithm. 

 

Table 3.6.1 

 

 

Sets 

Results according to Average Accuracy (AvgAcc) [%] metric 

for MC-CCR and reference sampling methods with C5.0 as 

base classifier.  

 

 

MC-

CCR 

 

SMOTE

-all 

 

S-SMOTE 

 

MDO 

 

SMOM 

 

SMOTE

-IPF 

DCMO 

AvgAcc  DT KNN NB 

Automobile 76.98 80.12 73.53 78.13 79.04 75.32 90.66 96 88 88 

Balance 82.87 55.06 55.01 57.70 59.52 54.26 91.33 90 87 97 

Car 97.12 89.84 90.13 93.36 95.18 90.96 95.33 98 88 100 

Cleveland 37.88 28.92 27.18 28.92 28.01 24.98 87.33 100 85 77 

Contraceptive 53.18 50.63 46.92 53.27 55.09 52.88 64.66 70 65 59 

Dermatology 94.29 95.72 96.1 97.48 99.31 92.18 100 100 100 100 

Ecoli 74.07 64.68 67.54 61.16 61.16 60.43 N/A– not enough observations 

Flare 68.92 71.86 71.52 68.72 70.64 68.55 79.66 87 79 73 

Hayes-Roth 92.11 86.45 88.04 87.33 90.06 89.74 98.33 100 95 100 
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Led7digit 70.48 72.39 72.55 75.03 75.94 71.35 88.67 91 91 84 

Lymphography  79.60 73.02 62.67 76.54 74.72 74.20 N/A– not enough observations 

Newthyroid  96.18 94.7 93.48 92.06 90.24 93.05 100 100 100 100 

Pageblocks  83.71 75.83 75.25 78.47 77.56 74.20 95 96 93 93 

Thyroid 80.52 80.02 85.34 79.14 80.96 78.91 90 100 80 90 

Vehicle 72.71 73.49 73.71 70.85 70.85 71.02 78.67 88 85 63 

Wine  95.28 92.53 90.80 93.41 93.41 90.16 97.00 97 97 97 

Winequality-red  46.93 37.41 35.79 40.05 42.78 36.28 75.00 75 75 92 

Yeast 58.39 51.03 52.42 54.55 56.37 53.77 48.67 60 43 43 

Zoo  85.92 82.61 68.69 79.09 79.09 67.30 N/A– not enough observations 

 
In the above Table 3.6.1, the results published by Koziarski, Wozniak, and 

Krawczyk are based on the arithmetic average accuracy value (AvgAcc) of the MC-

CCR method, but it is not clear what exactly it is based on. MC-CCR results are 

compared with their considered oversampling methods with a basic classification 

algorithm DT (C5.0), with MC-CCR showing better accuracy values than SMOTE, 

SMOTE-all, S-SMOTE, SMOTE-IPF, MDO and SMOM. 

To provide a proper comparison between their method, MC-CCR, and our 

presented Data Centric Multiclass Optimization (DCMO) algorithm, we present the 

results achieved by the listed machine learning algorithms DT, KNN, and NB as well as 

the Arithmetic Average Accuracy (AvgAcc). Here, it is important to note the essential 

difference between MC-CCR and DCMO, which consists in the treatment of the 

considered sets. MC-CCR applies the oversampling technique, while DCMO uses the 

undersampling technique. This limits the application of DCMO to three of the 

considered sets, Ecoli, Lymphography, and Zoo, because one or more of the classes 

have too low several rows (observations). In Table 4.6.1, these sets are designated as 

not applicable, or N/A– not enough observations, as follows: 

o Ecoli - class imS,imL and oL have 2, 2 and 5 observations, respectively; 

o Lymphography – class normal and fibrosis have 2 and 4 observations, 

respectively; 

o Zoo – classes 5,3 and 6 have 4,5 and 8 sightings, respectively.  

 

Taking a closer look at the listed measures for the remaining sets, we can notice 

that our proposed DCMO method outperforms the MC-CCR method 73.7% (14/19) 

percent of the time based on AvgAcc. On the other hand, MC-CCR outperformed 

DCMO 26.3% (5/19) percent of the time. As we have already explained above, in three 

of the cases DCMO cannot be applied due to a very low number of rows (observations), 

i.e. here it cannot be stated with certainty which of the two methods would have an 

advantage. In fact, there remain two cases where MC-CCR outperforms DCMO 10.5% 

(2/19) percent of the time where AvgAcc is lower. This is not at all the case if one 

considers the individual results of the prolog machine learning algorithms. For example, 

Table 4.6.1 shows better results achieved by DCMO for Car and Yeast sets when 

applying DT as follows: 

o Car: 

▪ DCMO – 98 

▪ MC-CCR – 97.12 
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o Yeast: 

▪ DCMO – 60 

▪ MC-CCR – 58.29.  

 

3.2.1 Test measures for comprehensive evaluation of the multi-class unbalanced set 

optimization algorithm (Data Centric Multiclass Optimization - DCMO) 

 

In addition to test measures for overall model evaluation, namely Precision, 

Recall, F1 Score, Matthew's Correlation Coefficient (MCC), as well as the model error 

matrix, confusion matrix, in the following sections we report the test results obtained by 

DCMO when applying DT, KNN and NB algorithms for classification analysis. 

Looking at Table 3.2.1, there are two cases where DCMO gave low results when 

applying the Yeast and Contraceptive sets. The Yeast set contains 9 classes, of which 

the minority class has only 20 observations. This means that applying the standard 

training and test subset split ratio of 80/20, DCMO will optimize and balance the Yeast 

set to 4 observations for each of the 9 classes in the test subset (Appendix – 3.2.1.16). 

DCMO achieves an unsatisfactory result of only 60 percent accuracy (MC-CCR 

accuracy - 58.39). Here the question arises, are only 16 observations for each class 

sufficient to reach optimal accuracy in machine learning? 

 

Table 3.2.1 Results obtained by DCMO for the considered sets.   

 

 

Sets 

 

A minority class 

 

 

Algorithm  

DCMO  (macro average)  

Accuracy Precision Recall F1 
MCC 

 

Automobile 

 

Class 4 
DT 96 97 96 96 95 

KNN 88 91 88 88 86 

NB 88 91 88 88 86 

 

Balance 

 

Class 1 

DT 90 91 90 90 85 

KNN 87 87 87 87 89 

NB 97 97 97 97 95 

 

Car 

 

Class 3 

DT 98 98 98 98 97 

KNN 88 89 88 88 85 

NB 100 100 100 100 100 

 

Cleveland 

 

Class 4 

 

DT 100 100 100 100 100 

KNN 85 88 83 85 82 

NB 77 72 73 77 72 

 

Contraceptive 

 

Class 1 

DT 70 69 70 70 55 

KNN 65 64 64 64 47 

NB 59 62 59 59 41 

 

Dermatology 

 

Class 5 

DT 100 100 100 100 100 

KNN 100 100 100 100 100 

NB 100 100 100 100 100 

 

Flare 

 

Class 4 

DT 87 86 86 85 84 

KNN 79 81 79 79 75 
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Rather, the answer lies in the quality of the data sets considered. For example, 

as seen in the above Table 3.2.1, the Contraceptive set has 3 classes, of which the 

minority class has 333 observations, therefore, the Contraceptive test subset consists of 

67 (20% of 333) observations for each class (Appendix - 3.2 .1.5). DCMO achieves the 

disappointing result of 70 percent accuracy, which is only 10 percent better than the 

Yeast set experiment, despite the large difference in training observations of ~17 times. 

On the other hand, the Dermatology set, like Yeast, contains 6 classes, of which 

the minority class has 20 observations, therefore, the Dermatology test subset consists 

of 4 observations for each class (Appendix - 3.2.1.6). DCMO achieves 100 percent 

accuracy for all three machine learning algorithms considered - the decision tree (DT) 

model, the Naïve-Bayes (NB) model, and the nearest-neighbor (K- Nearest Neighbor, 

KNN).  

Similar results were seen in the Newthyroid set. Newthyroid contains 3 classes, 

of which the minority class has 30 observations, therefore, the Newthyroid test subset 

consists of 6 (20% of 30) observations for each class (Appendix - 3.2.1.10). DCMO 

achieves 100 percent accuracy for all three machine learning algorithms considered—

NB 73 78 73 71 69 

 

Hayes-Roth 

 

Class 2 

DT 100 100 100 100 100 

KNN 95 96 94 95 92 

NB 100 100 100 100 100 

 

Led7digit 

 

Class 1 

DT 91 92 91 91 90 

KNN 91 92 91 91 90 

NB 84 85 84 83 82 

 

Newthyroid 

 

Class 2 

DT 100 100 100 100 100 

KNN 100 100 100 100 100 

NB 100 100 100 100 100 

 

Pageblocks 

 

Class 2 

DT 96 97 97 96 96 

KNN 93 94 93 93 91 

NB 93 95 93 93 92 

 

Thyroid 

 

Class 0 

DT 100 100 100 100 100 

KNN 80 81 80 80 70 

NB 90 91 90 90 86 

 

Vehicle 

 

Class 0 

DT 88 89 88 88 84 

KNN 85 85 85 85 80 

NB 63 68 63 62 53 

 

Wine 

 

Class 2 

DT 97 97 97 97 95 

KNN 97 97 97 96 95 

NB 97 97 96 96 95 

 

Winequality-

red 

 

Class 0 

DT 75 64 75 75 72 

KNN 75 75 75 72 72 

NB 92 94 92 91 91 

 

Yeast 

 

Class 0 

DT 60 62 60 59 55 

KNN 43 32 44 36 37 

NB 43 52 43 41 38 
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DT, NB, and KNN. These experiments show that the large size of data sets does not 

always lead to satisfactory accuracy in machine learning. Data-centric optimization 

leads to improved performance of class imbalance problems consisting of a majority 

class (larger number of observations) and a minority class. 
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Major scientific contributions  

In the present dissertation, problems are investigated in two main directions:  

• Derivation and study of iterative methods for searching for Nash equilibrium in 

dynamic games. The studies are described in Chapters One and Two. 

 • Creation of models and algorithms for conducting classification analysis of specific 

sets. The research is described in the third chapter.  
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