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Relevance of the topic, purpose and tasks of the thesis
Recent direct detections of gravitational waves from various binary sources have paved the way
for gravitational-wave astronomy, which in turn, combined with electromagnetic observations,
forms multimessenger astronomy. Multimessenger astronomy is a powerful tool for studying the
universe, with great hopes for unraveling many mysteries in Nature, such as dark matter and
dark energy, as well as searching for new fundamental fields and new exotic objects. Although
general relativity is in brilliant agreement with all observations to date, there are reasons to go
beyond the accepted model of gravity in search of new fundamental physics. It is scalar fields
that are the simplest to consider, and they appear naturally in extensions of the Standard
Model in particle physics and in alternative theories of gravity. In these theories, gravity is
described both by the metric tensor and by one or more scalar fields. Of great interest to
modern physics are theories with scalar fields coupled to the curvature of space-time, to which
the multiscalar Gauss-Bonnet theories also belong. These theories predict the existence of new
phenomena, such as spontaneous scalarization of black holes and neutron stars, as well as new
types of objects such as space tunnels without the need for exotic matter. This in turn gives
rise to new interesting astrophysics related to these objects. The aim of the present thesis
is to show the existence of scalarized self-gravitating compact objects supporting non-trivial
scalar fields in multiscalar theories of gravity and especially in Einstein-Gauss-Bonnet gravity,
where scalar fields interact with space-time curvature through the Gauss-Bonnet topological
invariant. In particular, the present thesis numerically demonstrates the existence of scalarized
black holes and neutron stars with a rapidly decreasing "scalar hair" in multiscalar Gauss-
Bonnet theories, whose scalar space is a maximally symmetric three-dimensional Riemannian
space. Constructing these solutions makes it possible to probe the astrophysics around them
in order to search for astrophysical effects with a pronounced signature of the scalar fields
that could be observed with the next generation of gravity detectors and/or electromagnetic
telescopes. As a clear example, quasi-periodic oscillations from accretion disks around rotating
space-tunnels have been studied, analyzing the differences with similar oscillations for Kerr
black holes, which would help distinguish the two types of self-gravitating objects in future
observational missions. Currently, a new generation of spectrometers is being prepared, such as
the eXTP (China), STROBE-X (NASA) and LOFT (ESA) missions, which will have extremely
high accuracy in measuring the frequencies of quasi-periodic oscillations and will be fully capable
of detecting clear signs about the existence of fundamental scalar fields and new exotic objects.
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Structure of the thesis

In Chapter 1, the results of the study of the quasi-periodic oscillations of accretion disks
around rotating space-time tunnels are presented. The stability of circular orbits in the equa-
torial plane is discussed and analytical formulas for the epicyclic frequencies are presented. A
comparative analysis is made with the case of Kerr black holes.

Chapter 2 introduces multiscalar Einstein-Gauss-Bonnet gravity through its action. Then
the dimensionally reduced field equations describing black holes in the theory under the relevant
assumptions are presented. Numerically constructed solutions describing black holes as well as
their physical characteristics such as horizon area, entropy and the radius of the photon sphere
are also given.

Chapter 3 is devoted to neutron stars in multiscalar Einstein-Gauss-Bonnet gravity. The
dimensionally reduced field equations describing the structure of neutron stars in the the-
ory are presented. Numerical solutions for neutron stars and the basic dependences such as
mass–central density, mass–radius of the star, and binding energy–baryon mass are also pre-
sented.
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1 Quasi-periodic oscillations from an accretion disk around
rotating traversable space-time tunnels

X-ray spectroscopy is a promising tool for testing gravity in the strong-field regime by studying
the emission from accretion disks around compact objects. Various features of the X-ray flux
will be measured with high precision by the next generation of X-ray satellites such as LOFT
[1], eXTP [2], or STROBE-X [3], in particular the quasi-periodic oscillations (QPO) of the
accretion flow. Quasi-periodic oscillations are experimentally detected in the X-ray flux from
a number of low-mass binary systems, including neutron stars or black holes, as well as several
supermassive active galactic nuclei. These represent a number of characteristic peaks appearing
in the X-ray spectrum from the compact object, including a low frequency (Hz) signal and a
pair of high frequency (kHz) oscillations.

The exact physical mechanism for the formation of the quasi-periodic oscillations is currently
unknown, but some features suggest that they are a hydrodynamic phenomenon rather than a
manifestation of kinematic effects in the accretion disk such as Doppler modulation of isolated
hot spot flows. One such example is the discovery of the correlation between the low- and
high-frequency quasi-periodic oscillations, which results in their ratio remaining stable among
different X-ray sources[4]-[5]. This motivates the development of disk seismological models that
explain QPOs by means of certain captured modes of disk oscillations [6, 7, 8]. Furthermore,
observations show that the high-frequency scale of the QPO is inversely proportional to the
mass of the compact object and that the pair of peaks follows a constant ratio 3 : 2. Thus,
we obtain indications that high-frequency QPOs are caused by relativistic effects, so that they
represent a suitable probe of the background space-time. The characteristic frequency ratio
of two integers further suggests that the source of the quasi-periodic oscillations may be some
nonlinear resonant process occurring in the inner disc.

Approximate resonance models have been developed for thin accretion disks that can provide
an explanation for the observed high-frequency QPO [9, 10, 11, 12]. If we assume that the fluid
trajectories in the accretion disc follow approximately circular geodesic orbits lying in one
plane, we can relate two epicyclic frequencies to their dynamics. They describe the oscillations
of circular motion in radial and vertical directions, respectively. In a linear approximation,
the radial and vertical oscillations can be considered independent and can be represented as
two decoupled harmonic oscillations. However, nonlinear effects cause interactions between
the two modes of oscillation, and different types of resonances can be induced when epicyclic
frequencies or linear combinations thereof are in the ratio of two integers. Depending on the
physical process taking place in the accretion disk, the resonances can be caused by both orbital
coupling and one of the epicyclic motions.

Quasi-periodic oscillations are also used as a tool to test gravitational theories in a number of
recent scientific works [13, 14, 15, 16, 17, 18, 19, 20, 21]. The properties of epicyclic frequencies
depend strongly on the structure of spacetime and can lead to observational effects that can
distinguish alternative theories of gravity in the strong-field regime.If the observational data are
modeled correctly, QPOs can provide evidence for the existence of more exotic compact objects
such as space-time tunnels and naked singularities. The aim of our work is to investigate the
quasi-periodic oscillations for a class of rotating traversable space-time tunnels by applying the
resonance models and to estimate some of their characteristics, which may be important for
observations.

Space-time tunnels are one of the significant predictions of gravitational theories that have
yet to be confirmed observationally. In classical General Relativity, the existence of traversable
space-time tunnels requires the violation of the isotropic energy condition [22, 23, 24]. However,
in quantum gravity this problem is solved naturally, since quantum fields can naturally provide
the necessary negative energy density. Alternatively, traversable space-time tunnels arise in
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some modified theories of gravity such as Gauss-Bonnet or f(R) theories, where the energy
conditions are violated by the gravitational interaction itself without the need for additional
fields and matter [25, 26, 27, 28, 29, 30, 31, 32]. They can also exist in a mixed system with
another compact object such as a boson or neutron star [33, 34, 35, 36, 37, 38, 39, 40] . Thus,
the idea that space-time tunnels can form in nature is reasonably well supported by theoretical
arguments, and one of the goals of the next generation of gravitational experiments is to look
for evidence of their existence.

The purpose of this chapter is to explore additional observable effects in the electromagnetic
spectrum that may distinguish space-time tunnels from other compact objects by studying the
high-frequency quasi-periodic oscillations in the tunnel space. For this purpose, we consider a
class of geometries constructed by Teo that describes a general stationary and axisymmetric
space-time tunnel [24]. Teo rotating tunnel geometry is a generalization of the static spherically
symmetric Morris-Thorn spacetime tunnel [41], following the same idea.

1.1 Rotating space-time tunnels

The general class of geometries that describes a stationary axisymmetric space-time tunnel is
derived by Teo in the form [24]

ds2 = −N2dt2 +

(
1− b

r

)−1

dr2 + r2K2
[
dθ2 + sin2 θ (dφ− ωdt)2] , (1)

where all metric functions depend only on the spherical coordinates r and θ, and are regular
on the symmetry axis θ = 0, π. The metric function N is related to the gravitational redshift,
K is a measure of the radial distance with respect to the origin, ω is related to the spin of the
space-time tunnel, while b defines the shape of the throat of the tunnel.

Here we consider the class of geometries where the metric functions N , K, b, and ω depend
only on the radial coordinate. This case is of particular physical importance because the
geodesic equations that define the propagation of particles and light become integrable. To
illustrate some characteristic effects for space-time tunnel geometries, we choose a certain metric
that is simple enough but still representative of the class. We set the shape function and the
radial distance function to be equal to the constants, while for the rest of the metric functions
we take

N = exp
(
−r0

r

)
, ω =

2J

r3
, b = r0, K = 1. (2)

Thus, the mass of the space-time tunnel is equal toM = r0. We can further introduce a rotation
parameter a = J/M2 and represent the metric in dimensionless form by doing the conformal
transformation and rescaling

dS2 = r−2
0 ds2, t→ r0t, r → r0r.

In this way, we obtain a solution of the spacetime tunnel with a unit mass and a throat located
at r = 1.

1.2 Circular orbits in the equatorial plane

For any stationary and axisymmetric metric, we can derive some general expressions that define
the kinematic quantities of circular orbits in the equatorial plane. Let us consider the general
form of the metric

ds2 = gtt dt
2 + 2gtφ dtdφ+ grr dr

2 + gθθ dθ
2 + gφφ dφ

2 , (3)
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and denote the specific energy and angular momentum of the particles by E and L, respectively.
Since we have two Killing vectors with respect to time translations and rotations about the
axis of symmetry, energy and angular momentum are conserved on the geodesics. In addition,
on each geodesic trajectory we have the constraint gµν ẋµẋν = ε, where ε takes the value ε = −1
for a time-like geodesic, and ε = 0 for a null geodesic. Choosing an affine parameter τ we can
express the time-like geodesic equations in the equatorial plane as

dt

dτ
=

Egφφ + Lgtφ
g2
tφ − gttgφφ

,

dφ

dτ
= −Egtφ + Lgtt

g2
tφ − gttgφφ

,

grr

(
dr

dτ

)2

= −1 +
E2gφφ + 2ELgtφ + L2gtt

g2
tφ − gttgφφ

. (4)

In the last equation, we can introduce an effective potential Veff given by

Veff = −1 +
E2gφφ + 2ELgtφ + L2gtt

g2
tφ − gttgφφ

. (5)

The qualitative behavior of the radial motion is completely determined by the properties of the
effective potential. In particular, circular orbits correspond to its fixed points

Veff (r) = 0, Veff,r(r) = 0, (6)

where the comma means the derivative with respect to the radial coordinate. Solving this
system of equations we can obtain formulas for the specific energy and angular momentum on
the circular orbits, namely

E = − gtt + gtφω0√
−gtt − 2gtφω0 − gφφω2

0

, (7)

L =
gtφ + gφφω0√

−gtt − 2gtφω0 − gφφω2
0

. (8)

For angular velocity, we get accordingly

ω0 =
dφ

dt
=
−gtφ,r ±

√
(gtφ,r)2 − gtt,rgφφ,r
gφφ,r

, (9)

where the signs +/− correspond to orbital motion in the direction of rotation of the compact
object or in the opposite direction.

Timelike circular orbits exist in the region where energy and angular momentum are well
defined. The curves where they become divergent correspond to the location of the null circular
orbits, i.e. the photon rings. They give the boundary of the region of existence of time-like
circular orbits. If only an unstable photon ring is present, the domain of existence of the time-
like circular orbits is simply-connected, and for an asymptotically flat spacetime, the location
of the photon ring gives its lower bound in the radial direction. If there are multiple photon
rings, the domain of existence may consist of several disconnected parts, i.e. the circular orbits
will be located in several annular regions with spaces between them.
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Calculating the kinematics for the space of a traversable space-time tunnel (1), we obtain
the expressions

ω0 = ω +
r2K2ω,r ±

√
N2
,r(r

2K2),r + r4K4(ω,r)2

(r2K2),r
, (10)

E =
N2 + r2K2ω(ω0 − ω)√
N2 − r2K2(ω0 − ω)2

,

L =
r2K2(ω0 − ω)√

N2 − r2K2(ω0 − ω)2
,

where we have the sign +/− orbits in the direction of rotation of the compact object or opposite.
In the region there exist time-like circular orbits for which the inequality N2−r2K2(ω0−ω)2 > 0
is satisfied.

In Figure 1 we show the region of existence of the circular orbits for the particular space-time
tunnel solution given by (2). The rotating solution of a space-time tunnel exists for any values
of the rotation parameter. However, since our goal is to make a comparison with the Kerr black
hole, we restrict ourselves to the interval a ∈ [0, 1] . To illustrate the behavior of circular orbits
in a direction opposite to the rotation of the compact object, we include negative values of the
rotation parameter a ∈ [−1, 0). The prograde circular orbits exist throughout the space around
the throat of the space-time tunnel. On the other hand, counter-rotating particles are pushed
away from the rotating compact object and can only reach a certain radial distance, leaving
a region around the throat of the space-time tunnel where counter-rotating circular orbits are
not allowed.

1.3 Stability of circular orbits in the equatorial plane

We consider the geodesic equations in the equatorial plane

ẍα + Γαβγẋ
βẋγ = 0 , (11)

and we make a small perturbation of the circular motion x̃µ(s) = xµ(s) + ξµ(s) where xµ(s)
denotes the circular orbit and s is the affine parameter on the geodesic. Working in the linear
approximation we can obtain the following system for the deviation ξµ(s) [42], [43]

d2ξµ

dt2
+ 2γµα

dξα

dt
+ ξb∂bVµ = 0 , b = r, θ

γµα =
[
Γµαβu

β(u0)−1
]
θ=π/2

,

Vµ =
[
γµαu

α(u0)−1
]
θ=π/2

, (12)

where uµ = u0(1, 0, 0, ω0) is the 4-velocity vector, ω0 is the orbital frequency.
From the perturbation equations of the circular orbits, we can obtain the epicyclic frequen-

cies for the rotating traversable space-time tunnels

ω2
θ = (ω0 − ω)2 , (13)

ω2
r =

(b− r)
rN2

[
ω2
θ r

4K4ω2
,r + rK2(ω0 − ω)(2r(N2ω,r),r − 3N2(rω,r),r)

]
+ω2

θ (b− r)
[
K

r
(r2K,r),r − 3K,r(rK),r

]
−(b− r)

r2

[
3NN,r + rNN,rr − 3r(N,r)

2
]
, (14)
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where we restrict ourselves to the class of solutions with metric functions N , K, b, and ω in
depending only on r, and the orbital frequency ω0 is given by eq. (10).

From these expressions we can derive some general properties of the tunnel geometries
under consideration. We see that for all solutions of the tunnel the vertical epicyclic frequency
is always positive, so the circular orbits are always stable with respect to vertical perturbations.
Thus, the linear stability is determined only by the radial epicyclic frequency, similar to the case
for the Kerr black hole. In a static limit, we get that the vertical epicyclic frequency coincides
with the Schwarzschild black hole-like orbital frequency. Thus, circular motion is characterized
by only two independent quantities.

To gain further intuition about the behavior of circular orbits, we consider the stability
region for the particular tunnel solution given by Eq.(2). In Figure 1 we present the curve on
which the radial epicyclic frequency vanishes, thus separating the stability region of the circular
orbits. In the region above the curve and to its right, the inequality ω2

r > 0 is satisfied, so this
part of space-time represents the region of stability of time-like circular orbits in the equatorial
plane.

We see that for most of the spin parameters in the interval a ∈ [0, 1] the orbits rotating in
the direction of the tunnel are stable in the whole space. For small angular momentum of the
space-time tunnel, however, we obtain a qualitatively different situation. The ω2

r = 0 curve has
a maximum at a = 0.0167 and crosses the tunnel throat at a = 0.0144. Then, in the interval
a ∈ (0.0144, 0.0167) the stability region consists of two disconnected parts, separated by a
region where circular orbits become unstable. For each spin parameter a ∈ (0.0144, 0.0167),
the region of instability is bounded by two marginally stable circular orbits located at radii
that correspond to the solutions of the equation ω2

r = 0. As the angular momentum increases,
the region of instability becomes smaller, while at a = 0.0167 it disappears completely. These
configurations have astrophysical applications as they lead, for example, to a discontinuity in
the accretion disc within the thin disc model. In this case, the accretion disk consists of two
annular regions separated by a gap.

For the counter-rotating orbits as well as the static solution for the space-time tunnel, the
region of stability resembles the Kerr black hole case. There is an innermost stable circular orbit
(ISCO) located at the radial distance rISCO where the radial epicyclic frequency becomes zero,
and all orbits at higher values of the radial coordinate are stable ISCO takes its closest position
to the tunnel throat in a static boundary located at r/r0 = 2 . As the angular momentum of
the tunnel increases, it moves away to larger radii.

1.4 Properties of epicyclic frequencies

Epicyclic and orbital frequencies are the main quantities used in the development of geodetic
models for the quasi-periodic oscillations of the accretion disk such as the orbital precession
model and the resonance models. Therefore, their properties determine important features of
the model such as the possible types of resonances that can be excited, the radial distance from
the compact object where the resonance process takes place, and the values of the observed
peak frequencies.

In this section we will investigate the epicyclic frequencies of a space-time tunnel, making a
comparison with a Kerr black hole. For the Kerr black hole, we observe only a slight variation
in the behavior of the characteristic frequencies over the entire range of the spin parameter
a ∈ [0, 1] . The orbital frequency is a monotonically decreasing function for each value of the
spin parameter and the radial coordinate. The radial epicyclic frequency always has a single
maximum, while the vertical is a monotonically decreasing function for slow-rotating black
holes and obtains a single maximum for fast-rotating black holes. In addition, for any value of
the spin parameter, the orbital frequency is always greater than the vertical epicyclic frequency,
which in turn is greater than the radial one. Thus, we have ω2

0 > ω2
θ > ω2

r for the entire range
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Figure 1: Existence and stability of circular orbits in the equatorial plane for rotating traversable
space-time tunnels. The gray curve indicates the location of the null circular orbits, while ω2

r = 0
is satisfied on the blue curve. Timelike circular orbits exist in the gray region, and they are stable
in the light gray region bounded by the blue curve. Positive values of the spin parameter represent
co-rotating circular orbits, while negative values correspond to counter-rotating ones.

νr

νθ

ν0

3 4 5 6 7 8 9 10
0

200

400

600

800

r/r0

ν
[H
z]

a=0.5

νr

νθ

ν0

2 4 6 8 10
0

200

400

600

800

1000

1200

1400

r/r0

ν
[H
z]

a=0.98

a) b)

Figure 2: Examples of the qualitatively different types of epicyclic frequency behavior for the Kerr
black hole. For slow rotation, the vertical epicyclic frequency is a monotonically decreasing function,
while for faster rotations it has a single maximum. The radial coordinate takes values larger than the
photon orbit, and the location of the ISCO is given by a dashed line.

of the radial coordinate over the photon orbit. The frequency behavior for the Kerr black hole
is demonstrated in Figure 2 for some characteristic values of the spin parameter for the two
qualitatively different cases.

Besides sharing some similarities with the Kerr black hole, the epicyclic frequencies for
space-time tunneling also show major differences. One important difference is that different
arrangements of orbital and epicyclic frequencies can be realized. This allows for a much more
diverse range of resonant excitation scenarios, some leading to stronger observable signals. In
Figure 3 we illustrate the possible cases for the particular solution of a space-time tunnel (2)
by presenting the curves ω2

r = ω2
θ and ω2

r = ω2
0. In the upper region bounded by each of
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Figure 3: Arrangement of orbital and epicyclic frequencies for rotating traversable space-time tunnels.
The curve ω2

r = ω2
θ is drawn in orange, while the curve ω2

r = ω2
0 is represented in green. In the region

above the orange curve we have ω2
r > ω2

θ , and between it and the green curve ω2
r > ω2

0 is satisfied.
For counter-rotating orbits with a < 0, it holds that ω2

θ > ω2
0, while in the co-rotating case a > 0 we

have the opposite inequality. The gray and blue curves are the boundaries of the regions of existence
and stability of timelike circular orbits, respectively.

the curves, the inequalities ω2
r > ω2

θ and ω2
r > ω2

0 are satisfied. From the expressions for the
epicyclic frequencies (3) we can see that for co-rotating orbits we have ω2

θ < ω2
0, while for

counter-rotating orbits the opposite case ω2
θ > ω2

0 is realized. This result is rather general for
traversable tunnels, as it applies to the entire class of tunnels with metric function N , ω , b ,
and K depending only on r.

The analysis based on Figure 3 shows that the case of counter-rotating orbits resembles the
Kerr black hole as it has a uniform frequency ordering ω2

θ > ω2
0 > ω2

r for the entire range of
the radial coordinate r ∈ (rISCO,∞). For revolving orbits we have different scenarios. In the
region above the curve ω2

r = ω2
0 we have ω2

r > ω2
0 > ω2

θ , below the curve ω2
r = ω2

θ the inequality
ω2

0 > ω2
θ > ω2

r is satisfied, while between the two curves we have ω2
0 > ω2

r > ω2
θ . In a static

limit, we get the degenerate case ω2
θ = ω2

0 > ω2
r similar to the Schwarzschild black hole. In

the next section, we will explore the implications of these types of frequency ordering on the
possibilities of forming different resonances.

The next step is to study the behavior of the orbital and epicyclic frequencies as a function
of the radial coordinate r for different spin parameters a . For counter-rotating orbits, we
again observe a consistent behavior over the entire range of a ∈ (0, 1] , while for co-rotating
orbits we have different possibilities depending on the spin rate of the space-time tunnel. In
the counter-rotating case, the radial epicyclic frequency always has a single maximum, while
the vertical is a monotonically decreasing function of r . Thus, for counter-rotating orbits the
tunnel resembles a slowly rotating Kerr black hole. In the prograde case, we can classify the
solutions of the spacetime tunnel in terms of the behavior of the epicyclic frequencies into the
following categories:

I. a ∈ [0, 0.0144): The stability region of circular orbits is simply-connected. The radial
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epicyclic frequency ωr has a single maximum, while ωθ is a monotonically decreasing
function.

II. a ∈ [0.0144, 0.0167]: The stability region of circular orbits consists of two disconnected
parts. In each of the regions of stable orbits, the radial epicyclic frequency ωr possesses
a single maximum. The vertical epicyclic frequency ωθ is a monotonically decreasing
function.

III. a ∈ [0.0167, 0.025]: The stability region of the circular orbits is simply-connected. The
radial epicyclic frequency ωr has two maxima and a minimum, while ωθ is a monotonically
decreasing function.

IV. a ∈ [0.025, 0.029): The stability region of the circular orbits is simply-connected. The
radial epicyclic frequency ωr has two maxima and a minimum, while ωθ possesses one
maximum.

V. a ∈ [0.029, 1]: The stability region of circular orbits is simply-connected. Both the radial
and vertical epicyclic frequencies possess a single maximum.

We see that the epicyclic frequencies for the counter-rotating case and the very slowly
rotating case I. behave like a slowly rotating Kerr black hole, since the static limit resembles a
Schwarzschild black hole. Furthermore, we have some exotic regions in the cases II, III and IV
with a multicorrelated region of stability of the circular orbits or multiple extrema of the radial
epicyclic frequency that do not exist for the Kerr black hole.As the spin parameter is further
increased in region V, the epicyclic frequencies begin to behave as for the rapidly rotating Kerr
black hole. The orbital frequency is always a monotonically decreasing function of the radial
coordinate for both co- and counter-rotating orbits.

In Figure 4 we present the analysis of the behavior of the epicyclic frequencies as a function
of r for different values of the rotation parameter through the curves ∂rωr = 0 and ∂rωθ = 0 ,
as well as the second derivatives ∂2

rωr = 0, and ∂2
rωθ = 0. The regions of qualitatively different

types of behavior are bounded by horizontal lines corresponding to the characteristic values
of the spin parameter where the transitions occur. We additionally demonstrate examples for
each of the classes I. - IV. in Figure 5, where we use the frequencies νr = ωr/2π, νθ = ωθ/2π
and ν0 = ω0/2π for some specified values of the spin parameter.

1.5 Nonlinear resonances

In a linear approximation, small deviations from circular geodesic motion are described by
two independent harmonic oscillations with their own frequencies, called radial and vertical
epicyclic frequencies. However, a more realistic description of the processes in the accretion
disc requires the inclusion of additional non-linear terms in the perturbation equations. They
provide information on various forces acting in the accreting fluid such as pressure, viscosity,
magnetic fields, etc., and lead to the coupling of the two epicyclic modes.Usually, such an
interaction between natural frequencies is a prerequisite for the excitation of resonances in
dynamic systems, which are realized when the system reaches suitable conditions.

At present, the physical processes involved in the accretion disk are not well understood.
It is therefore difficult to derive rigorous expressions for the nonlinear terms governing the
behavior of small perturbations. A reasonable approach is to consider some basic types of
interactions that are similar enough to occur in many physical situations for a wide range of
particular processes.For example, we can consider nonlinear corrections to the perturbation
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Figure 4: Behavior of the radial epicyclic frequency a) and b), and the vertical epicyclic frequency c)
as a function of the radial coordinate. The curves ∂rωr = 0 and ∂rωθ = 0 are presented in orange,
while the second derivatives ∂2

rωr = 0 and ∂2
rωθ = 0 are represented in green. The functions ∂2

rωr and
∂2
rωθ are positive above and to the right of the green curves. In enlarged section b) we illustrate the

regions with different types of behavior of the radial epicyclic frequency for slow rotation, where we
indicate the transition values of the rotation parameter with horizontal lines. We additionally show
the boundaries of the existence and stability regions of the circular geodesic with gray and blue lines,
respectively.
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Figure 5: Examples of the qualitatively different types of epicyclic frequency behavior for rotating
traversable space-time tunnels.
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equations describing the small deviation from a geodesic circular motion of the form

d2ξr

dt2
+ ω2

rξ
r = ω2

rfr

(
ξr, ξθ,

dξr

dt
,
dξθ

dt

)
,

d2ξθ

dt2
+ ω2

θξ
θ = ω2

θfθ

(
ξr, ξθ,

dξr

dt
,
dξθ

dt

)
, (15)

where fr and fθ are nonlinear functions. The specific form of these functions should be deter-
mined by the properties of the physical model of the accretion flow. However, without resorting
to a particular model, we can propose some simple cases that are likely to arise in many sce-
narios and explore their behavior. One of the simplest situations is to assume that fr = 0 and
fθ = h, ξrξθ, where h is a coupling constant. The equation for vertical oscillations is in the form

d2ξθ

dt2
+ ω2

θξ
θ = −ω2

θh cos(ωrt)ξ
θ. (16)

We thus obtain the Mathieu equation, which is known to describe parametric resonances for
frequency ratios

ωr
ωθ

=
2

n
, (17)

where n is a positive integer (see e.g. [44]). When the coupling is weak, or h << 1, the smallest
possible value of n corresponds to the strongest resonance. Although the parametric resonances
were obtained by assuming an ansatz for the frequency coupling, they have been shown to be
a mathematical property of thin, quasi-Keplerian discs [10], [45], [46].

Another common dynamical system that exhibits resonant behavior is the forced nonlinear
oscillator. In this regard, it has been proposed that nonlinear effects in circular orbit pertur-
bations can be described by including a periodic radial force in the equation for the vertical
oscillations with a frequency equal to the radial epicyclic frequency. Thus the equation for
vertical oscillations becomes

d2ξθ

dt2
+ ω2

θξ
θ + [non linear terms in ξθ] = h(r) cos(ωrt). (18)

Resonances are excited when epicyclic frequencies are integer ratios ωθ = nωr. Since the
equation is non-linear, the resonant solution can also contain linear combinations of epicyclic fre-
quencies, which gives additional possibilities for working with the frequencies of quasi-periodic
oscillations.

We further discuss how the described resonance phenomena can explain the observed double-
peak frequencies in the X-ray flux of accreting compact objects, provided that the compact
object is modeled as a rotating traversable space-time tunnel. In resonance models, the two-
peak frequencies are explained by identifying them with suitable combinations of resonance
frequencies such that the observational ratio between low (νL ) and high (νU ) frequencies is
satisfied, i.e. νU : νL = 3 : 2. In general, identifications with frequencies corresponding to
lower-order resonances are preferred because they lead to larger amplitudes of the observed
signal. For the parametric resonance, this can be done directly by making the identification
νU = νθ = ωθ/2π and νL = νr = ωr/2π . In the case of the Kerr black hole, this is the
lowest order parametric resonance, since the n = 1, 2 parametric resonances do not exist. If we
consider forced resonances, we must identify the observed frequencies with linear combinations
of epicyclic frequencies to achieve the 3 : 2 ratio. For a Kerr black hole, the lowest possible
order forced resonances are n = 2 and n = 3 when epicyclic frequencies are related as ωθ :
ωr = 2 : 1 and ωθ : ωr = 3 : 1. The observable ratio can be obtained by making the identities
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Figure 6: Location of the parametric and forced resonances depending on the spin parameter of the
space-time tunnel. In a) and b) we represent the case where the epicyclic frequencies satisfy the
inequality ωr < ωθ, while in c) we have the ordering ωr > ωθ. In the enlarged section b) we can see
the location of the resonances for a static tunnel.

νU = νθ + νr = (ωθ + ωr)/2π and νL = νθ , and νU = νθ and νL = νθ − νr = (ωθ − ωr)/2π,
respectively. The simplest cases of Kepler resonances possible in Kerr black hole spacetime are
ω0 : ωr = 3 : 2, ω0 : ωr = 2 : 1, or ω0 : ωr = 3 : 1, and likewise if we consider the coupling
between the vertical epicyclic and orbital frequencies.

In the space-time of the tunnel, we get a much richer picture of the possible resonance
phenomena. One of the most distinctive features compared to a Kerr black hole is that different
types of ordering of orbital and epicyclic frequencies occur in different regions of parameter
space. This makes it possible to excite more diverse types of resonances that do not exist in
Kerr spacetime. For a Kerr black hole, we always have the inequality ωθ > ωr. This prevents
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Figure 7: The location of the Kepler resonances as a function of the tunnel spin parameter. In a)
and b) (enlarged section) we study the resonances due to the coupling between the radial epicyclic and
orbital frequencies, while in c) the coupling is between the vertical epicyclic and orbital frequencies.
The lowest order Keplerian resonances do not exist in the regions in the parameter space where ω0 < ωr
or ω0 < ωθ is satisfied.
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the excitation of the lower-order parametric resonances n = 1 and n = 2, i.e. ωr = 2ωθ and
ωr = ωθ, which would also have the highest amplitudes. In contrast, for the rotating tunnel
given by (2), the parametric resonances n = 1 and n = 2 are possible for any value of the
spin parameter a ∈ [0, 1]. The observed 3 : 2 ratio between the two-peak frequencies can be
explained by identifying the low and high observed frequencies νL and νU as νU = νθ + νr and
νL = nur in the case n = 1, and νU = 3νθ = 3νr and νL = 2νr = 2νθ in the case n = 2.

For the excitation of the forced resonances of the lowest order, we get new possibilities when
the epicyclic frequencies satisfy the ratios ωθ : ωr = 1 : 2 and ωθ : ωr = 1 : 3. These lead to
the observable frequencies νU = νθ + νr, νL = νr, and νU = νr, νL = νr − νθ, respectively.
Kepler resonances can be observed for combinations such as ω0 : ωr = 3 : 2 (νU = ν0, νL = νr)
, ω0 : ωr = 2 : 1 (νU = 3νr, νL = ν0), or ω0 : ωr = 3 : 1 (νU = ν0, νL = 2νr) in the
regions where the ordering ω0 > ωr is valid and the corresponding cases with coupling between
the vertical epicyclic and orbital frequencies when ω0 > ωθ. Our study shows that the lowest
order Keplerian resonances with ratios between the orbital frequency and one of the epicyclic
frequencies m : n, where m,n = 1, 2, 3 do not exist when we have an arrangement ω0 < ωr or
ω0 < ωθ.

The location of the described resonances as a function of the spin parameter is illustrated in
figures 6-7. For the prograde orbits, the resonances are excited in the immediate vicinity of the
space-time tunnel throat, i.e. in the region with a very strong gravitational field. Furthermore,
this behavior is observed not only for rapidly rotating space-time tunnels, but for a wide range
of values of the spin parameter of the space-time tunnel. Thus, quasi-periodic oscillations in
tunnel spacetime can be a valuable probe of the strong gravity regime.Another characteristic
feature is that for a fixed value of the spin parameter the same type of resonance occurs for
several different radii. In the Kerr black hole case, the resonance curves are monotonic and
such behavior is ruled out. This phenomenon is particularly interesting because the radius
where the resonance is excited is related to the properties of the physical process that causes it.
Thus, for the tunnel spacetime we can have the same kind of resonance excited simultaneously
in different regions in the accretion disc, possibly caused by different physical processes.

1.6 Conclusion

In this chapter, we explored how we can interpret the high-frequency quasi-periodic oscillations
from the accretion disk within resonance models if we assume that the central compact object
represents a space-time tunnel instead of a Kerr black hole. We have made a systematic study
of the existence and stability of time-like circular geodesics in the equatorial plane. As a result,
we derived analytical expressions for the epicyclic frequencies that govern the evolution of small
deviations from circular motion, which are valid for a general class of traversable space-time
tunnels with integrable geodesic equations. We see that for large classes of space-time tunnels,
the vertical epicyclic frequency is always positive, which ensures that the circular orbits are
always stable with respect to small perturbations in the vertical direction. In this respect,
space-time tunnels are similar to a Kerr black hole in that the stability is determined only by
the radial epicyclic frequency.

In other respects, the quasi-circular equatorial motion in the space-time of tunnels shows
significant differences. A key distinction is that epicyclic and orbital frequencies can obey
different types of ordering in different regions of parameter space. Unlike tunnels, for a Kerr
black hole they maintain a constant relation for each radius and spin parameter. This property
allows the manifestation of a richer class of resonant phenomena in the spacetime of the tunnels,
opening up new possibilities to explain the observed quasi-periodic oscillations of the accretion
disk. In particular, lower-order parametric and forced resonances are possible, which will lead
to stronger observable signals. For a wide range of spin parameters, resonances can be excited
in the close vicinity of the tunnel throat, probing the region of strong gravitational interaction.
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In addition, the same type of resonance can occur simultaneously at several different radial
distances, which may place some constraints on the physical processes in the accretion disc
determining the origin of the resonance phenomena.

2 Scalarized black holes in multiscalar Einstein-Gauss-Bonnet
gravity

2.1 Multiscalar-Einstein-Gauss-Bonnet gravity

The multiscalar Einstein-Gauss-Bonnet (MSEGB) theory of gravity is defined as follows. We
consider a 4-dimensional spacetimeM endowed with a spacetime metric gµν and N additional
scalar fields ϕa that can be considered as coordinates on an N-dimensional Riemannian manifold
EN (so-called scalar space) with metric γab(ϕ) [47, 48]. Globally, ϕa is a map ϕ :M→ EN and
the kinetic term for the scalar fields given below is exactly the line element of EN pulled-back
onto spacetime. The action in MSEGB gravity is given by

S =
1

16πG

∫
d4x
√
−g
[
R− 2gµνγab(ϕ)∇µϕ

a∇νϕ
b − V (ϕ) + λ2f(ϕ)R2

GB

]
, (19)

where R is the Ricci scalar with respect to the space-time metric gµν ,V (ϕ) is the potential
of the scalar fields ϕ = (ϕ1, ..., ϕN), f(ϕ) is a coupling function depending only on ϕ, λ is
the Gauss-Bonnet coupling constant having dimension length and R2

GB is the Gauss-Bonnet
invariant 1.

In the present thesis, we consider the space of scalar fields as a 3-dimensional maximally
symmetric Riemannian space, i.e. S3, H3 or R3 with metric

γab(ϕ)dϕadϕb = a2
[
dχ2 +H2(χ)(dΘ2 + sin2ΘdΦ2)

]
, (20)

where a > 0 is a constant and Θ and Φ are the standard angular coordinates on the 2-
dimensional sphere S2. In addition, we need to define V (ϕ) and the coupling function f(ϕ).

The three space possibilities of the scalar space are given by the metric functionsH(χ):H(χ) =
sinχ for spherical geometry, H(χ) = sinhχ for hyperbolic geometry and H(χ) = χ for flat ge-
ometry. The parameter a is related to the curvature κ of S3 and H3, and we have κ = 1/a2

for spherical and κ = −1/a2 for hyperbolic geometry. In addition, we will consider theories for
which the coupling function f(ϕ) and the potential V (ϕ) depend on χ only. This allows the
equations for Θ and Φ to be separated from the underlying system.

2.2 Dimensionally reduced equations for scalarized black holes

Instead of making the simplest choice, for which all scalar fields depend only on the radial
coordinate r , we choose the nontrivial map ϕ :M→ EN defined as follows. We assume that
the field χ depends only on the radial coordinate r, i.e. χ = χ(r), and the fields Θ and Φ
are independent of r and are given by Θ = θ and Φ = φ [49]. Our ansatz is compatible with
spherical symmetry, and it can be verified that the equations for Θ and Φ are satisfied.

We will consider static and spherically symmetric solutions for black holes of the equations
in MSEGB gravity with metric

ds2 = −e2Γdt2 + e2Λdr2 + r2(dθ2 + sin2 θdφ2), (21)

where Γ and Λ depend only on the radial coordinate r.
1The Gauss-Bonnet invariant is defined as R2

GB = R2 − 4RµνR
muν + RµναβR

µναβ where R is the Ricci
scalar, Rµν is the tensor of Ricci and Rµναβ is the Riemann tensor
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For simplicity, in what follows we consider the case with V (ϕ) = 0. With the described
ansatz for scalar fields and using the form of the metric above, we obtain the following reduced
field equations

2

r

[
1 +

2

r
(1− 3e−2Λ)Ψr

]
dΛ

dr
+

(e2Λ − 1)

r2
− 4

r2
(1− e−2Λ)

dΨr

dr

− a2

[(
dχ

dr

)2

+ 2e2ΛH
2(χ)

r2

]
= 0,

(22)

2

r

[
1 +

2

r
(1− 3e−2Λ)Ψr

]
dΓ

dr
− (e2Λ − 1)

r2

−a2

[(
dχ

dr

)2

− 2e2ΛH
2(χ)

r2

]
= 0, (23)

d2Γ

dr2
+

(
dΓ

dr
+

1

r

)(
dΓ

dr
− dΛ

dr

)
+

4e−2Λ

r

[
3
dΓ

dr

dΛ

dr
− d2Γ

dr2
−
(
dΓ

dr

)2
]

Ψr

−4e−2Λ

r

dΓ

dr

dΨr

dr
+ a2

(
dχ

dr

)2

= 0, (24)

d2χ

dr2
+

(
dΓ

dr
− dΛ

dr
+

2

r

)
dχ

dr
− 2λ2

a2r2

df(χ)

dχ

{
(1− e−2Λ)

[
d2Γ

dr2

+
dΓ

dr

(
dΓ

dr
− dΛ

dr

)]
+ 2e−2ΛdΓ

dr

dΛ

dr

}
− 2

r2
H(χ)

dH(χ)

dχ
e2Λ = 0, (25)

where

Ψr = λ2df(χ)

dχ

dχ

dr
. (26)

For this system to describe a black hole the following boundary conditions and regularity
conditions must be satisfied. As usual we impose the condition for an asymptotically flat
spacetime, namely

Γ|r→∞ → 0, Λ|r→∞ → 0, χ|r→∞ → 0 . (27)

The very existence of a black hole horizon at r = rH requires

e2Γ|r→rH → 0, e−2Λ|r→rH → 0. (28)

Furthermore, the requirement that the scalar field and its derivatives be regular over the
event horizon leads to a set of relations relating the values of the scalar field, its derivatives, and
metric functions on the horizon. After suitable manipulations, similar to [50], we can obtain
an equation for the first derivative of the scalar field on the horizon (dχ/dr)H , namely
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(
4λ2

(
a2H(χH)2 − 1

2

)(
df(χH)

dχ

)
r3
H + 8H(χH)

(
dH(χH)

dχ

)(
df(χH)

dχ

)2

λ4rH

)(
dχ

dr

)2

H

+

((
2a2H(χH)2 − 1

)
r4
H + 8H(χH)

(
dH(χH)

dχ

)(
df(χH)

dχ

)
λ2r2

H

+ 16λ4a2

(
a2H(χH)2 − 1

2

)(
df

dχ

)2

H

H(χH)2

)(
dχ

dr

)
H

+ 2H(χH)

(
dH(χH)

dχ

)
r3
H

−
(
df(χH)

dχ

)
λ2
((

2a2H(χH)2 − 1
)2 − 2

(
2a2H(χH)2 − 1

))
= 0 (29)

A real root for (dχ/dr)H exists if the discriminant is positive, which leads to the following
inequality (

a2H2(χH)− 1
2

)2
(
a4H4(χH)

(
df
dχ

)4

H
λ8 + 3

2
H(χH)dH(χH)

dχ

(
df
dχ

)3

H
λ6r2

H+

1
2

(
a2H2(χH)− 3

4

)
λ4r4

H

(
df
dχ

)2

H
+ 1

64
r8
H

)
≥ 0, (30)

where the left-hand side in the inequality is the discriminant of the equation (29). Therefore,
the inequality serves as a condition for the existence of a black hole, and it turns out that
practically for some Gauss–Bonnet coupling functions this introduces a minimum horizon radius
below which there are no solutions for black holes. It is easily shown that for a flat scalar space
geometry, the inequality reduces to the Gauss-Bonnet black hole existence equation with one
scalar field ([50]). The functions Γ and Λ have the usual asymptotics of infinity, and in particular

Λ ≈ M

r
+O(1/r2), Γ ≈ −M

r
+O(1/r2), (31)

where M is the mass of the black hole. The asymptotic behavior of the scalar field χ can be
obtained from the linearized equation for χ away from the black hole, and we find

χ ∼ 1

r2
. (32)

This unusual asymptotics has serious physical implications. This means that the scalar
charge associated with χ is zero, which means that the scalar dipole radiation is strongly
suppressed. This is very important given the fact that perhaps one of the strongest constraints
on gravitational theories with scalar degrees of freedom comes from indirect observations of
gravitational wave emission from binary neutron stars [51, 52, 53]. In Gauss-Bonnet theories
having a single scalar field it has already been shown that scalarized neutron stars can exist [54]
and this is also true for multi-scalar Gauss-Bonnet theories as we will see in the next chapter.
The scalar field in neutron stars has the same asymptotics as for the black hole case, meaning
that for binary pulsars there is no emission of scalar dipole radiation and no constraints to be
placed on the theory based on these observations. This fact shows that the considered theories
allow for much wider deviations from GR.

2.3 Numerical formulation and results

The numerical solution of the system of equations (22)–(25) is based on the shooting method
with the appropriate boundary conditions at infinity and regularity conditions on the horizon
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Figure 8: Left Value of the scalar field on the horizon as a function of the normalized black hole mass.
Right Black hole horizon area normalized to the Schwarzschild limit AH/(16πM2) as a function of
normalized mass. The coupling function is f(χ) = χ and different colors and line styles correspond
to different choices of a2 and H(χ) respectively. Sequences of black holes end at the point where the
existence condition is violated.

as discussed above. In addition, we also have a condition for the existence of black holes, (30).
The calculations were performed using several different forms of the coupling function f(χ),
which admits the existence of black holes with scalar hair, including spontaneously scalarized
black holes, for three possible forms of the function H(χ).

2.3.1 Black holes with scalar hair – linear and exponential coupling

Without loss of generality, we can impose the following condition on the coupling function,
namely the condition f(0) = 0. This can be done because the field equations are invariant
under the transformation f(χ) → f(χ) + const. In this subsection, we will discuss the results
for two coupling functions representing linear coupling

f(χ) = χ (33)

and an exponential function
f(χ) = eαχ − 1, (34)

where α is a constant. Such a form of the coupling function is also used in Einstein-dilaton-
Gauss-Bonnet gravity with a single scalar field [55]. In this case, black hole solutions, when
they exist, are always endowed with scalar hair, and the zero scalar field is not a solution to
the field equations, unlike the scalarization discussed in the next section.

The two coupling functions are equivalent for small scalar fields χ up to a multiplicative
constant. As expected, based on the experience with Einstein-dilaton-Gauss-Bonnet gravity,
the qualitative behavior of the solutions is very similar for the two cases - even for large χ
and the results are not qualitatively different. Therefore, here we will only present results for
linear coupling (33) and where necessary we will comment on the case of exponential coupling
(34). The quantities presented above are scaled with respect to the coupling constant λ in the
appropriate way, which effectively leaves us with one free parameter in the theory in the case
of linear coupling, i.e. a2 .

The scalar field on the horizon χH as a function of the normalized (with respect to λ )
black hole mass for linear coupling (33) is presented in the left panel of Figure 9 for different
combinations of the parameter a2 and different functions H(χ). The scalar field is strong for
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Figure 9: Left Schwarzschild limit-normalized black hole entropy SH/(16πM2) as a function of nor-
malized mass.Right Schwarzschild-normalized radius of the photon sphere as a function of normalized
mass of the black hole. The coupling function is f(χ) = χ and the notation is the same as in Fig. 8

small masses, while for large M it quickly tends to zero. Furthermore, smaller values of a2

lead to a substantial decrease in χH . For fixed a2, larger values of χH are achieved for H(χ)
describing spherical geometry, while the smallest values of χH are for hyperbolic geometry.
Naturally, larger χH will lead to larger differences with GR, and this can be observed in the
right panel of Figure 9, where the normalized horizon area is plotted as a function of mass.
The normalization of AH is about the area of the horizon of the Schwarzschild black hole from
GR, which corresponds to the horizontal bold line AH/(16πM2) = 1.

Sequences of black hole solutions terminate at some fixed mass where the black hole existence
condition (30) is violated and, in general, higher a2 lead to a smaller limiting mass. For a fixed
branch of solutions, the largest deviation is achieved near this limit mass and for the considered
range of a2, the difference with the Schwarzschild horizon area being up to 20% but increasing
for smaller a2. For larger values of M , the black hole branches with a nontrivial scalar field
practically merge with the Schwarzschild ones. Numerical studies have been done for a much
wider range of a2 and specifically a2 ∈ [10−4, 102], and the qualitative behavior remains the
same – the Schwarzschild deviations grow ( decrease) for smaller (larger) a2. Our studies show
overall that Gauss-Bonnet gravity with a single scalar field and the same coupling function
produces a bias that is of the same order as those presented in the figures.

The entropy of a black hole can be calculated using the well-known Wald formula [56],

SH =
1

4
AH + 4πλ2f(χH). (35)

The entropy normalized to the 4πM2 Schwarzschild limit is shown in the left panel of Figure
9. It can be seen that a black hole with a scalar hair always has an entropy higher compared
to the Schwarzschild one.

Another quantity that is an important characteristic of a black hole is the photon sphere
radius rph , defined as the point where the following equality is satisfied

dΦ

dr

∣∣∣∣
r=rph

− 1

rph

= 0. (36)

The photon sphere radius rph is directly related to many observational properties of black
holes such as the frequencies of quasi-normal modes, the black hole shadow, and strong grav-
itational lensing. The photon sphere radius is presented in the right panel of Figure 9, where
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Figure 10: Left The value of the scalar field on the horizon as a function of the normalized black hole
mass. Right The Schwarzschild limit-normalized area of the black hole horizon. The coupling function
is f(χ) = 1

2β

(
1− e−βχ2

)
, where β = 0.5, and the different colors and line styles corresponding to the

different choices of a2 and H(χ) respectively.

rph is normalized to the Schwarzschild photon sphere radius. It can be seen that even when
the horizon area can differ significantly from the Schwarzschild solution in GR, the deviation
in the radius of the photon sphere is quite moderate, roughly around 5%. As we commented,
however, smaller values of a2 will lead to a larger difference with the Schwarzschild solution,
and this may cause potential observational effects.

2.3.2 Solutions describing spontaneously scalarized black holes

In this section, we study black hole solutions in multi-scalar Gauss–Bonnet theories, which
admit the existence of a solution with zero scalar field (i.e. the Schwarzschild solution) for all
values of the parameters. Schwarzschild black holes, however, can become unstable below a
certain mass (above a certain curvature of space-time) and spontaneous scalarization can be
observed, i.e. new branches of black holes with a non-trivial scalar field bifurcating from those
in GR. For spontaneous scalarization to occur, the following conditions must be satisfied

df

dχ

∣∣∣∣
χ=0

= 0,
d2f

dχ2

∣∣∣∣
χ=0

> 0. (37)

We will discuss two coupling functions satisfying these conditions.

2.3.3 First coupling function

The first coupling function is

f(χ) =
1

2β

(
1− e−βχ2

)
, (38)

where we fixed β = 0.5. This is exactly the coupling function used in the beginning to study the
spontaneously scalarized Gauss-Bonnet black hole [50] (with one scalar field). This coupling
function leads to well-defined branches of scalarized black holes reaching near the M = 0
boundary.

The left panel of Figure 10 shows the scalar field on the black hole horizon as a function of
the normalized mass for several different values of a2 and different shapes of the H(χ) function.
The Schwarzschild solution is depicted by the bold black line at χH = 0 and it exists for the
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Figure 11: Left The Schwarzschild limit-normalized black hole entropy SH/(4πM2) as a function of
normalized mass. Right The Schwarzschild-normalized radius of the photon sphere as a function of the
normalized black hole mass. The coupling function is f(χ) = χ notations are the same as in Figure
10.

entire parameter set. At some values of the mass, however, the Schwarzschild solution becomes
unstable and new branches of solutions with a non-trivial scalar field bifurcate from it. It
should also be noted that more than one branch of scalarized solutions may exist, and these
additional branches can be classified by the number of zeros of the scalar field. Only the first
branch that has no nodes of the scalar field can be potentially stable [57, 58] and for that we
will focus only on these solutions.

Figure 10 shows that as the parameter a2 increases, the mass threshold below which scalar-
ization is observed shifts to higher values of M . The deviation of the scalarized black holes
from those of the GR can be better seen in the right panel of the figure, where the normalized
horizon area is plotted as a function of mass. The differences with GR increase with increasing
mass. The solution sequences terminate either because the condition (30) is violated or because
of some numerical difficulties – for small masses the equations become very stiff and cannot
exceed a certain accuracy. In most cases, however, solutions describing black holes disappear
due to violation of the existence condition (30). The situation is similar in pure Gauss-Bonnet
gravity with a single scalar field [50]. The main difference between the results for different
H(χ) functions is the mass threshold above which there are no scalarized solutions. The largest
differences with GR are observed for hyperbolic geometry of the scalar space.

The next important question is whether the new branches of scalarized solutions are sta-
ble or not. Even without dynamic analysis, we can qualitatively predict stability based on
thermodynamic considerations alone. A good indicator of the stability of the solutions is the
entropy – solutions with greater entropy are thermodynamically favored and are normally the
more stable 2. The normalized entropy is shown in the left panel of Figure 11. As can be seen
the Schwarzschild black hole always has a lower entropy than the scalar hair black holes, which
gives a strong indication that the scalared solutions are stable. The right panel of Figure 11
shows the radius of the photon sphere. The differences with GR can be significant for small
masses and small values of a2. This could potentially lead to a strong signature of scalar fields
in astrophysical observations (quasi-normal modes, gravitational lensing, black hole imaging,
etc.). The results so far are for β = 0.5. Other values of β have been investigated and the
results remain qualitatively unchanged. The main difference is the quantitative deviation from
GR. More precisely, a smaller β creates larger differences with the Schwarzschild solution for a

2Similar conclusions are drawn for pure Gauss-Bonnet gravity with a single scalar field, where stable scalar-
ized solutions also have larger entropy than that of Schwarzschild [50, 57].
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fixed black hole mass and a fixed a2.

2.3.4 Second coupling function

In this subsection, we will focus on a second coupling function that leads to scalarization,
namely

f(χ) =
1

β

(
eβ sin2 χ − 1

)
. (39)

The results presented below are for the case β = 1, but other values of the parameter β are
also commented.

The value of the scalar field on the horizon and the normalized horizon area are presented in
Figure 12. A very interesting behavior of the scalar branches is observed – after the bifurcation,
the mass of the black hole with a scalar hair first increases, then reaches a maximum and
decreases. The branches end at χH → π/2 because at this point the condition for the existence
of scalarized solutions (29) is violated. Then, for a black hole mass between the bifurcation
point and the mass maximum for the scalarized branch, there exist three black hole solutions
– the Schwarzschild solution itself and two scalarized solutions. Similar behavior was first
observed for scalar charged black holes with nonlinear electrodynamics [59, 60] and recently
also for a Gauss-Bonnet black hole with a single scalar field [61], where the coupling function is
a coupling function with a term of 4th order. The results presented here, however, clearly show
the emergence of a small region where two scalarized solutions with the same mass coexist,
and the most important question we have to ask is about their stability. As we commented in
the previous subsections, studying the black hole entropy (35) can provide information about
the stability of branches. The normalized entropy is presented in the left panel of Figure 13
as a function of mass. For small masses, the scalarized branches have an entropy larger than
the Schwarzschild one, and on this basis we expect that the three solutions (for the three
different H(χ) functions) are stable. As the mass of the scalarized branches increases, they
reach a maximum where a cusp appears on the SH(M)-diagram, which is a signal of a change
in stability. From this point on, the scalarized branch is most likely unstable, since its entropy
is lower than that in GR. This matches what is observed for charged scalarized blacks holes in
[59]. There is also another interesting region near the mass maximum where the potentially
stable part of the scalarized branch has for a small range of masses a lower entropy than that of
Schwarzschild. Furthermore, the Schwarzschild solution is most likely stable everywhere along
the path to the bifurcation point. This is a very interesting region and the question of stability
can only be rigorously answered if a linear stability analysis is done. It will be done in a future
paper.

The normalized radius is plotted in the right panel of Figure 11. The Schwarzschild difference
is expectedly larger for smaller masses and reaches up to 10%. This will of course depend on
the choice of the parameters β and a2. If we assume that the middle of the branch (between
the bifurcation point and the mass maximum) is truly unstable, there will clearly be a jump
between the last stable Schwarzschild model and the stable scalarized black hole of the same
mass. This could potentially lead to interesting observational effects in scenarios involving a
scalarization process, such as in merging compact objects [62, 63, 64].

It is interesting whether such strange behavior can be observed in pure Gauss-Bonnet gravity
with a single scalar field. Our results show that for the coupling function (39) and properly
chosen values of β , the mass of scalarized black holes starts to increase after the bifurcation
point, but the corresponding condition for the existence of scalarized black holes ((30) is quickly
violated and branches terminate before a clear mass maximum is reached. Of course, careful
tuning of the parameter β and/or the coupling function can lead to the desired effect, moreover
such behavior (but not so pronounced) has already been observed for a coupling function with
a quartic term in the scalar field [61]. At the end of the section, let us comment on the
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Figure 12: Left The value of the scalar field on the horizon as a function of the normalized black hole
mass. Right The normalized area of the black hole horizon, to the Schwarzschild limit AH/(16πM2), as
a function of mass. The coupling function is f(χ) = (1/β)(eβ sin2 χ − 1) where β = 1, and the different
line colors and styles correspond of different choices of a2 and H(χ) respectively.
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Figure 13: Left The Schwarzschild limit normalized black hole entropy SH/(4πM2) as a function of
normalized mass. Right The Schwarzschild-normalized radius of the photon sphere as a function of
black hole mass. The coupling function is f(χ) = (1/β)(eβ sin2 χ − 1) where β = 1 and the notation is
the same as in Figure 12.
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dependence of the results on the parameter β in the coupling function (39). It turns out that
the interesting behavior we observed above disappears for sufficiently small β , while for large
β the range of masses between the bifurcation point and the maximum mass for the scalarized
solutions increases. In the case that the nonuniqueness of the scalarized branch vanishes, the
behavior of the solutions is qualitatively the same as for the coupling function (38) and therefore
we will not comment on it further.

2.4 Conclusion

In this chapter, we considered a multiscalar extension of GR, namely Gauss-Bonnet gravity, and
focused on models whose scalar space EN is a 3-dimensional maximally symmetric space, i.e.
S3, H3 or R3. We restricted ourselves to the static and spherically symmetric case with a map
ϕ : M → E3 explicitly given by ϕ = (χ(r),Θ = θ,Φ = φ) which is compatible with spherical
symmetry. Assuming also that the coupling function depends only on χ we numerically prove
the existence of black holes in multi-scalar-Einstein-Gauss-Bonnet theories. An important
property for these solutions is that the scalar field has 1/r2 asymptotics at infinity, leading to
zero scalar charge and negligible dipole radiation. Thus, we cannot place strict observational
constraints on the parameters based on the indirect observation of gravitational waves from
pulsars in binary systems.

We concentrated on different coupling functions leading to black holes with a scalar hair. For
all cases of scalar hair black holes studied, we find that in the limit a2 →∞ the results approach
those in GR, and the highest deviations are observed for small values of a2. However, there
exists a finite mass below which no black hole solutions exist, which depends on the parameter
a2 and increases as a2 decreases. Regarding the dependence of the results on the H(χ) function,
the highest deviation from GR is observed for a spherical geometry and the least for a hyperbolic
one. Spontaneously scalarized black holes have standard characteristics – at some masses, new
classes of solutions with a non-trivial scalar field bifurcate from the Schwarzschild one. The
bifurcation point moves to smaller masses with an increment of a2. The deviations from GR are
strongly dependent on the choice of parameters, and larger deviations are observed for smaller
a. The branches either reach zero mass, leading to a strong growth of the scalar field and larger
Schwarzschild differences for small M , or end up at some finite mass due to violation of the
black hole existence condition. For one of these coupling functions that we have considered, a
very interesting phenomenon is observed – the scalarized branch first moves to larger masses
and then reaches a maximum for M , the mass starts to decrease. Thus two sub-branches can
be distinguished – middle, between the bifurcation point and maximum mass, and an outer
branch after the maximum mass. Based on thermodynamic studies, we can conclude that most
likely the middle branch is unstable, while the outer branch is stable.

If we assume that the approximate thermodynamic stability analysis coincides with an as
yet unexplored linear stability of the solutions, then there will be interesting consequences,
especially for phenomena involving the dynamical scalarization of black holes. The reason is
that we will not have a smooth transition between scalarized and unscalarized solutions, as is
the standard case where the scalarized branches are potentially stable just from the bifurcation
point where the scalar field tends to zero. In contrast, we will have a jump between the last
Schwarzschild black hole and a stable scalarized black hole branch. Furthermore, there may
be a region in the parameter space where stable Schwarzschild black holes coexist with stable
scalarized black holes. As a result, a jump can be observed between the scalarized and non-
scalarized solutions. For example, this could manifest as a sudden change in gravitational wave
frequencies during a collision.

We also investigated the space-time surrounding the resulting black hole solutions and more
specifically the photon sphere radius, which is directly related to various astrophysical manifes-
tations of black holes. In all cases, we found that the deviations from GR are more significant
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for smaller black hole masses. For the studied coupling function shapes and parameter values,
the largest differences with the Schwarzschild black hole are reached for the scalarized solution
with a maximum deviation of approximately 30%. This value would potentially increase if we
consider smaller a2.

3 Neutron stars in the Gauss-Bonnet multiscalar theory

3.1 Dimensionally reduced equations for scalarized neutron stars

Here we will consider only the static and spherically symmetric solutions for neutron stars
satisfying the MSЕGB gravity equations with metric

ds2 = −e2Γdt2 + e2Λdr2 + r2(dθ2 + sin2 θdφ2), (40)

where Γ and Λ depend only on the radial coordinate r.
The geometric formulation fully follows the formulation for black holes with the same ansatz

for the scalar fields. In this way, we obtain the following reduced field equations:
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+
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where

Ψr = λ2df(χ)

dχ

dχ

dr
, (45)

a ρ and p are the energy density and matter pressure in the neutron star.
We must supplement the above dimensionally reduced field equations with the hydrostatic

equation of the fluid:

dp

dr
= −(ρ+ p)

dΓ

dr
. (46)
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3.2 Numerical formulation and results

In the present paper, we present results for a realistic equation of state (EOS) called MPA1
[65]. This EOS allows for maximum neutron star masses greater than 2 solar masses, and
it is in agreement with the constraints set by observations of merging neutron star binaries
[66]. For numerical calculations, we adopt its polytropic approximation [67]. We will consider
various coupling functions f(χ) that admit spontaneous scalarization, i.e. satisfy the condition
df
dχ

(0) = 0. As an example, we will consider the following coupling function

f(χ) = − 1

2β

(
1− e−βχ2

)
, (47)

where β is a positive parameter. The coupling constant λ is represented in dimensionless units

λ→ λ

R0

, (48)

where R0 = 1.476 km is half of the gravitational radius of the Sun.
Numerically finding the scalarized solutions and computing the scalarized branches is a

difficult and time-consuming process. That is why we will limit ourselves to only one EOS
and one coupling function, and our main task is to construct representative solutions and
determine their main properties and dependence on the parameters of the theory. The reduced
field equations (41)-(44) and the hydrostatic equilibrium equations (46) are solved numerically
with the natural boundary conditions - regularity at the center of the star and asymptotically
flat at infinity :

Λ(0) = 0,
dΓ

dr
(0) = 0, χ(0) = 0, (49)

and
Λ|r→∞ → 0, Γ|r→∞ → 0, χ|r→∞ → 0. (50)

The asymptotic behavior of the scalar field, as in the case of black holes, can be obtained by
linearizing the field equations in the asymptotic region, which gives χ ∼ 1/r2. This asymptotics
shows that the scalar field does not possess a scalar charge. This has important physical
implications for the theory. The absence of scalar charge means that dipole scalar radiation in
the binary system will be strongly suppressed, so there are no strong constraints that can be
placed on the parameters of the theory from observations of binary pulsars.

For the coupling function we use, the trivial scalar field χ = 0 is always a solution to the
field equations (41)-(44) and the results match those of general relativity. From now on, trivial
solutions and GR solutions will be used interchangeably. We will search the three-dimensional
parameter space (a2, λ, β) for bifurcation points from which new solution branches with a
nontrivial scalar field emerge from the trivial branch. This task turned out to be non-trivial.
On the one hand is the number of free parameters in the theory, and on the other - the serious
numerical difficulties arising from the system itself (41)-(44).

As for the different scalar spaces, we found solutions for all three. However, the differences
between them are negligibly small and cannot be seen when comparing the results in the
figures. We explain the lack of deviations with the small values of the scalar field. We found
that even for the maximum observed values of the scalar fields, the values of the metric functions
H(χ) = sin(χ), H(χ) = χ and H(χ) = sinh(χ) are practically indistinguishable. We therefore
chose to present only the results for the spherical scalar space with H(χ) = sin(χ).

In Fig. 14 we plot the star’s mass, in solar masses, as a function of its radius in km. In the
left panel, the value of a2 is fixed and different combinations of λ and β are studied. In the right
panel, λ and β are fixed and different values of a2 are studied. It is clear from both panels that
the results are qualitatively similar to the results in pure Gauss–Bonnet gravity presented in
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[68]. Non-trivial solutions emerge from the bifurcation points and the branches terminate either
after reaching a maximum mass or at some smaller mass due to numerical difficulties. For all
parameter sets, the computational procedure becomes more sensitive to the initial conditions
as the central energy density increases, and the computational time for the individual models
increases continuously along the branch. Therefore, some of the branches were terminated
before the maximum mass, in some reasonable computational time. Maximum mass, when
reached, is always lower than GR. However, we found that for the same set of parameters, λ
and β, a value for a2 (less than one) can be chosen such that the GBT and MSAGBT solutions
bifurcate for one and same central density. In this case, MSEGBT neutron stars have a smaller
mass compared to GB theory with a single scalar field.

In the left panel of the figure, it can be seen that for a fixed value of a2 the bifurcation
point moves to higher masses (equivalently – central densities) with decreasing λ. With λ
fixed, the branch of the non-trivial solution becomes longer and tends to GR as β increases
(the bifurcation point does not move). In the limiting case β →∞ the non-trivial branch will
coincide with the trivial one. In the right panel, it can be seen that with fixed λ and β the
bifurcation point moves to higher masses and the branch becomes longer as a2 increases.

The behavior described above may place some constraints on the free parameters in the
theory. If the equation of state allows for maximum masses higher than two solar masses in the
GR, the theory parameters must be chosen in such a way that the maximum mass is above two
solar masses. However, this is not very restrictive, since two of the parameters allow significant
deviations in the bifurcation point, and the β →∞ case always tends to the trivial solution, no
matter what the values of the other two parameters are. Also, not all branches reach maximum
masses.

For all parameter combinations presented, we were able to find branches of solutions with
different numbers of zeros of the scalar field – no zeros, one zero, etc. We find that the
bifurcation point moves to higher masses and the branch becomes shorter as the number of
field zeros increases. The results presented here are only for solutions without zeros. These
solutions, as explained below, are stable.

In Fig. 15 we plot the neutron star mass as a function of central density. The models
presented in the left and right panels correspond to those in Fig. 14. For all models, the
deviations from GR are relatively small.

Due to the absence of scalar charge, in Fig. 16 we plotted the value of the surface scalar
field χS of the star as a function of the mass of the neutron star. χS is always higher for smaller
values of λ and decreases as β increases. At the same time, a2 has no significant effect on the
maximum value of χS.

As an indication of the stability of the neutron star solutions, in Fig. 17 we present the
binding energy of the star, 1− M0

Msun
, as a function ofM0/Msun, whereM0 is the baryonic mass of

the star. For better visualization, only some of the parameters discussed above are presented.
Solutions in MSEGBT have a higher (in absolute value) binding energy compared to GR,
making them energetically more favoured. The peak in the GR solution marks the unstable
patterns in the mass-density dependence.In the case of MSEGBT, such a threshold is also
present for the sets of parameters for which the maximum mass can be reached. Models with
zeros of the scalar field have lower (in absolute value) binding energy than the corresponding
ones without zeros. Therefore, by analogy with other scalar-tensor thories, solutions with zeros
of the scalar field are unstable.

4 Conclusion
In this chapter, we constructed scalarized neutron stars in multiscalar Gauss-Bonnet theory
with a maximally symmetric scalar space and a nontrivial map ϕ : spacetime→ targer space
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Figure 14: The mass-radius relation for models with different parameter values. Left Fixed value of
a2 and different values of λ and β. Right Fixed value of λ and β and different values of a2. The mass
of the star is in solar masses and the radius is in kilometers.

Figure 15: The stellar mass as a function of central density for models with different parameter values.
Left Fixed value for a2 and different values for λ and β. Right Fixed value for λ and β and different
values for a2. The mass of the star is in solar masses and the energy density in – g/cm3.
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Figure 16: The value of the scalar field on the surface of the star as a function of the star’s mass. Left
Fixed value for a2 and different values for λ and β. Right Fixed value for λ and β and different values
for a2. The star’s mass is in solar masses.

Figure 17: The binding energy 1−M0/Msun as a function of the rest mass of the star M0. Left Fixed
value for a2 and different values for λ and β. Right Fixed value for λ and β and different values for
a2. The rest mass of the star is in solar masses.
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compatible with spherical symmetry and explicitly given by ϕ = (χ(r), Θ = θ,Φ = φ). We
explored the simplest three possible choices for a maximally symmetric scalar space, namely
S3, H3, and R3 . The models we investigated have a zero scalar field at the center of the star,
and the results presented are for a coupling function that allows scalarization. In terms of
scalar space, no differences are observed between the solutions in the three cases. This is easily
explained by the low values of the scalar field, which makes the metric function H(χ) that
defines the target space effectively indistinguishable between the three cases. Therefore, the
presented results are only for scalar space with spherical geometry.

The resulting neutron star solutions appear qualitatively similar to neutron star solutions
in pure GB gravity. Branches with a non-trivial scalar field branch off from the trivial solution,
and the maximum mass of the scalarized solutions is always less than that in GR. For the
same sets of values for the parameters in the theory, there exist multiple solution branches
characterized by the number of zeros the scalar field has. However, the bifurcation point
depends strongly on the value of the coupling constant λ, the parameter a2 in the scalar space
metric, and the number of zeros of the scalar field. The maximum mass of the solutions in
MSEGBT is always lower compared to GR, which may allow imposing some constraints on the
theory parameters. At the same time, however, due to numerical difficulties, not all decision
branches reach maximum mass.

To get some indication of the stability of the scalarized models, we investigated the binding
energy of the 1−M0/Msun star. Scalarized solutions have a higher (in absolute value) binding
energy than GR, making them energetically favored. As for the branches with different number
of zeros of the scalar field, the branch without zeros has the highest (in absolute value) binding
energy, therefore this branch is stable and the other branches are unstable. This conclusion
is based on the binding energy and behavior of neutron star solutions in similar theories.
However, for a definitive answer on the stability of the models, the radial perturbations must
be investigated.
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Dissertation Contributions
• The quasi-periodic oscillations of the accretion disk around rotating traversable space tunnels
are investigated using the resonance models. The linear stability of circular geodesic orbits
in the equatorial plane for a general class of space tunnel geometries is also investigated and
analytical expressions for epicyclic frequencies are derived. Since space tunnels can often mimic
black holes in astrophysical observations, we analyze the properties of quasi-circular oscillating
motions compared to a Kerr black hole. We show that space tunnels possess distinctive features
that may be important for observations. A characteristic of Kerr black holes is that the orbital
and epicyclic frequencies obey a constant ordering over the entire range of the spin parameter.
In contrast, in tunnels we can have different types of orderings between frequencies in different
regions of the parameter space. This allows the excitation of many more diverse types of
resonances, including lower-order parametric and forced resonances, which can lead to stronger
visible signals. In addition, for uniformly rotating orbits, resonances can be excited in the
very close vicinity of the tunnel throat for a wide range of angular momentum values, making
tunnels a valuable laboratory for testing strong gravity.

• The existence of black holes in multiscalar Gauss-Bonnet theories with a maximally symmet-
ric scalar space for several coupling functions, including the case of spontaneous scalarization,
is numerically proven. Various characteristics of black holes and the space-time around them,
such as the horizon area, entropy and radius of the photon sphere, have also been systemati-
cally investigated. One of the most important properties of the resulting solutions is that the
scalar charge is zero and thus the scalar dipole emission is suppressed, leading to much weaker
observational constraints on the theory. For one of the coupling functions, we find branches
of scalarized black holes that have a non-trivial structure - there is a non-uniqueness of the
scalarized solutions.

• Solutions describing spontaneously scalarized neutron stars in Gauss-Bonnet multiscalar the-
ories with maximally symmetric scalar space are numerically constructed. The dependences
M(ρ) and M(R) were constructed, as well as the dependence of the binding energy on the
baryon mass, which also carry information about the stability of the neutron stars.
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for twin peak kHz quasi periodic oscillations in microquasars. Astronomy and Astrophysics,
436(1):1–8, may 2005.

[13] Luigi Stella and Mario Vietri. kHz quasiperiodic oscillations in low-mass x-ray binaries as
probes of general relativity in the strong-field regime. Physical Review Letters, 82(1):17–20,
jan 1999.

[14] Zdeněk Stuchĺık and Andrea Kotrlová. Orbital resonances in discs around braneworld kerr
black holes. General Relativity and Gravitation, 41(6):1305–1343, nov 2008.
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