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General characteristics of the dissertation 
Industrial robots usually perform predefined tasks such as welding, assembling, transportation, etc. 

Each robot has a different number of independent joints that uniquely determine the position and 

orientation of its end effector. The number of joints of a robot determines the number of degrees of 

freedom of this robot. Robots are required to perform precisely and accurately the tasks assigned to 

them, observing a certain trajectory, and considering the obstacles in their workspace. For this reason, 

some robots are designed in such a way that they have more degrees of freedom than are required to 

perform the desired task. This makes them more flexible and increase their productivity [1]. The 

dissertation discusses and proposes approaches for executing motion for optimal time and trajectory 

planning in the presence of static and dynamic obstacles in the workspace of a redundant robot. 

Relevance of the problem and motivation 
The motivation to introduce additional degrees of freedom to the mechanical structure of the robot 

comes from the goal to increase the reliability of the robotic system and to reduce the probability of 

error. The presence of additional degrees of freedom allows movements of the manipulator that do not 

displace the end effector from a certain position. That means that the same position and orientation of 

the end effector can be performed with different joint configurations, which makes it possible to avoid 

regions with obstacles and leads to greater flexibility of the manipulator [2]. This characteristic is 

important to using robotic systems in dynamic and non-deterministic environments. Most redundant 

robots are used for industrial purposes, such as painting, welding, etc. [3]. 

The redundant robots can avoid obstacles in their workspace, while performing their main task with 

their end effector. Despite all the advantages that this type of robot has over robots without additional 

degrees of freedom, there are some peculiarities to them. The redundant robots have multiple joint 

configurations that are solutions to the inverse kinematics problem. Having multiple solutions provide 

an opportunity to choose the most appropriate joint configuration. But this makes more difficult solving 

the inverse kinematics problem and motion planning. The choice of the most appropriate joint 

configuration depends on the task assigned to the robot. The solutions of the inverse kinematics problem 

can be classified into several types depending on the values of the joint angles. The workspace of the 

robot can also be divided into several zones depending on the existing types of solutions to the inverse 

kinematics problem. When performing a movement, such as moving the robot's end effector from one 

point to another, the robot can go from one joint configuration to another in order to make a transition 

between two zones. But this change of the configuration type can lead to a deviation from the desired 

trajectory or an increased execution time. Therefore, it is necessary to explore the different areas in the 

robot's workspace and to propose an approach for finding points at which the robot can change its joint 

configuration type without deviation from the desired trajectory. In addition, in the presence of 

obstacles, the transition between some of the zones may be impossible. If the task of the robot is 

assembly and it is necessary at a certain point in its workspace to change the orientation of its end 

effector, it is possible that in case of improper planning of its movement, the end effector of the robot to 

move away from the desired point. 

The possible limitations of redundant robots in performing a given motion in the presence of 

obstacles motivated the creation of this dissertation in order to explore different methods of trajectory 

planning in an environment with available static and dynamic obstacles. The motion planning is a 

problem studied for many years and by many scientists, but there is a lack of research in the literature 

on the classification of solutions to the inverse kinematics problem depending on the values of joint 

angles and the use of this classification in motion planning. 
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Purpose and objectives of the dissertation 
The aim of this thesis is to create a mathematical model and prototype of a planar anthropomorphic 

redundant robot arm, as well as to research and create approaches for the motion control. Conducting 

this research should lead to the creation of algorithms for trajectory planning in the presence of static or 

dynamic obstacles in the workspace of the robot. To achieve the desired objective, the following tasks 

can be formulated: 

1. Classification of different types of solutions of the inverse kinematics problem depending on the 

values of the joint coordinates of the anthropomorphic redundant robot. 

2. Research and development of trajectory planning algorithms for redundant anthropomorphic robots 

to avoid static and/or dynamic obstacles and reach a desired position. 

3. Creation of a prototype of anthropomorphic redundant robot using the methods of 3D printing. 

4. Analyzing and selecting appropriate hardware components and designing a suitable software control 

system for the created redundant anthropomorphic robot.  

5. Verification of the proposed hardware and software control system and trajectory planning 

algorithms, by computer simulation and experiment with the designed robotic system. 

Structure and content of the dissertation 
The structure of the dissertation consists of Introduction, 4 chapters and Conclusion and has 132 

pages. The results presented in these chapters have been reported at 4 international conferences. The 

publications are referenced in Scopus. 

Chapter 1. Overview of the subject area 
The progress of various scientific fields such as mechanics, electronics, informatics, and mathematics 

make possible the development of robotic systems. Among the advantages of using robots are reduced 

labor costs, better precision and productivity, better flexibility compared to specialized machines, and 

replacing humans in repetitive or in dangerous tasks [4]. This chapter discusses the main characteristics 

of robots with additional degrees of freedom and different methods of motion planning in the presence 

of obstacles. 

Anthropomorphic robot arms with additional degrees of freedom 

The number of robots used in an unstructured and dynamic environment where they must work 

together with other robots or humans has significantly increased. For this reason, robots are being 

designed in such a way that they have more degrees of freedom than are necessary to perform the tasks 

assigned to them. The difference of the dimension of the joint space and that of the task space determines 

the degree of redundancy (additional degrees of freedom) for a given robotic system [5]. Robots with 

additional degrees of freedom can reach a given position and orientation of the end effector using 

different joint configurations [2]. These robotic systems are characterized by greater performance and 

accuracy in the performance of the assigned task [1, 6]. The presence of multiple joint configurations 

for a given position and orientation of the end effector allows easier avoiding of obstacles than other 

robotic systems [7]. Robots that possess human characteristics in one way or another are called 

anthropomorphic robots. 

Motion planning of redundant robots is an interesting topic, as a criterion is needed to select an 

appropriate joint configuration depending on the assigned task. Various methods for selecting an 

appropriate joint configuration have been researched and proposed in the literature. Hollerbach proposes 

the selection of such a joint configuration where torque optimization can be achieved [8], Hirakawa and 

Kawamura present a method for selecting joint configurations that can optimize the energy consumed 

by the robot [9], Chembuly and Voruganti study a method for obstacle avoidance [10] and Yoshikawa 
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introduced the manipulability coefficient metric for joint configuration selection [11]. The methods 

proposed in the literature for choosing an appropriate joint configuration are applicable to the specific 

objectives such as optimizing the energy consumed by the robot or applying a larger force. The solutions 

to the inverse problem of such a type of robot can be classified into several types according to the values 

of the joint angles. Additionally, based on the different types of solutions, the robot's workspace can be 

divided into different zones. As the robot changes its joint configuration, it may need to move from one 

zone to another. The proposed methods in the literature do not consider the fact that when the robot 

needs to move from one joint configuration to another, there is a possibility that it will pass through a 

singular configuration and deviate from the desired trajectory. This would lead to more time to complete 

the assigned task, or incorrect execution of the task. Therefore, it is necessary to explore and find the 

points (zones) in which the robot can make the change in the joint configuration without causing a 

deviation from the desired movement. 

Motion planning methods 

The end effector of a robotic system must perform a movement from a given initial position to a 

certain target position in the workspace, by avoiding static or dynamic obstacles and considering the 

joint constraints of the robot. Different methods of motion planning have been investigated and 

presented in the literature. Some of the most popular and used are Dijkstra, A*, Rapidly exploring 

random tree and probabilistic roadmap methods [12]. 

The Dijkstra method was proposed in 1959 by Edsger Dijkstra and is used to find the shortest paths 

between nodes in a given graph [13]. It is considered an effective and efficient method even with graphs 

with many nodes. The algorithm finds the shortest path from one vertex to another given vertex [14]. 

The A* algorithm is based on the best-first search algorithm and uses a heuristic function to find the 

shortest path by estimating the total costs [14]. It is suitable for planning movement with static obstacles 

avoidance, but if the graph with possible paths is too large, the algorithm will lose its effectiveness [15].  

The Rapidly exploring random tree (RRT) and Probabilistic roadmap method (PRM) algorithms 

are also some of the most popular methods of motion planning [12]. The RRT method is commonly 

used in various commercial and industrial tasks. The method creates a tree through which the robot's 

workspace is explored by randomly searching for appropriate joint configurations [16]. The algorithm 

is suitable for dynamic environments. The PRM method is used more often in a static environment with 

previously known obstacles [17]. 

Kinematics 

Kinematics studies the position, speed, and acceleration of joint coordinates. The forward and inverse 

kinematics problem are used to design any robotic system [18]. 

The goal of the forward kinematics problem is to find the position and orientation of the end 

effector of a robotic system according to given joint coordinates. To solve it, it is necessary to place 

local coordinate systems in each link of the robotic system. The most common method for selecting 

coordinate systems for open kinematics chain manipulators is the Denavit-Hartenberg convention (Fig. 

1.6), which defines the relational position and orientation of two adjacent links. It is necessary to define 

the coordinate systems of two adjacent links and to find the coordinate transformation between them. A 

fixed coordinate system 𝑂0𝑥0𝑦0𝑧0 is connected to the center of the base of the manipulator. The axis 𝑧0 

coincides with the axis of rotation and/or the translation axis of the first link relative to the base, and the 

axes 𝑥0 𝑎𝑛𝑑 𝑦0 are selected so that it is a right oriented coordinate system. The links from the base to 

the end effector are numbered with 𝑖 = 1,2, . . . , 𝑁 and a fixed coordinate system 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is connected 

to each link. The Denavit-Hartenberg convention defines the coordinate system of the 𝑖-th link. The axis 

𝑧𝑖 , 𝑖 = 1,2, … , 𝑁 − 1 is selected in the direction of the link axis. The axis 𝑥𝑖 , 𝑖 = 1,2, … , 𝑁 − 1 is 

determined by the common perpendicular between the axes 𝑧𝑖−1 and 𝑧𝑖 with the positive direction from 

link 𝑖 to link 𝑖 +  1. The axis 𝑦𝑖 , 𝑖 = 1,2, … , 𝑁 − 1 is selected, so that it complements a right oriented 
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coordinate system. The last coordinate system 𝑂𝑛𝑥𝑛𝑦𝑛𝑧𝑛 is fixedly connected to the end effector of the 

manipulator, with the 𝑧𝑛 axis defining its orientation and usually being its axis of symmetry. The 

remaining axes are determined in the described manner [19]. 

 
Fig. 1.6 Denavit-Hartenberg parameters [19]. 

After all local coordinate systems are set, the position and orientation of coordinate system 𝑖 relative 

to coordinate system 𝑖 − 1 is completely determined by the following parameters: 𝑎𝑖 is the distance 

between 𝑂𝑖 and 𝑂𝑖′  along the 𝑥𝑖 axis, 𝑑𝑖 is the distance between 𝑂(𝑖−1) and 𝑂𝑖′ along the 𝑧𝑖−1 axis, 𝛼𝑖 

is the angle between the 𝑧𝑖−1 and 𝑧𝑖 axes relative to the 𝑥𝑖 axis, 𝜃𝑖 is the angle between the 𝑥𝑖−1 axes 

and 𝑥𝑖 relative to the 𝑧𝑖−1 axis. To find the coordinate transformation between the coordinate systems 

𝑂𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1 and 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 the following steps consisting of incremental displacements and 

rotations are performed: 

• Rotate an angle 𝜃𝑖 along the 𝑧𝑖−1 axis until the 𝑥𝑖−1 and 𝑥𝑖′  axes become parallel. 

• Displacement along the 𝑥𝑖−1 axis at a distance 𝑑𝑖 until the 𝑥𝑖−1 and 𝑥𝑖′  axes coincide. 

• Displacement along the 𝑥𝑖′  axis at a distance 𝑎𝑖 until the coordinate origin 𝑂𝑖′ coincides with 𝑂𝑖. 

• Rotation of an angle 𝛼𝑖 around the axis 𝑥𝑖′  until all coordinate axes coincide. 

The transformation matrix between two coordinate systems can be expressed as a product of four 

transformations: 

𝑻𝑖
𝑖−1 = 𝑹(𝑍𝑖−1, 𝜃𝑖)𝑻𝒓(𝑍𝑖−1,𝑑𝑖)𝑻𝒓(𝑋𝑖 , 𝑎𝑖)𝑹(𝑋𝑖 , 𝛼𝑖) (1.1)  

𝑻𝑖
𝑖−1 = [

𝑐𝑜𝑠(𝜃𝑖) − 𝑠𝑖𝑛(𝜃𝑖) 0 0

𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖) 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

] [

1 0 0 𝑎𝑖

0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝑜𝑠(𝛼𝑖) − 𝑠𝑖𝑛(𝛼𝑖) 0

0 𝑠𝑖𝑛(𝛼𝑖) 𝑐𝑜𝑠(𝛼𝑖) 0
0 0 0 1

] (1.2) 

After performing the necessary calculations for the transformation matrix 𝑇𝑖
𝑖−1 we obtain: 

𝑻𝑖
𝑖−1 = [

𝑐𝑜𝑠(𝜃𝑖) − 𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝛼𝑖) 𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛 (𝛼𝑖) 𝑎𝑖 𝑐𝑜𝑠(𝜃𝑖)

𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖) 𝑐𝑜𝑠(𝛼𝑖) −𝑐𝑜𝑠(𝜃𝑖)𝑠𝑖𝑛 (𝛼𝑖) 𝑎𝑖 𝑠𝑖𝑛(𝜃𝑖)

0 𝑠𝑖𝑛(𝛼𝑖) 𝑐𝑜𝑠(𝛼𝑖) 𝑑𝑖

0 0 0 1

] (1.3) 

The solution of the forward kinematics problem is expressed as a product of all the transformation 

matrices that represent the coordinate transformations between the individual links. The Denavit-

Hartenberg convention is also applicable when solving the forward kinematics problem for redundant 

robots. 

When planning a movement along a given trajectory, it is necessary for the robot to perform certain 

positions and orientations with its end effector. For this purpose, it is necessary to find the values of the 

joint coordinates for a given position and orientation of the end effector of the manipulator. This problem 
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is known as the inverse kinematics problem [4]. The configuration of the robot is expressed by a 

column vector 𝜽 = (𝜃1, . . . , 𝜃𝑛)𝑇 , which describes the position of each joint of the robotic system. We 

say that each manipulator has 𝑛 number of links and 𝜃𝑖 is called the joint angle. The desired position 

and orientation of the end effector can be described by a homogeneous transformation matrix 𝑯 of 

dimension 4x4, according to Equation (1.4): 

𝑯 = [
𝑹 𝒑
0 1

] (1.4) 

where 𝑹 is a 3x3 rotation matrix, 𝒑 is a column vector that describes the translation, 𝑯 is a homogeneous 

transformation matrix that describes the position and orientation of the actuator. The task is reduced to 

finding the joint variables 𝜃𝑖 , . . . , 𝜃𝑛, such that 𝑻𝑛
0 (𝜃1, … , 𝜃𝑛) = 𝑯 [4]. 

Unlike the forward kinematics problem, there is no generally accepted algorithm for the solution of 

the inverse kinematics problem. The inverse kinematics problem is usually said to be solved for a given 

manipulator if the joint variables are determined by an algorithm that allows finding all configurations 

of the joint variables for a given position and orientation [20]. In robots with additional degrees of 

freedom, it is possible to have infinitely many solutions to the inverse kinematics problem. Therefore, 

methods for finding solutions to the inverse kinematics problem of robots without additional degrees of 

freedom are not applicable to redundant robots. 

Iterative methods based on the Jacobi matrix are most often used to solve the inverse kinematics 

problem for redundant robots. These methods provide an approximate solution and at each step to 

minimize the difference between the current position and orientation of the end effector and the desired 

position and orientation. Jacobian solutions are linear approximations to the inverse kinematics problem. 

They model linearly the end effector movements relative to instantaneous changes in joint angles. The 

Jacobian matrix is a function of the joint angles 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑛). Orin and Schrader describe in [21] 

how to calculate the Jacobi matrix for different types of joints. The simplest method based on the 

Jacobian matrix is the transposed Jacobian matrix method. The method uses the transposed Jacobian 

matrix. It was first used for the solution of the inverse kinematics problem in [22]. The change in joint 

velocities ∆θ is expressed with Equation (1.7): 

∆𝜽 = 𝛼𝑱(𝜽)𝑇𝒆 (1.7) 

where 𝛼 is a scalar constant that affects the change of 𝜽 at each iteration [23] and 𝒆 is an error vector 

(6𝑥1) representing the position and orientation deviation between the current position and orientation 𝒔 

and the target position and orientation 𝒕: 𝒆 = 𝒕 − 𝒔 . The value of 𝛼 is chosen such that the new value 

of the vector 𝒆 is minimal. The advantages of this method are minimal computation time and easy 

implementation [24], but the disadvantage of the method is its poor results near singular configurations 

[25]. 

The inverse Jacobi method uses the inverse Jacobi matrix to calculate the change in joint variables. 

The inverse Jacobi matrix exists only under the condition that the Jacobi matrix has full rank. The 

dimensionality of the Jacobian matrix grows with increasing degrees of freedom of the robot, therefore 

the method will require much more time to find the inverse matrix for robots with additional degrees of 

freedom [26]. Nearly to the singular configuration, this method is inapplicable because the rank of the 

Jacobian matrix is not complete [27]. 

A good approximate solution to the inverse problem of kinematics is given by the pseudo-inverse 

Jacobi matrix method, also known as the inverse Moore-Penrose matrix. It is denoted by 𝑱† and is an 

𝑛 × 𝑚 matrix. For robotic systems with additional degrees of freedom, the pseudo-inverse Jacobi matrix 

is expressed with Equation (1.9): 

𝑱† = 𝑱𝑇(𝑱𝑱𝑇)−1 (1.9) 

The method of the pseudo-inverse Jacobi matrix is relatively fast, but with a not very good 

approximation [46]. The method results in a very high velocity of the end effector near a singular 
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configuration or when the point where the end effector of the robot needs to be positioned is outside its 

reachable area. 

The main common problem of the methods discussed so far is their poor performance near singular 

configuration. This problem can be dealt with the method of Levenberg-Marquardt – method of 

damping least squares (DLS) with a damping factor. The damping factor can reduce the large velocity 

near a singularity. The method was used to solve the inverse kinematics problem for the first time by 

Wampler [28]. It was determined to be the best for finding a solution to the inverse problem of robot 

kinematics with additional degrees of freedom compared to other methods based on the Jacobian matrix 

[24, 29]. Its disadvantage is that it is slower compared to the other considered methods, requiring more 

computing time [24]. 

Chapter 2. Modelling of a planar anthropomorphic robot arm 
In this chapter, the functional requirements for the researched robot are presented and basic notations 

are introduced. The methods used to solve the forward and inverse kinematics problem for the 

considered robot are described. No classification by type of solutions to the inverse kinematics problem 

for robots with additional degrees of freedom is found in the literature. This classification is important 

in motion planning since a change in the solution type can lead to a deviation from the desired trajectory 

or an incorrect execution of the assigned task. The scientific applied contributions in this chapter are the 

application of a method for classifying by type the solutions of the inverse kinematics problem for the 

considered robot, performing an analysis of the workspace depending on the obstacles for a planar 

anthropomorphic robot with additional degrees of freedom and the study of the service angle in the 

different zones (defined by the solution types) in the robot's workspace. This chapter presents the results 

obtained from the completion of the first task from the tasks of the dissertation. 

Functional requirements 

The main task of robots is to perform a given movement from point to point or along a predetermined 

trajectory. For this purpose, it is necessary to consider the structural limitations of the robot, as well as 

the limitations caused by the environment in which it manipulates. Typically, these constraints are 

obstacles in the robot's workspace. They can be static or dynamic. The robot designed in the dissertation 

must be able to perform a given task in both a static and a dynamic environment. For this purpose, it 

must meet the following requirements: 

• The robot must have additional degrees of freedom when performing a plane motion, which 

means it must have at least three links and 4 rotational joints to perform motion in the plane. 

• The lengths of the links must be consistent with the dimensional parameters of the actuators that 

are used. The robot must be able to perform a spatial movement. 

• It is necessary for the designed robot to be able to perform a given trajectory precisely, without 

deviation from the assigned path and in a minimum time. 

• The robot must have an appropriate hardware and software system with the help of which it can 

locate and avoid the obstacles in its workspace. 

Anthropomorphic robot arm description 

Let 𝑚 denotes the number of independent parameters describing the execution of a given task in the 

robot's workspace, and 𝑛 is the number of degrees of freedom of the robot. In order the robot to have 

additional degrees of freedom in respect to a planar motion in the 𝑂𝑥𝑦𝑧 plane, 𝑛 must be greater than 𝑚. 

To perform an arbitrary planar motion, 3 degrees of freedom are required, ie. 𝑚 = 3. Therefore, the 

robot must have more than 3 degrees of freedom. 

Let 𝑙𝑖 , 𝑖 = 1, … ,4 denote the lengths of the robot's links. The designed robot will have 4 rotational 

joints. Let 𝜃𝑖 , 𝑖 = 1, … ,4 denote the joint coordinates of the robot. We will call the final link of the robot 
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the end effector or gripper. We will denote the position of the end effector in the plane 𝑂𝑥𝑦𝑧 by (𝑥, 𝑦, 𝑧). 

The robot will perform tasks where the axis 𝑧 is assumed to be constant and one of the orientation vectors 

remains parallel to 𝑂𝑧. The rotational joints will have the following joint constraints: 

𝜃𝑖
𝑚𝑖𝑛 ≤ 𝜃𝑖 ≤ 𝜃𝑖

𝑚𝑎𝑥 , за 𝑖 = 1, … ,4 (2.1) 

Forward kinematics 

In robotic systems with an open kinematic chain, the joint coordinates uniquely determine the 

position and orientation of the end effector [30]. The considered robot with additional degrees of 

freedom has 4 rotational joints and corresponding joint coordinates – 𝜃1, 𝜃2, 𝜃3 and 𝜃4. When the fourth 

link is of zero length, the fourth joint coordinate 𝜃4 changes only the orientation of the end effector and 

does not affect its position. In such a case, the joint coordinates 𝜃1, 𝜃2, 𝜃3 determine the position of the 

end effector in the 𝑂𝑥𝑦 plane. We are only interested in the position of the end effector since the 

orientation is achieved by changing the joint coordinate 𝜃4. Fig. 2.1 presents the kinematic diagram of 

the considered planar redundant robot. 

Let us denote the position of the end effector in the workspace by (𝑥, 𝑦) and the joint coordinates in 

the generalized space by 𝜽 = (𝜃1, 𝜃2, 𝜃3). 

 

 
Fig. 2.1. Kinematics scheme of a planar redundant robot.  

We will use the Denavit-Hartenberg convention to solve the forward kinematics problem. A 

coordinate system 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is placed at each joint 𝑖, 𝑖 = 0,1,2, … , 𝑛, and the coordinate system 𝑂0𝑥0𝑦0𝑧0 

is placed to the base of the robot. The 𝑧𝑖 axis coincides with the axis of rotation of joint 𝑖 + 1 relative to 

joint 𝑖. For convenience, the 𝑧0 axis is chosen to coincide with the 𝑧1 axis and 𝑂0 ≡ 𝑂1. The 𝑧𝑛 axis is 

chosen to represent the axis of rotation of the actuator. The 𝑥𝑖 axis is perpendicular to the 𝑧𝑖−1 and 𝑧𝑖 

axes. The 𝑦𝑖 axis complements 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 to a right oriented coordinate system. After a fixed local 

coordinate system 𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is attached to each joint, the position and orientation of coordinate system 

𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 can be determined relative to coordinate system 𝑂𝑖−1𝑥𝑖−1𝑦𝑖−1 𝑧𝑖−1. The following parameters 

are used for this purpose. The distance between 𝑂𝑖−1 and 𝑂𝑖  along the 𝑥𝑖 axis is denoted by 𝑎𝑖−1, the 

distance between two adjacent coordinate systems along the 𝑧𝑖 axis is represented by 𝑑𝑖, 𝛼𝑖−1 is the 

angle between the axes 𝑧𝑖−1 and 𝑧𝑖 relative to the 𝑥𝑖 axis. The generalized coordinates 𝜃𝑖 represent a 

rotation relative to the 𝑧𝑖 axis, with joint 𝑖 being a rotational joint respectively [31]. The Denavit-

Hartenberg parameter values for the considered robot are presented in Table 2.1 

Table 2.1. Denavit-Hartenberg parameters. 

i 𝜶𝒊−𝟏 [rad] 𝒂𝒊−𝟏 [mm] 𝒅𝒊 [mm] 

1 0 0 𝑑1 

2 0 𝑙1 0 

3 0 𝑙2 0 

4 0 𝑙3 0 
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The Denavit-Hartenberg convention allows us to express any transformation matrix between two 

coordinate systems by performing the following translations and rotations. Rotation around the 𝑧𝑖−1 axis 

at an angle 𝜃𝑖 until the 𝑥𝑖−1  and 𝑥𝑖 axes become parallel. Movement along the 𝑧𝑖−1 axis by a distance 

𝑑𝑖 until the 𝑥𝑖−1  and 𝑥𝑖 axes coincide. Movement along the 𝑥𝑖 axis at a distance 𝑎𝑖 until the coordinate 

origin 𝑂𝑖−1 coincides with 𝑂𝑖. Rotation of an angle 𝛼𝑖 around the 𝑥𝑖 axis until all coordinate axes 

coincide. These transformations are represented as a product of four matrices (1.1). After multiplication 

of the given matrices for the transformation matrix 𝑻𝑖
𝑖−1, we get the matrix from (1.3). 

To solve the forward kinematics problem, it is necessary to find a transformation matrix 𝑻4
0, which 

is expressed as a product of all transformation matrices: 

𝑻4
0 = 𝑻1

0𝑻2
1𝑻3

2𝑻4
3 (2.2) 

After expression and substitution in (1.3) and (2.2) for the transformation matrix 𝑻4
0, we obtain the 

following result: 

𝑻4
0 =  [

𝑐1234 −𝑠1234 0 𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123

𝑠1234 𝑐1234 0 𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3𝑠123

0 0 1 𝑑1

0 0 0 1

] (2.3) 

Where for 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 4: 

• 𝑠𝑖 = sin(𝜃𝑖) , 𝑐𝑖 = cos(𝜃𝑖), 

• 𝑠𝑖𝑗 = sin(𝜃𝑖 + 𝜃𝑗) , 𝑐𝑖𝑗 = cos(𝜃𝑖 + 𝜃𝑗), 

• 𝑠𝑖𝑗𝑘 = sin(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘) , 𝑐𝑖𝑗𝑘 = cos(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘), 

• 𝑠𝑖𝑗𝑘𝑙 = sin(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘 + 𝜃𝑙) , 𝑐𝑖𝑗𝑘𝑙 = cos(𝜃𝑖 + 𝜃𝑗 + 𝜃𝑘 + 𝜃𝑙). 

For the 𝑥, 𝑦 and 𝑧 coordinates defining the position of the end effector of the robot, we get: 

𝑥 = 𝑎1𝑐1 + 𝑎2𝑐12 + 𝑎3𝑐123, 𝑦 = 𝑎1𝑠1 + 𝑎2𝑠12 + 𝑎3𝑠123, 𝑧 = 𝑑1 (2.4) 

Inverse kinematics problem 

The goal of the inverse kinematics problem is to find the required joint coordinates for a given 

position and orientation of the robot's end effector. The solution of the inverse kinematics problem for 

robots with an open kinematic structure is most often used in motion planning to determine the set of 

points that can be used to reach a certain point in the configuration space. Since robots with additional 

degrees of freedom can reach a given position in their workspace with multiple joint configurations, the 

solutions to the inverse kinematics problem are also infinitely many. Geometric approach is used in this 

dissertation for solving the inverse kinematics problem [20]. Fig. 2.3 shows a planar redundant 

manipulator with 𝑛 links. With 𝑙1, … , 𝑙𝑛, where 𝑖 = 1, … , 𝑛 are denoted the lengths of the links. The end 

effector of the robot should be positioned at point 𝑃𝑛 (Fig. 2.3). For this purpose, it is necessary to find 

the values of the joint coordinates that position the end effector in the target position. The approach 

starts from the end effector (from the last joint coordinate) and searches for a possible solution for each 

joint coordinate until the first joint coordinate is reached. A set 𝑺𝑛 of points uniformly distributed on a 

circle with center 𝑃𝑛  and radius 𝑟𝑛 = 𝑙𝑛  is generated. For each point 𝑃𝑛−1 of the set 𝑺𝑛, it is checked 

whether there exists a configuration to position the end of link 𝑛 − 1 at point 𝑃𝑛−1. For this purpose, a 

set 𝑺𝑛−1 of points uniformly distributed on a circle with center 𝑃𝑛−1 and radius 𝑟𝑛−1 = 𝑙𝑛−1 is generated 

in an analogous way. These actions are repeated for each joint coordinate from the end effector to the 

base of the robot. When a set 𝑺3 of points uniformly distributed on a circle with center 𝑃3 and radius 

𝑟3 = 𝑙3 is reached, a solution to the inverse kinematics problem of a two-link mechanism is sought. For 

each point 𝑃2 of the set 𝑺3 is checked whether there exists a valid configuration for the two-link 

mechanism consisting of units 𝑙1 and 𝑙2. If at least one solution exists, it is checked whether the found 
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joint coordinates satisfy the joint constraints. The joint angles that satisfy the joint constraints define the 

joint configurations that can be executed by the robot. Then the configurations defined by points 

𝑃0, 𝑃1𝑟 , … , 𝑃𝑛  and 𝑃0, 𝑃1𝑙 , … , 𝑃𝑛  are saved as the solution of the inverse kinematics problem. 

 
Fig. 2.3 Solution of the inverse kinematics problem for planar redundant robot. 

Classification of different types of solutions of the inverse kinematics problem  

Let us consider a planar manipulator with three links of non-zero lengths (Fig. 2.5.). Depending on 

the sign of the second and third joint coordinates, four different types of solutions to the inverse 

kinematics problem can be defined: Solution RR when 𝜃2 > 0 and 𝜃3 > 0. Solution RL when 𝜃2 > 0 

and 𝜃3 < 0. LR solution when 𝜃2 < 0 and 𝜃3 > 0. Solution LL when 𝜃2 < 0 and 𝜃3 < 0. The different 

types of solutions are shown in Fig. 2.5. 

 
Fig. 2.5. The four different solution types of the inverse kinematics problem. 

The four types of solutions are not possible for every point of the workspace. Passing from one 

solution type to another is important when planning a robot motion.  

Let 𝑙𝑖 , 𝑖 = 1, … ,4 denote the lengths of the robot's links and assume that the investigated robot has 

the following link lengths (2.10) and joint constraints (2.11): 

𝑙1 = 150 𝑚𝑚, 𝑙2 = 100 𝑚𝑚, 𝑙3 = 100 𝑚𝑚, 𝑙4 = 0 𝑚𝑚, (2.10) 

−
𝜋

2
≤ 𝜃𝑖 ≤

𝜋

2
, за 𝑖 = 1, … , 4. (2.11) 

Considering the joint constraints, the robot workspace can be divided into different zones, depending 

on the different types of solutions of the inverse kinematics problem. Ten different zones are available 

for the considered robot (Fig. 2.6). 
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The union of all zones represents the entire workspace of the manipulator (Fig. 2.6.a). The 

intersection of all zones represents an area of the workspace in which all four different types of joint 

configurations are found (Fig. 2.6.b). In the workspace of the robot there are trajectories, for the 

execution of which it is required to change the type of solution of the inverse kinematics problem. Fig. 

2.6 shows such a trajectory. The robot cannot move from point 1 to point 15 without changing from one 

type of joint configuration to another. This is because point 1 is in zone 10 and point 15 in zone 1 and 

zones 1 and 10 do not intersect. Of course, if the desired motion is entirely in zone 1 or zone 10, then 

the motion will be performed without changing the solution type, since only one type of joint 

configuration exists in these zones. 

 
Fig. 2.6. The different zones in the workspace of the robot a) the union of all zones b) the intersection of all zones. 

In addition to the joint constraints defined in 2.11, which define the workspace of the manipulator, 

there may be obstacles in the workspace. Depending on their position and geometry, the workspace of 

the manipulator can be changed. Let's assume that we have an obstacle with a square shape and 

coordinates (195, 90). Side length 31 mm and an additional 49 mm for the width of the joints to avoid 

collision with the obstacle (Fig. 2.8.a.). 

 
Fig. 2.8. Workspace of the robot in the presence of an obstacle: a. robot workspace and obstacle position; b. 

change in the four decision types and desired movement trajectory. 

As can be seen from the figure, the zones containing solution type RR and LL are divided into two 

separate parts. The obstacle changes the zones of the four types of solutions of the inverse kinematics 

problem (Fig. 2.8.b.). If the robot must perform a movement with a starting position from zone number 

1 and an end point in zone number 5 (Fig. 2.8), then this movement would not be possible without 

changing the solution type. Because of joint constraints or the presence of obstacles in the workspace, 

the robot must change the type of solution to the inverse kinematics problem to be able to realize the 

desired movement. 
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Service angle 

The term service angle was introduced by Vinogradov in 1971. The service angle is a measure of the 

multiple orientations of the end effector that the manipulator can realize when the end effector is 

positioned at a given point in the workspace [32]. 

The four types of solutions divide the robot's workspace into ten zones (Fig. 2.6). In some of the 

zones, such as the first and tenth, only one type of solution to the inverse kinematics problem exists. 

Therefore, the possible orientations of the fourth joint can be fulfilled by only one type of solution. In 

the other zones, there are points that the robot can reach with its end effector with the same orientation, 

but with a different type of solution of the inverse kinematics problem. At these points, if the robot's end 

effector needs to change its orientation, it is possible for it to deviate from the point where it is positioned 

when switching from one decision type to another. For this reason, it is necessary to analyze the service 

angle in the different zones. Due to the symmetry of the robot's workspace, it is sufficient to examine 

the service angle for the first six zones. 

Fig. 2.10 shows all the possible orientations for positioning the end effector at point 𝑃 of zone 1. The 

third link can be rotated through an angle 𝛼 from position 1 to position 9. The fourth link has a length 

equal to zero and has joint constraints given in (2.11). Fig. 2.10.a presents the service angle of the fourth 

joint. Point 𝑃 can only be reached with solutions of type RR. 

 

Fig. 2.10. Different joint configurations with which the end effector of the robot can reach point P: a. in zone 1; 

b. in zone 2; c. in zone 3. 

In Fig. 2.10.b. the possible configurations for reaching point 𝑃 in zone 2 are illustrated. In this zone, 

two types of solutions to the inverse kinematics problem exist, RR and RL. The transition between the 

two types of solutions occurs around configuration 4. The service angle can be represented as the sum 

of the angles 𝛼1 and 𝛼2. In this area, the robot's end effector can change its orientation without the need 

to move from point 𝑃. 

The orientation in zone 3 is shown in Fig. 2.10.c. There are three types of solutions in this area: RR, 

RL and LR. The robot's end effector can change its orientation without deviation from point 𝑃. 

If point 𝑃 is in zone 4, 3 types of solutions to the inverse kinematics problem are possible: RR, LL 

and RL. As can be seen from Fig. 2.11.a., the various angles of the end effector are grouped into two 

zones. Here, to move from one zone to another, it is necessary to leave point 𝑃. This is an important 

condition that must be considered when planning movements. In zone 5 (Fig.2.11.b.) the situation is 

analogous to zone 4. Here there are two types of solutions: LL and RR. 

In zone 6, all types of solutions exist (Fig. 2.11.c). Depending on the position of point 𝑃 in zone 6, it 

is possible that all possible configurations form a continuous interval. In this way, a change in the 

orientation of the end effector without displacement from point 𝑃 would be possible. Also, in this area 
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there are points for which the solutions of the inverse kinematics problem do not form a continuous 

interval. In this case, the robot's end effector must move from point P to change the type of solution. 

 
Fig. 2.11. Different joint configurations with which the end effector of the robot can reach point P: a. in zone 4; 

b. in zone 5; c. in zone 6. 

If the end effector of the robot is positioned in a certain position and needs to change its orientation, 

then the reasoning made should be considered and such a joint configuration should be chosen that 

changes the orientation and minimizes the deviation from the target point. 

Chapter 3. Anthropomorphic robot arm control 
The main purpose of the control is to find and assign appropriate commands (positions) to the motors. 

The task of the actuators is to position the joint coordinates in such a way that the end effector of the 

robot reaches the desired position and orientation. For this purpose, a hardware and software system are 

required to perform the necessary calculations and control the robot, as well as a suitable motion 

planning algorithm. The proposed methods in the literature for motion planning do not consider suitable 

transition points at which to make the change in solution type of the inverse kinematics problem. In the 

motion planning algorithms proposed in this chapter, appropriate transition points are considered so that 

the robot can complete its assigned task in minimum time and without deviation from the assigned 

motion. In this chapter, the following scientific applied contributions are achieved: a trajectory planning 

algorithm using graph theory for a planar robot arm with additional degrees of freedom and limited joint 

space is proposed, motion planning approaches in the presence of static and dynamic obstacles for a 

planar robot are also proposed for a robot with additional degrees of freedom. The applied contribution 

in this chapter is the design of a hardware and software control system for an anthropomorphic robot 

with additional degrees of freedom. In this chapter are described the obtained results from the 

completion of the second and third tasks from the dissertations tasks. 

Hardware requirements 

It is necessary for the robot to be able to perform a desired movement or sequence of movements. 

For this purpose, the robot needs a hardware system to control the motors of the robot. The requirements 

for hardware components are as follows: 

• The main controller must have the necessary computational resources to calculate the forward 

and inverse kinematics problems. 

• The control electronics need to have sufficient memory to allow the loading of a sequence of 

positions that the robot must perform with its end effector. 

• The control electronics need to be based on open-source platforms and a convenient development 

environment. 

• It is necessary for the robot to allow control via both a USB port and a Wi-Fi connection. 
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• The main controller must have at least 3 serial UART ports. One for communication with the 

actuators, one for the module that will provide wireless communication with the robot and one 

for the UART communication with the operator's computer. 

• The control electronics must have light indicators to indicate the status of the motors (on/off), 

whether the control controller has power, and whether a wireless connection to the robot is 

established. 

• The actuators must allow movement of rotational joints of 180 degrees and position control. 

• Since the redundant anthropomorphic robot arm will be used for research and teaching purposes, 

the designed hardware system for its control must be easily expandable and upgradeable. 

Hardware components 

The selected control electronics of the robot are based on the Arduino platform and the WeMos D1 

ESP8266 Wi-Fi module. It is necessary to control the rotational joints of the robot by position, therefore 

HerkuleX DRS-0101 smart servo motors were selected for their control. FeeTech FT90M servomotors 

are used to drive the actuator and translation mechanism. 

Smart servo motors HerkuleX DRS-0101 are controlled via serial communication and can return 

information about their current position and speed. They allow smooth control of their position. They 

support UART communication, which allows easy change of the position, the color of the LED 

indicator, and control of up to 254 servo motors at the same time. They also support up to seven different 

error types. The presence of any of these errors is reported by the LED indicator [33]. The translation 

mechanism and the end effector of the robot are controlled by FeeTech FT90M mini servo motors. 

They have no feedback well as speed control and are controlled by pulse-width signals (PWM). Their 

operating voltage is 4.8-6 V [34]. The Arduino Mega 2560 microcontroller and the WeMos D1 mini-

Wi-Fi module were chosen to control the robot. The Arduino Mega 2560 is a microcontroller based on 

the ATmega2560 microcontroller. It has 54 digital input/output pins, 16 analog inputs, and allows USB 

connectivity. It has 4 hardware serial UART ports, which makes it suitable for controlling the 

anthropomorphic robot [35]. The microcontroller has all the necessary computational resources to 

calculate the forward and inverse kinematics task, which are necessary to perform a given movement 

and correctly position the executive unit. The WeMos D1 mini-Wi-Fi module allows the robot to receive 

commands via WebSocket, as well as providing a convenient programming and demonstration web-

based graphical user interface. The WeMos D1 Mini is a small Wi-Fi device based on the ESP8266EX 

chip [36]. It can be reprogrammed over a Wi-Fi connection. Control electronics have three main light 

indicators. 

Hardware architecture and communication 

The communication method of the described hardware components is shown on Fig. 3.4. Three of 

the Arduino microcontroller's hardware UART ports are used to communicate with the DRS-0101 servo 

motors, the Wi-Fi module, and the operator's computer. UART interfaces allow two-way 

communication. Smart servos are connected on the same communication channel. They are responsible 

for controlling the four rotational joints and returning information about the current position. The small 

servo motors are controlled by the PWM signals generated by the Arduino microcontroller. 

The Arduino Mega microcontroller is responsible for calculating the forward and inverse kinematics 

problem, controlling the motors, and handling the communication protocol. The Wi-Fi module provides 

both a WebSocket and an HTTP server. The WebSocket acts as a proxy and forwards requests and 

responses to and from the Arduino board. The HTTP server serves the developed graphical web-based 

interface. This interface uses the WebSocket connection to control the robot. Also, the robot can be 

controlled directly, through a USB connection between a computer and the Arduino microcontroller. 
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Fig. 3.4. Hardware architecture. 

Software requirements 

The main purpose of the robot is to be able to perform a predefined movement or set of movements. 

For this purpose, software system must be developed that meets the following requirements: 

• The software system must be able to solve the forward and inverse kinematics problems correctly 

and quickly. 

• It allows the user to control the robot, turn the motors on or off, set a desired position in Cartesian 

or generalized coordinates, set a sequence of points for a certain movement. 

• The software system must provide a communication protocol for communicating with the robot 

and the ability to monitor the responses returned by the robot. 

• The software system must also provide a user interface which can be both graphical and textual. 

• The designed software system should allow easy addition of new components and functionalities. 

This would enable the developed robotic system to be used for various educational, research and 

industrial tasks. 

Software system control 

A software system has been developed that meets the described requirements. The software system 

consists of three main modules: kernel module, service module and graphical user interface. The first 

module runs on the Arduino microcontroller, and the other two on the WeMos D1 mini-Wi-Fi module. 

Fig. 3.6 presents the architecture of the designed software system. 
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Fig. 3.6. Architecture for software system control of a planar robot. 

The kernel module is responsible for processing the commands sent through the communication 

protocol, as well as solving the forward and inverse kinematics problem. The module is also responsible 

for sending the necessary commands to the motors. The kernel module software is implemented using 

the C++ programming language and the Arduino IDE programming environment. Commands to the 

robot's motors can be sent via USB connection between the computer and the microcontroller or via 

WebSocket communication, which is handled by the service module. 

The service module runs independently of the kernel module and provides the ability for WebSocket 

and HTTP communication, as well as a Wi-Fi access point for the robot. This module is responsible for 

making the connection between the user interface and the kernel module. The Wi-Fi module supports 

an HTTP server that allows the development of a graphical user interface. The user interface can be 

accessed from any web browser after connecting to the robot via a Wi-Fi access point. Only JavaScript 

and HTML/CSS were used to implement the user interface.  

An application of graph theory to trajectory planning 

The task of industrial manipulators is usually to perform a predefined movement without deviation 

from the desired trajectory and in a minimum time. Therefore, the time to execute a given movement or 

predefined trajectory is an important part of the control of robotic systems. The faster and more 

accurately the robot can complete the trajectory, the greater its productivity will be. 

Greedy approach 
Depending on the values of the joint coordinates, four types of solutions to the inverse kinematics 

problem can be classified. When executing a desired trajectory, the robot may need to change the 

solution type. To execute a movement, the motion can be planned as follows. The motion starts from an 

arbitrary solution of the inverse kinematics problem. This solution type is saved and used for subsequent 

points of the desired trajectory until a change in the solution type of the inverse kinematics problem is 

required. If a solution type change is required, the motion must stop, and the joint configuration type of 

the robot must be changed. After that, the execution of the movement can continue. This method is 

called the greedy approach. It is necessary to note that when applying this method to a redundant robot 

and with limited joint space, when changing the solution type of the inverse kinematics problem, the 

robot will deviate from the desired trajectory. 

Algorithm for trajectory planning with minimal deviation from the desired path 

It is essential for a robotic system to be able to perform a given task with maximum precision and in 

minimum time. Since most robots follow a predefined trajectory, this means that during their movement 

they must not deviate from this trajectory. The algorithm must determine the solution types of the inverse 

kinematics problem. The desired trajectory must be divided into a certain number of points so that a 

discrete structure can be used as a directed graph for trajectory planning. The approach should find the 

possible solutions of the inverse kinematics problem for each point and classify them according to their 

type, then construct a weighted graph and find a minimum cost path for the desired trajectory. This 

trajectory planning algorithm can be presented in several phases: 

1. Kinematic analysis of a planar redundant robot  

The first phase of the algorithm consists in performing a kinematic analysis of the robot, considering 

its joint constraints. Kinematic analysis will provide information on the inverse kinematics solution 

types. 

2. Trajectory analysis 

The second phase consists of performing an analysis of the desired trajectory for which the robot's 

motion must be planned. This trajectory must be divided into a set of points equidistant from each other. 

3. Generation of solutions 
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In the third phase, it is necessary to calculate the different solutions of the inverse kinematics problem 

for each of the selected points of the trajectory from the previous step. Since the considered robot arm 

has additional degrees of freedom, there exists a set of solutions to the inverse kinematics problem for 

each point. Therefore, the solutions must be limited and equidistant from each other. 

4. Classification of the solutions 

In this phase, all generated solutions must be classified according to the solution types of the inverse 

kinematics problem found in the kinematic analysis of the first phase.  

5. Construction of weighted directed graph 

The next phase consists in constructing a directed graph with weights. Each of the vertices of the 

graph corresponds to a solution generated from step 3. Between two vertices 𝑣 and 𝑢 there will be an 

edge (𝑣, 𝑢) if 𝑣 and 𝑢 correspond to two adjacent points 𝑝𝑣 and 𝑝𝑢 of the desired trajectory and 𝑝𝑣 is 

before 𝑝𝑢. The weight 𝜔(𝑣, 𝑢) for each edge (𝑣, 𝑢) can be defined as follows: 

𝜔(𝑣, 𝑢) = ∑|𝜃𝑖
𝑣 − 𝜃𝑖

𝑢|

𝑘

𝑖=1

(3.1) 

Where 𝑘 is the number of joint coordinates and (𝜃1
𝑣 , 𝜃2

𝑣 , … , 𝜃𝑘
𝑣)  and (𝜃1

𝑢 , 𝜃2
𝑢 , … , 𝜃𝑘

𝑢)  are the solutions 

corresponding to vertices 𝑣 and 𝑢. For the considered robot 𝑘 = 3. Equation (3.1) does not consider the 

time required to accelerate or stop the motion. These times can be ignored because the planned trajectory 

is considered to have acceleration only at the beginning and deceleration at the end of the movement. 

Equation (3.1) considers the difference in the joint coordinates of all 𝑘 vertices. It should be noted that 

passing through a singular configuration may require a longer execution time. 

6. Finding the path with minimum cost 

The final phase of the algorithm is to find an optimal path from each vertex that represents a start 

position solution to each vertex that represents a goal position solution of the desired trajectory. Two of 

the most used methods in graph theory are Floyd-Warshall and Dijkstra. The Floyd-Warshall algorithm 

has high computational complexity and is suitable for graphs with a small number of vertices. Another 

popular algorithm is the heuristic method A*. When applying the Dijkstra and A* algorithms to traversal 

and search in a graph, there is only one start and one end vertex. In the considered trajectory planning 

case for a planar robot with additional degrees of freedom, there are more than one start and goal 

vertices, depending on the number of solutions generated. All initial vertices found must be considered. 

Therefore, the Floyd-Warshall algorithm will be used for graph theory-based trajectory planning for the 

anthropomorphic robot with additional degrees of freedom. Fig. 3.14 presents a diagram including the 

individual steps of the algorithm for planning a time-optimal trajectory. 

 
Fig. 3.14. Schematic representation of the trajectory planning algorithm. 
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The result of the algorithm will be a path from start to target vertex with minimum weight. These 

will be the solutions of the inverse kinematics problem for successive points of the desired trajectory. 

Between every two consecutive points representing a different solution type, a stop point must be 

planned to pass through a singular configuration and change the current solution type. In this way, the 

movement along the trajectory can be planned with a minimum execution time. 

Comparison of trajectory planning algorithms 

To compare the presented trajectory planning algorithms, we will use the trajectory from Fig. 2.6.a. 

and the redundant robot. Again, we will recall that the robot has link lengths (2.10) and joints constraints, 

which are defined in (2.11). 

The trajectory that the robot must execute is an arc movement. The arc is part of a circle whose center 

has coordinates (140, 0) mm and radius 155 mm. The desired trajectory cannot be executed by the robot 

using only one type of solution to the inverse kinematics problem. Therefore, at least one solution type 

change will be required. The desired trajectory is divided into 15 equally spaced points. Up to 100 

solutions of the inverse kinematics problem are generated for each point. These solutions are categorized 

according to the 4 possible solution types of the inverse kinematics problem. Since the robot arm has 

constrained joint space, there exist points with a small number of solutions for the selected trajectory. 

The total number of solutions found is 408. 

If we plan the movement with the greedy approach, it can be performed with a single change of the 

decision type (at point 12). But the constrained joint space will require a deviation from the desired 

trajectory when performing this change. The motion can be planned without deviating from the desired 

trajectory if the decision type change occurs at an earlier position. When executing the proposed 

trajectory planning algorithm with minimum execution time, the total number of solutions found to the 

inverse kinematics problem is 408. This means that the constructed graph has 408 vertices. Therefore, 

the Floyd-Warshall algorithm can be directly applied since the number of vertices of the graph is less 

than 1000. The planned optimal path consists of a trajectory that requires two changes of the solution 

type of the inverse kinematics problem. The first change needs to be made in point 5, and the second in 

point 8. A comparison of the execution time of the desired move using the three approaches: greedy 

approach, one solution change move, and the proposed algorithm is shown in Fig. 3.18. 

 

Fig. 3.18. Comparison of the desired trajectory execution time using the considered approaches. 

As it can be seen from the figure, the greedy algorithm is fastest until the solution type changes, at 

point 12. It takes more time to make a change in the solution type of the inverse kinematics problem 

because the change at point 12 causes a deviation from the desired trajectory. The one solution change 
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planned motion of the solution type in point 7 has less time to execute because the change is performed 

in a position that requires less joint displacement. As we can see, the proposed algorithm has the least 

execution time. Two changes of the solution type are performed, and after the second change, the 

algorithm takes the lead over the other two algorithms. 

Motion planning in the presence of static obstacles 

When a manipulator operates in an environment with obstacles whose geometric features are known 

and their position remains constant during the movement of the robot, we say that the robot is in an 

environment with static obstacles. In this case, a movement must be planned that can be executed 

without the risk of colliding with an available obstacle. For this purpose, a point-to-point obstacle 

avoidance motion planning algorithm for a planar robot will be created, considering the robot's 

kinematic characteristics as well as the appropriate transition points. Since planar motion will be 

considered, the robot has additional degrees of freedom. Its joint constraints are defined in (2.11).  

The robot workspace can be divided into a finite number of square segments of side length 𝑎 and a 

finite number of points. Additionally, we can consider a finite set 𝑨 of valid joint coordinates for which 

there is no collision with obstacles. The solution of the forward kinematics problem for the considered 

set will result from a finite set 𝑩 of coordinates in the robot workspace. Then, an undirected unweighted 

graph 𝑮 can be created as follows.  

The vertices of the graph correspond to every single point of the set 𝑩. For every two distinct vertices 

𝑢, 𝑣 there exists edges (𝑢, 𝑣) and (𝑣, 𝑢) if: 

• the norm of the vector difference of the corresponding 𝑢 and 𝑣 coordinates in the workspace is 

less than a predefined value 𝛼; 

• the norm of the vector difference of the corresponding joint coordinates of 𝑢 and 𝑣 is less than 

a predetermined value 𝛽; 

• there is no possibility of collision with an available obstacle when the robot moves from 𝑢 to 𝑣; 

• the corresponding coordinates in the workspace lie within the same segment of the discretized 

workspace (this allows the robot to change its configuration from one solution type of the 

inverse kinematics problem to another) or if both configurations have the same solution type of 

the inverse kinematics problem. This allows the robot to move to an adjacent position without 

changing the current solution type. 

The breadth first search (BFS) algorithm can be used to find a path between two vertices in the graph 

𝑮. To construct the graph 𝑮 and perform BFS, it is sufficient to solve only the forward kinematics 

problem. This is a computationally efficient task for open kinematic loop manipulators. If the desired 

start or target position of the point-to-point motion does not match any of the vertices in the graph 𝑮, 

then the motion planning algorithm must find the closest matching vertex to the start and/or target 

position. After that, the path between the two vertices is planned to use the BFS algorithm. Movement 

between two positions is planned as a simultaneous movement of all joint coordinates of equal duration. 

When planning a point-to-point motion, using graph 𝑮 and BFS ensures that there is no danger of 

collision with an available obstacle in the robot's workspace. The sequence of the motion planning 

algorithm is shown in Fig. 3.19. 

The algorithm can be divided into two phases: construction of graph 𝑮 and point-to-point motion 

planning. The graph 𝑮 creation phase is performed only once before point-to-point motion planning and 

only known static obstacles in the robot's workspace are considered. In this phase, appropriate algorithm 

parameters are chosen, and the robot workspace is divided into a finite number of square segments. A 

finite set of joint coordinates and their corresponding coordinates in the workspace is defined, and an 

undirected unweighted graph is constructed. The creation of the graph considers the defined rules for 

the adjacency of two vertices and the information about available obstacles. 
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Fig. 3.19. Algorithm for motion planning in the presence of static obstacles. 

The second phase of the algorithm consists of point-to-point movement planning and is executed for 

each movement request to a certain point. In this phase, a start and target position are selected to perform 

a point-to-point movement. The vertices from the graph that are closest to the desired start and target 

positions are determined. The BFS algorithm is used on the constructed graph in the first phase to find 

a path between the start and target vertices. The phase ends with the execution of the planned movement 

from point to point with static obstacles avoidance. 

Robot motion control in a presence of dynamic obstacles 

When a manipulator works together with other robots or humans, we say that it is in an environment 

with dynamic obstacles. The motion of the robot cannot be considered as a point-to-point motion since 

we are considering a case where the robot is in a dynamic environment. At any moment, a robot, person, 

or other object may enter his workspace. For this purpose, the control system of the robot must 

dynamically plan its trajectory depending on the available obstacles and successfully overcome them. 

The robot control system must plan the new trajectory in such a way that the deviation from the 

predetermined trajectory is as small as possible. 

Let’s consider a robotic system with 𝑛 links that must execute a predefined planar trajectory 𝜽𝑑(𝑡), 

where 𝑡 = [0, 𝑇]  is the time interval. The trajectory 𝜽𝑑 is planned in such a way that the robot will avoid 

every single static obstacle known in advance. The control system must detect each newly appeared 

obstacle and change the robot's movement so that the obstacle is avoided without the risk of colliding 

with it. Obstacle detection and new planning must be done in real time. The end effector of the robot 

needs to be positioned at the desired target position, avoiding the available obstacles in the robot's 

workspace. 

Obstacles are represented in Cartesian coordinates. When a new obstacle appears, the robot's control 

system must detect the part of the trajectory that will not be able to be executed safely and block it. After 

that, the control system needs to replan the trajectory in such a way that the robot avoids the obstacle. 

The trajectory planning algorithm in the presence of dynamic obstacles is based on graph theory and 

uses a breadth-first search algorithm. In this way, the execution of the change of the already planned 
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movement is computationally efficient. This makes it possible to implement the algorithm in real time. 

The goal is for the robot to position its end effector in a predefined final position at the end of the 

movement. For the considered robot arm the number of different joint configurations for the same 

position of the robot's actuator can be infinite. This needs to be considered by the control system when 

planning the trajectory. 

Obstacles are detected when they appear in the robot's workspace. For real-time trajectory planning, 

the robot workspace can be represented as a graph with vertices corresponding to each possible set of 

joint coordinates corresponding to the position of the robot's end effector in the workspace. The edges 

of a graph connect two vertices depending on their corresponding position in the workspace. Two 

vertices from the graph are connected if their corresponding positions are the same or adjacent and if 

the required movement is below a predefined threshold parameter. Then, the robot workspace can be 

divided into a small number of positions to reduce the number of vertices and edges in the graph. This 

separation is determined by the resolution parameter of the algorithm. 

During the execution of the trajectory, obstacles are monitored, and if an obstacle occurs, some edges 

of the graph are marked as blocked. When the robot enters a near-collision situation with an available 

obstacle, the control system finds the part of the trajectory that needs to be replanned and applies a breath 

first search (BFS) algorithm to plan a trajectory according to the created graph . The algorithm has three 

main steps: graph creation, obstacle tracking, trajectory execution and trajectory replanning. 

Information about the created graph, the planned trajectory and the cells into which the workspace is 

divided is kept in shared memory. During each of the steps, a change in the graph and the planned 

trajectory are monitored and the corresponding information in the shared memory is updated. 

The creation of the graph depends on the following parameters of the algorithm: the number of 

links 𝑛, the length of the links 𝑎𝑖 , where 1 ≤ 𝑖 ≤ 𝑛, the threshold value that determines when two 

different joint configurations are considered adjacent and the resolution parameter that divides the 

workspace into the robot in a certain number of positions. The robot workspace is represented as a grid 

of cells (workspace_grid). Each cell represents the position of the robot's workspace. Then, a graph is 

created, with each vertex corresponding to a solution to the inverse kinematics problem that positions 

the robot's end effector at the center of the cell. For each vertex of the graph, there is the corresponding 

grid cell, its neighboring cell, and the corresponding vertices of the graph. The algorithm adds an edge 

in the graph, connecting those vertices for which the corresponding grid cell is the same or adjacent and 

the required movement corresponds to the threshold parameter.  

Obstacle tracking depends on the following parameters: obstacles - description of obstacles found, 

workspace_grid - workspace grid created during the graph creation phase, desired_trajectory - initially 

desired and planned trajectory, current_time - current time and reaction_time - predefined constant, 

which accounts for the robot's ability to stop its motion, which determines how close to the obstacle the 

new trajectory can be planned. When an obstacle is detected, it is marked in the grid of cells 

(workspace_grid) and the edges from the graph that connect the vertices corresponding to the cells are 

marked as unusable. The algorithm also checks whether the obstacle is new or has changed its position. 

Obstacle detection is done in real time. 

During the tracking of the trajectory execution and obstacle movement, it is possible for the control 

system to replan the movement due to newly appearing obstacles. Replanning of the trajectory can be 

done using the generated graph and the standard BFS algorithm and depends on the following 

parameters: workspace_grid – created in the first phase workspace grid from the generated graph, graph 

– also generated in the first phase, start_node and end_node – start and final node found during the 

monitoring phase. These vertices correspond to the beginning and end of the blocked part of the set 

trajectory. The algorithm checks whether the next position of the planned trajectory is safe to execute). 

If there is no danger of collision with an obstacle, the robot performs the next position of the trajectory. 

Otherwise, the algorithm finds a position from the planned trajectory that is not blocked by an obstacle. 
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Using the created graph and the BFS algorithm, a path is found between the current position of the 

robot's end effector and the next safe to execute position. If such a trajectory cannot be found, the next 

point of the trajectory is searched for. Once found, the new trajectory replaces the part of the planned 

trajectory between the current position and the newfound position, and the robot continues its movement 

by executing the next point of the trajectory. The planning of the new trajectory is done in real time. 

Fig. 3.24 shows all the steps of the algorithm for planning a trajectory and overcoming dynamic 

obstacles. 

 
Fig. 3.24. Algorithm for trajectory planning and dynamic obstacles avoidance. 

Chapter 4. Experimental verification using a 3D printed robot arm 
This chapter verifies the applicability of the proposed algorithms for motion planning of an 

anthropomorphic robot with additional degrees of freedom in the presence of static and dynamic 

obstacles in its workspace, through computer simulation in Webots [37] and a real experiment with the 

3D printed model of the robot. The experiments with the 3D printed robot also show whether the selected 

hardware components and the designed software system are suitable for controlling this type of robot. 

This chapter presents the obtained results from tasks 4 and 5 from the tasks of this dissertation. 

Design of 3D printed prototype of robot 

3D printing technology was used to create a real model of planar redundant robot. The AutoCAD 

software program was used to create the 3D model of the desired robot (Fig. 4.1). 

 
Fig. 4.1. 3D model of planar redundant robot. 
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One of the requirements for the robot is to have additional degrees of freedom when performing 

planar motions. For this purpose, it must have a minimum of 4 degrees of freedom. Therefore, the 

designed robot will have 4 rotational parallel axes. It is also necessary for the robot to be able to perform 

tasks related to moving various objects, as well as perform spatial movements. Grasping of these objects 

will be done using an end effector that is attached to a translation mechanism. 

The robot consists of Base-0 - base, Link-1 - first link, Link-2 - second link, Link-3 - third link, Lin-

4 - fourth link, Translational mechanism, and Gripper. At the base of the robot is the control electronics, 

which is based on Arduino Mega and W-Fi module WeMos D1 mini. The first motor Motor-1 is 

mounted in the base of the robot and controls the first link. To perform the translational mechanism 

movement along the z-axis, the first link is fixed to the base at a height of 150 mm along the z-axis. The 

second motor is positioned at the end of link 1 and controls the second link. Similarly, the third motor 

is mounted at the end of the second link and drives the third link. The fourth motor is located at the end 

of the third link and changes the orientation of the end effector. The fifth motor, Motor-5, is responsible 

for controlling the translation mechanism, and the sixth motor, Motor-6, for opening and closing the 

fingers of the end effector. The created 3D printed robot is shown in Fig. 4.5. The material chosen to 

make the model is PLA. 

 
Fig. 4.5. 3D printed robot. 

Experimental verification in a Webots simulation environment  

A model of the physical 3D printed robot was created in the Webots simulation environment.  For 

this purpose, the 3D model of the robot created in AutoCAD, was used. The model of each link of the 

robot is saved as .stl file. A .proto file is then created in Webots, where the robot's files are imported and 

its joint constraints and geometry are defined. Different sensors, cameras as well as obstacles or other 

necessary objects can also be added to the simulation environment. To this experiment, a camera, and 

an obstacle with a side length of 31 mm and a height of 120 mm were added. The purpose of the 

experiment is to prove that the proposed algorithm for motion planning with dynamic obstacles 

avoidance is effective and suitable for this type of robot. The robot must reach the final position of the 

predefined trajectory with its end effector, avoiding the dynamic obstacles in the workspace. The robot 

has length of the links and joint constraints defined in (2.10) and (2.11), respectively. The algorithm 

represents the workspace as a grid of cells, the resolution parameter is chosen to be 10 mm. The desired 

trajectory is (4.3): 

𝜃1(𝑡) = 0.4 −
0.7𝑡

5
, 𝜃2(𝑡) = 0.5 −

0.9𝑡

5
, 𝜃3(𝑡) = 0.5 −

0.12𝑡

5
, 𝑡 = [0,5] (4.3) 

During the movement of the robot, the obstacle will change its position, and the robot must 

successfully go around it. When the simulation camera recognizes the obstacle, the positions in the graph 
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that are blocked by the obstacle are marked as inaccessible. The part of the trajectory that is blocked by 

the obstacle is marked in red (Fig. 4.8.a.). 

 
Fig. 4.8. Part of the trajectory is blocked by a dynamic obstacle. 

The control system must plan in real time a new trajectory to avoid the moving obstacle. In addition, 

the new trajectory must be planned in such a way as to return the robot's end effector to the desired 

trajectory as soon as possible. The green line represents the newly planned trajectory (Fig. 4.8.a.). 

During the replanning of the trajectory, it is possible for the obstacle to again in such a way that it again 

overlaps the desired trajectory. Therefore, the control system must constantly monitor during the 

movement of the robot for changes in the position of already detected obstacles, as well as for newly 

appearing ones. When an obstacle appears, the third link begins to fold. The purpose of the movement 

of the third link is to reduce the distance between it and the base of the robot. The purpose of the 

movement of the third link is to reduce the distance between it and the base of the robot. For each new 

position that the third rotary joint performs, it is checked whether a safe trajectory can be created, and 

if there is one, the robot continues its movement. The trajectory is successfully replanned, and the robot 

manages to reach the desired final position with the desired joint configuration. 

Obstacle avoidance 

For the experimental verification of the control and trajectory planning algorithms, the 3D printed 

robot is used. To validate the algorithm proposed in Chapter 3 for motion planning in the presence of 

static obstacles, the following task is defined. The robot must grasp and carry a certain object while 

performing point-to-point movement and obstacles avoidance in the workspace. 

The obstacle is placed at a position with coordinates (195,90) in the 𝑂𝑥𝑦 plane. The obstacle has a 

side length of 31 mm and is 120 mm high. The robot starts its movement from a position with coordinates 

(-100, 210) in the plane and must reach an object placed at a position with coordinates (120, 10) in the 

plane. The robot has joint constraints defined in (2.11). The first step of the proposed approach is to 

create a finite set 𝑨 of valid joint coordinates. The possible range of valid joint coordinates is discretized 

linearly, and 10 values are considered for each coordinate. This will result in a maximum score of 1000 

points for set 𝑨. After checking all possible configurations for a possible collision with an obstacle, we 

get sets 𝑨 and 𝑩, each with 811 points. The side length of the workspace segments α is chosen to be 10 

mm. Fig. 4.15 shows the different types of segments denoted by the points of the set 𝑩 with their 

corresponding type of inverse kinematics solution. 
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Fig. 4.15. The points of the workspace that are in the graph. 

For the construction of graph 𝑮, the norm of the workspace α is set to 50 (coordinates in the 

workspace are in mm) and the norm of joint coordinates β is 0.8 (joint coordinates are in radians). With 

these parameters, the created undirected graph 𝑮 consists of 811 vertices and 5104 edges. The motion 

planning algorithm determined the position (-97.18, 210.19) as the closest to the desired start position 

and the position (111.07, 12.78) as the closest to the desired end position. Fig. 4.17 shows several joint 

configurations that are close to the obstacle. 

The BFS algorithm is used to find a path between the two positions. It finds a path with 22 vertices 

from the starting position to the final position. The algorithm was executed on a single thread on an 

Intel® Core™ i7-4710HQ CPU. The graph was created in 19.8 seconds. It took 0.019 seconds for the 

BFS algorithm to plan the robot's motion. The algorithm is also tested with an unreachable point (100, 

-300) for motion planning. It took the BFS algorithm 0.24 seconds to determine that it could not plan a 

move. This is also the maximum time required to plan a point-to-point movement. 

 

Fig.4.17. Selected joint configurations from the execution of the movement. 

Real time obstacle avoidance 

After validating the proposed algorithm for motion planning in the presence of static obstacles in the 

robot’s workspace, one can proceed to conduct an experiment to execute a predefined trajectory in the 

presence of dynamically moving obstacles in the robot's workspace. The algorithm for avoiding dynamic 
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obstacles is a continuation of the approach for static obstacles avoidance and is presented in the third 

chapter and validated in a simulation environment Webots. 

The purpose of the experiment is to show that for the designed robot this algorithm can work in real 

time. Unlike the previous experiment, in which the position of the obstacle was predefined, in this 

experiment we have no prior information about the position of the obstacle. For the algorithm to work 

in real time, it is necessary at any moment to be able to obtain information about the position of the 

obstacle. 

For the validation of the algorithm can be considered an obstacle that is monochromatic and that will 

move only in the plane 𝑂𝑥𝑦. Its position on 𝑧 will not change, and its height will be fixed and constant. 

Such an obstacle can be detected in real time, through a simple color camera and image processing 

algorithms. The camera does not need to be in a specific position, because we can make an initial 

calibration. The important thing is not to change its position during robots’ movement. A Canyon color 

camera was used for the purpose of the experiment. The camera is connected via USB to a computer, 

where it sends the recorded data, and their processing is carried out. To the experiment, the 3D printed 

robot, obstacle and camera are used to recognize dynamically moving objects. Since the experiment 

requires dynamically moving objects, it is necessary to periodically change the position of the obstacle. 

For this purpose, it will be manually moved. The problems that need to be solved to be able to calculate 

the position of the object are the follows: object detection, calibration method and finding the 

coordinates of the spatial coordinates in a calibrated image. The Python programming language and 

the OpenCV computer vision library were used to implement these tasks [38]. 

The first task is to detect the object and determine the coordinates of its center in the image. This can 

be done by filtering the color of the object in the HSV space, binarization and finding the center of the 

largest region in the binary image. 

Once the coordinates in the frame can be determined, it can be proceeded to the calibration. It consists 

of determining the coordinates of the object in the frame when it is placed at four preselected positions 

in a space. The positions in m are the follows: (0.5, 0.4, 0.0), (0.0, 0.4, 0.0), (0.0, −0.4, 0.0) and 

(0.5, −0.4, 0.0). They were chosen as such because the total length of the robot's links is 0.35 m. When 

the object is further away, there is no possibility of a collision and no replanning of the trajectory is 

required. Once the correspondences of the positions have been determined, it is now possible to proceed 

to the actual operation of the algorithm. 

When we have the correspondences of the positions, at each step only the part of the frame that falls 

into the quadrangle formed by the coordinates that correspond to the calibration positions can be taken. 

Depending on the position of the camera, a quadrilateral will be obtained, which is not a rectangle. We 

can, by a perspective change operation, correct the image and reduce it to a rectangle with the correct 

proportions. The goal is to convert it from an arbitrary rectangle to 500 by 800 pixels rectangle. This 

can be done with a warpPerspective function in OpenCV. The considered four positions in space used 

in the calibration have the following coordinates as correspondences in the untransformed image: (580, 

219), (521, 51), (180, 45), (126, 208) and their corresponding coordinates in the transformed image are: 

(0, 0), (499, 0), (499, 799), (0, 799). 

Once we have a 500 by 800 pixel frame, the coordinates of the obstacle in it can be easily found. 

Again, we filter by color and search for the center of the largest region. This center will have coordinates 

that can now easily be spatially mapped. The center (0.0, 0.0) in the 𝑂𝑥𝑦 plane of the robot will have 

coordinates (0, 400) in the image. The coordinates of the obstacle in the image can be converted to 

coordinates in the robot workspace using the Equation (4.4) and Equation (4.5): 

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑥 =
(500.0 −  𝑜𝑏𝑗𝑒𝑐𝑡𝑥)

500
 ∗  0.5 (4.4) 

𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑦 =
(400.0 −  𝑜𝑏𝑗𝑒𝑐𝑡𝑦)

400
 ∗  0.4, (4.5) 
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where obsacle_x and obstacle_y are the searched x and y coordinates in the 𝑂𝑥𝑦 plane, respectively, 

object_x and object_y are the x and y coordinates of the obstacle in the image.  

Fig. 4.19 shows 4 positions of the robot during the execution of the experiment. The position of the 

obstacle in the plane and the corresponding position in the image for the sample shown is: In the first 

position (Fig. 4.19.a.) the coordinates of the obstacle in the plane are (0.34, 0) and the coordinates in the 

image will be (157, 403). In the second position (Fig. 4.19.b.) the coordinates of the obstacle in the 

robot’s workspace are (0.29, 0.02), and in the image: (203, 380). In the third (Fig. 4.19.c.) and fourth 

position (Fig. 4.19.d.) the coordinates in the plane are: (0.27, 0.11) and (0.35, -0.1), and the coordinates 

in the image are: (221, 288) and (148, 505). 

 
Fig. 4.19. Selected positions of the experiment. 

Each of the displayed positions consists of three fields. In the first field, an image from the camera 

used to detect the obstacle (the camera of the control system) is given. The yellow circle on the obstacle 

means that it has been detected by the control system and all the described steps for its recognition have 

been successfully performed. The second field of each position illustrates the target trajectory (the blue 

arc), the replanned path (the green line), the part of the desired trajectory that is blocked by the obstacle 

(indicated in red), and the position of the obstacle (the blue circle). 

The experiment was conducted successfully. The control system successfully detects an obstacle in 

the robot's workspace and plans a new trajectory to avoid collision with it and return the robot's end 

effector to the desired trajectory as soon as possible. During planning, it is possible for the obstacle to 

change its position, the control system monitors this and, if necessary, plans a new trajectory. A breadth-

first search algorithm is used for trajectory planning, making the task computationally efficient and 

successful to run in real time. 

Conclusion 
The dissertation analyzes the advantages and disadvantages of redundant robots and motivates the 

choice to use a robot with additional degrees of freedom in tasks related to overcoming obstacles in the 

robot's workspace. A mathematical model of a robot with additional degrees of freedom was prepared. 

The forward kinematics problem is solved using the Denavit-Hartenberg convention, and the inverse 

kinematics problem is solved using a geometric solution method. The solutions of the inverse kinematics 

problem of such type of robot can be classified into several types, depending on the sign of the second 

and third joint coordinates. The thesis examines these types of solutions and how they divide the robot's 

workspace into different zones. Transitioning from one zone to another may require a change of solution 

type, which may lead to a deviation from the desired movement. Therefore, transition points where the 
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change of solution type can be performed without deviating from the desired path have been 

investigated. 

A prototype of a robot arm with 4 rotational joints was designed and realized, using 3D printing 

methods. A hardware and software control system for the robot was created, which is based on the 

Arduino Mega 2560 open-source platforms and ESP8266 Wi-Fi module. A user interface is created 

through which the operator can monitor the robot's status and send commands to it, and a motion 

planning algorithm is proposed. The algorithm considers the transition points and is based on graph 

theory. 

Algorithms for trajectory planning in the presence of static and dynamic obstacles are proposed and 

developed in the dissertation. The algorithms are validated by creating computer experiments and 

conducting real experiments with the 3D printed prototype. When performing a given task in the 

presence of static obstacles, the robot's control system has prior information about the position of the 

obstacles. The task becomes more complex when the robot is manipulating an environment with 

dynamic obstacles. In this case, the control system must monitor the position of the obstacles in real 

time, and when an obstacle blocks the planned movement, it is necessary to replan the robot's movement 

and return to the target trajectory as quickly as possible. The conducted and described experiments 

proved that the proposed algorithms for trajectory planning in the presence of static and dynamic 

obstacles are suitable for controlling this type of robot, they are computationally efficient, and this 

allows them to be applied in tasks requiring real-time execution. 

All the tasks that were defined at the beginning of the dissertation have been completed. The goal of 

creating a mathematical model and prototype of a planar anthropomorphic robot with additional degrees 

of freedom and creating methods for its control has been achieved. 

Development prospects 

Research on trajectory planning algorithms in the presence of static or dynamic obstacles will 

continue in the future. It can be investigated how the choice of parameters of the trajectory planning 

algorithm in the presence of static obstacles affects the performance of the algorithm. Also, how the 

graph construction phase can be implemented with higher computational efficiency or even done in real-

time in the presence of dynamic obstacles. 

The conducted experiments show that the designed hardware system is suitable for controlling this 

type of robot. But the internal memory of the Arduino controller is limited. Therefore, it would be good, 

for the future, to add external memory to the robot's hardware system. 
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Contributions to the dissertation 
Considering the work on the dissertation and the results obtained from the conducted research and 

presented in the thesis, it can be formulated the following contributions: 

Applied scientific contributions 

• An approach is created to classify by type the solutions of the inverse kinematics problem for a 

planar robot with additional degrees of freedom (Chapter 2, [П1], [Д3]). 

• Analysis of the workspace of a planar robot with additional degrees of freedom depending on the 

available obstacles was performed (Chapter 2, [П4], [Д4]). 

• The service angle in the workspace of a planar robot with additional degrees of freedom was 

investigated (Chapter 2, [П2]). 

• A graph theory trajectory planning algorithm is developed for a planar robot with additional 

degrees of freedom and constrained joint space (Chapter 3, [П1], [Д3]). 

• A motion planning approach in the presence of static obstacles for a planar robot with additional 

degrees of freedom is developed (Chapter 3, [П4], [Д4]). 

• A real-time dynamic obstacle avoidance algorithm is implemented in the workspace of a planar 

robot with additional degrees of freedom (Chapter 3, [П5]). 

Applied contributions 

• A hardware and software system was designed to control a planar robot with additional degrees 

of freedom (Chapter 3, [П3], [Д2]). 

• A computer experiment of the proposed trajectory planning methods was created using Webots 

simulation software (Chapter 4, [П6]). 

• A real experiments with 3D printed prototype are conducted in order to verify the proposed 

algorithms for trajectory planning with static or dynamic obstacle avoidance. (Chapter 4, [П4], 

[П5], [Д4]). 
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