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Modern variational analysis can be viewed as a further extension of
the calculus of variations with focus on optimization of functions relative
to various constraints and on sensitivity and stability of optimization-
related problems with respect to perturbations.

One of the most characteristic features of modern variational analy-
sis is the intrinsic presence of nonsmoothness, i.e., the necessity to deal
with nondifferentiable functions, sets with nonsmooth boundaries, and
set-valued mappings. One reason for the growth of the subject has been,
without a doubt, the recognition that nondifferentiable phenomena are
more widespread, and play a more important role than smooth ones.
Many fundamental objects frequently appearing in the framework of
variational analysis (e.g., the distance function, value functions in op-
timization and control problems, maximum and minimum functions, so-
lution maps to perturbed constraint and variational systems, etc.) are
inevitably nonsmooth and also have set-valued structures requiring the
development of new forms of analysis that involve generalized differenti-
ation.

Even the simplest and historically earliest problems of optimal control
are intrinsically nonsmooth, in contrast to the classical calculus of varia-
tions. Optimal control has always been a major source for applications of
advanced methods of variational analysis and generalized differentiation.

Since the discovery of Pontryagin maximum principle, the dawn of
optimal control theory, various versions of this result have been estab-
lished, under different technical assumptions and with different proofs.
As early as in 1965, Dubovickii and Miljutin realized the importance of
convex approximations of closed sets for obtaining necessary optimality
conditions for nonlinear problems in optimization. In a series of papers
(cf., for example, the bibliography of [60]), the corresponding proofs are
based on theorems for nonseparation of sets.

The classical concept of transversality has been applied successfully
as a qualification condition in nonseparation results. Transversality is
originally studied in the fields of mathematical analysis and differential
topology. Recently, it has proven to be useful in variational analysis
as well. As it is stated in [38], the transversality-oriented language is
extremely natural and convenient in some parts of variational analysis,
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including subdifferential calculus and nonsmooth optimization, as well as
in proving sufficient conditions for linear convergence of the alternating
projections algorithm (cf. [30]).

The classical definition of transversality at an intersection point of
two smooth manifolds in a Euclidean space is that the sum of the corre-
sponding tangent spaces at the intersection point is the whole space (cf.
[32], [33]).

In order to prove the Pontryagin maximum principle (cf., for example,
the bibliography of [60]), Hector Sussmann generalizes the definition of
transversality for closed convex cones in Rn: the cones CA and CB are
transversal if and only if

CA − CB = Rn

and strongly transversal, if they are transversal and CA ∩CB ̸= {0} (cf.
Definitions 3.1 and 3.2 from [60]). In the finite-dimensional case, strong
transversality of the approximating cones of the same type (either Clarke
or Boltyanski) is a sufficient condition for local nonseparation of sets.
The sets A, B containing a point x0 are said to be locally separated at
x0, if there exists a neighborhood Ω of x0 so that Ω ∩ A ∩ B = {x0}.
In infinite-dimensional case, strong transversality of the approximating
cones of the same type does not imply local nonseparation of sets, as
shown by the following example.

Example 1. Take the Hilbert cube

A := {(xn) ∈ l2 : |xn| ≤ 1/n} ⊂ l2

and a ray B := {λy : λ ≥ 0}, where y := (1/n3/4)∞n=1. We have that
the corresponding Clarke tangent cones T̂A(0) = l2 and T̂B(0) = B are
strongly transversal, while the sets A and B are locally separated at 0.

There are various transversality-type properties reflecting the various
needs of the possible applications. In the literature there exist many no-
tions generalizing the classical transversality as well as transversality of
cones. Some of them are introduced under different names by different
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authors, but actually coincide. We refer to [51] for a survey of terminol-
ogy and comparison of the available concepts. The central ones among
them are transversality and subtransversality. They are also objects of
study in the recent book [39]. One of the reasons for that is the close
relation to metric regularity and metric subregularity, respectively.

The term subtransversality is recently introduced in [30] in relation
to proving linear convergence of the alternating projections algorithm.
However, as said earlier, it has been around for more than 20 years, but
under different names – see Remark 4 in [51] and the references therein.
It is a key assumption for two types of results: linear convergence of
sequences generated by projection algorithms and a qualification condi-
tion for normal intersection property with respect to the limiting normal
cone and a sum rule for the limiting subdifferential. Here are equivalent
definitions of transversality and subtransversality.

Proposition 2. Let A and B be closed subsets of the normed space X.
A and B are transversal at x̄ ∈ A∩B, if and only if there exists K > 0
and δ > 0 such that

d(x, (A− a) ∩ (B − b)) ≤ K(d(x,A− a) + d(x,B − b))

for all x ∈ B̄δ(x̄) and a, b ∈ B̄δ(0).
If a = b = 0 in the above inequality, the sets are called subtransversal.

Another quite remarkable feature of subtransversality, was investi-
gated in [9]. It turns out that subtransversality implies a rather general
nonseparation result which is crucial for obtaining necessary optimal-
ity conditions of Pontryagin maximum principle type (including opti-
mal control problems with infinite-dimensional state space). Moreover,
subtransversality is a natural assumption for proving abstract Lagrange
multiplier rule.

Another notion of tranversality - tangential transversality, was intro-
duced recently by Bivas, Krastanov and Ribarska in [9]. The authors
arrived to the study of transversality of sets when investigating Pontrya-
gin’s type maximum principle for optimal control problems with terminal
constraints in infinite dimensional state space.
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Definition 3. Let A and B be closed subsets of the metric space X. We
say that A and B are tangentially transversal at x̄ ∈ A ∩ B, if there
exist M > 0, δ > 0 and η > 0 such that for any two different points
xA ∈ B̄δ(x̄) ∩ A and xB ∈ B̄δ(x̄) ∩ B, there exist sequences tm ↘ 0,
{xAm}m≥1 in A and {xBm}m≥1 in B such that for all m

d(xAm, x
A) ≤ tmM, d(xBm, x

B) ≤ tmM, d(xAm, x
B
m) ≤ d(xA, xB)− tmη .

Besides the aformentioned results, the authors also established in-
tersection rules for tangent cones in Banach spaces and some relations
to masiveness of sets. Many questions about tangential transversality
remained open (see [9], p. 28).

These results inspired one of the lines of research in the thesis, which
is connected to the application of subtransversality and tangential transver-
sality for obtaining necessary optimality conditions in terms of abstract
Lagrange multipliers.

The intriguing thing here is to verify the subtransversality assump-
tion in nontrivial cases. Our aim is to find some conditions which are
sufficient for subtransversality of two sets. However, the approach we
take is proving tangential transversality instead of subtransversality. It
happens that usually tangential transversality is easier to verify than
subtransversality when the information known concerns the tangential
structure of the sets.

We present a general sufficient condition for tangential transversality
(Theorem 26). The underlying idea is that in many cases the uniformness
of the local approximation of a closed set can be used instead of some
suitable compactness assumption. This is especially important in the
infinite-dimensional case.

We motivate the usefulness of the obtained general results by pro-
viding some applications. One of them is finding a Lagrange multiplier
when one of the sets is the epigraph of a function which is Lipschitz in
one of the variables, uniformly with respect to the other.

The main application we obtained, in fact the starting point of this
research, was the famous Aubin condition from [15] for the basic prob-
lem of the calculus of variations. We formulate an abstract (infinite-
dimensional) version of this condition. This abstract version inspired
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the rest of the results in this chapter. We show that if a function (ac-
tually its epigraph) satisfies this assumption and the constraint has a
specific form (tailored after the constraint in the basic problem of the
calculus of variations as an infinite dimensional optimization problem),
one can find a Lagrange multiplier. Sure, the proof makes use of our
main result. It is worth noting that in our abstract version of Aubin
condition, compactness of the operator is not necessary. For our argu-
ment, it is sufficient to assume that the image under the operator L of
the correcting set is totally bounded in X. In fact, the case when L is
the integration operator from Y = L1([a, b],Rn) to X = L∞([a, b],Rn)
could be important for future applications of our results. Clearly, this
operator is bounded but not compact, and it maps weakly compact sets
in Y to totally bounded sets in X, thus allowing to use weakly compact
sets as ”correcting sets“. This investigation has been developed in [46].
To further motivate our main result, we show that some known sufficient
conditions for tangential transversality can be obtained as its particu-
lar cases. Namely, we obtain Theorem 5.2 from [9] and Proposition 3.3
from [8] as corollaries of our main result Theorem 26. Moreover, the
well known notion of compactly epi-Lipschitz set is extended for a pair
of closed sets (cf. Definition 30) and is shown that it could also be used
as a sufficient condition for tangential transversality. This investigation
has been developed in [46], where a more general necessary optimality
condition, involving measures of noncompactness, is proved.

Yet another notion of transversality was introduced recently by Drusvy-
atskiy, Ioffe and Lewis in [30]. It is intermediate between subtransver-
sality and transversality and serves as an important sufficient condition
for local linear convergence of alternating projections for solving finite
dimensional nonconvex feasibility problems.

Definition 4. The closed sets A,B ⊂ Rd are intrinsically transversal
at the point x̄ ∈ A ∩ B, if and only if there exist δ > 0 and κ > 0 such
that for all xA ∈ B̄δ(x̄) ∩ A \ B and xB ∈ B̄δ(x̄) ∩ B \ A it holds true
that

max

{
d

(
xA − xB

∥xA − xB∥
, NB

(
xB
))

, d

(
xB − xA

∥xB − xA∥
, NA

(
xA
))}

≥ κ ,
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where ND (x̄) is the proximal or limiting normal cone to D at x̄.

Intrinsic transversality steadily grows in importance and number of
researchers extend this transversality concept to more general settings
and investigate its primal and dual characterizations. These notions
(which some authors call “good arrangements of sets”) and the relations
between them, have been studied in details. See, e.g., [19],[20], [18], [50],
and the literature therein. Still some aspects are not well understood.
Indeed, one of the starting points of this investigation was a question of
A.Ioffe about finding a metric characterization of intrinsic transversality.
In fact, a variety of characterizations of intrinsic transversality in various
settings are known (Euclidean, Hilbert, Asplund, Banach and normed
linear spaces) but all of them involve the linear structure of the space.
The reason is that researchers are mainly concentrated on the dual space.
To the best of our knowledge, the first primal characterization of intrinsic
transversality is obtained in [61] where the structure of a Hilbert space
is assumed in most of the considerations.

These questions, along with the unknown relation between tangential
transversality and intrinsic transversality, give rise to another line of
research in the thesis.

The result of our study was somewhat surprising: it happened that
intrinsic transversality and tangential transversality are “almost” equiv-
alent. Moreover, the relation is very easy to establish, given the char-
acterization of intrinsic transversality via the slope of coupling function
due to Ioffe and Lewis. Thus a primal space characterization of intrinsic
transversality has been obtained. We put a significant effort in clarifying
the exact relationship of this characterization and the primal character-
ization of intrinsic transversality obtained by Thao et al. in [61], which
they call property (P). We proved that property (P) implies our char-
acterization in general Banach space setting and these properties are
equivalent in Hilbert space setting. We would like to emphasize that the
property we introduce is simpler (or at least it looks simpler) than the
property (P) – less variables are involved.

Establishing the exact relationship between intrinsic transversality
and tangential transversality helped us to obtain primal space infinites-
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imal characterizations and slope characterizations of both transversality
and subtransversality close in nature to tangential transversality. Thus,
although the definitions and motivations for the four types of transver-
sality properties we consider, are not similarly looking, we obtained char-
acterizations in a unified manner for all of them. This makes obvious
their close relations on the one handside, and their differences on the
other handside. Indeed, it is now obvious that

transversality =⇒ tangential
transversality =⇒ intrinsic

transversality =⇒ subtransversality

and neither implication is invertible. This hierarchy of the properties and
of their respective slope characterizations sheds new light on the topic.
There have been known primal sufficient conditions and primal necessary
conditions for transversality and subtransversality, but no primal char-
acterizations (see [20] and [19]). The relationship of our characterization
to these conditions is very similar to the relationship of our characteriza-
tion of intrinsic transversality to property (P) – we work with less points
which makes the situation simpler. After obtaining characterizations of
these transversality concepts in a unified manner, we go on to examine
the regularity concepts. We obtain a characterization of metric regular-
ity properties of a set-valued map in terms of transversality properties of
sets associated with the graph of the set-valued map. We show directly
that one can transfer from subtransversality to metric subregularity and
from transversality to metric regularity. Similar results were already
obtain in [21], [22] and [12], but there is no clear statement of such in-
terchangeability. We moreover show proofs of some known primal space
characterizations of the regularity concepts, using the already derived
characterzations of their transversality counterparts. We also show how
one can easily obtain from these results the characterizations of metric
regularity via the first order variation and the graphical derivative.

In the last chapter of the thesis we consider continuity of the optimal
value mapping for an abstract optimization problem in metric spaces,
where the feasible set varies, i.e. depends on a parameter. Specifically,
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we deal with the function

Sval (p) := inf{g(y) | y ∈ D(p)}.

where X and Y are metric spaces, D : X ⇒ Y is a set-valued mapping
and g : Y → R is a function. The classical Maximum theorem of Berge
([7]) (in the more general setting when X and Y are merely topological
spaces) considers the case when g also depends on p and says that when
g is continuous (on X × Y ) and D is compact-valued and continuous at
p̄ ∈ X, then Sval is continuous at p̄. It is widely used in mathematical
economics and optimal control.

Another version of this result is due to Berdyshev ([6]) where a so-
called t-continuity (which is stronger than the well known Pompeiu-
Hausdorff continuity) is required for the mapping D (see Theorem 39).
The result of Berdyshev also shows that when the space is metric and
g is uniformly continuous on Y , the Pompeiu-Hausdorff continuity suf-
fices to prove continuity of Sval. The corresponding definitions are stated
explicitly in the chapter.

Generalizations of the classical Berge theorem, which consider various
well-posedness conditions of the function on the constraint set that also
guarantee continuity of the value function, can be found in the book of
Lucchetti ([54]). Detailed discussion on this topic could be also found in
the book by Dontchev and Zolezzi ([28]).

The motivation for our investigations on this topic was Theorem 5 of
Chapter IX, Section 1, in [28], which states as follows

Theorem 5. Assume that for some point p̄ of the topological space X, D
is continuous at p̄ and g is continuous on D(p̄). Then Sval is continuous
at p̄.

However, in [28] it is not clearly stated what kind of continuity the
authors have in mind, and this may lead to a possible confusion. We
will show by a counterexample that the theorem is false if the assumed
continuity of the mapping D is in the Pompeiu-Hausdorff sense in the
case of metric spaces. Note that in [28] the spaces are topological (as in
Theorem 1.1) so it is reasonable to assume that a topological definition
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of continuity is had in mind. Still this is not clearly stated. The main
purpose of this chapter of the thesis is to consider this issue (in the case
of metric spaces), namely when Theorem 5 holds and when it does not,
and in the latter case, we examine additional assumption, under which it
holds. We investigate the interplay between the continuity properties of
f and D which would guarantee continuity of Sval. In the course of our
research, we formulate a continuity assumption depending both on f and
D, which we call Relaxed uniform continuity assumption, (RUCA). We
show that it is sufficient for continuity of Sval but is also in some sense
necessary. Moreover, we comment on how earlier results fit naturally in
our approach.

Throughout the thesis, we have eschewed using variational principles,
though some of our results could be obtained in this way, too. However,
we prefer to lean more on geometric intuition, which, in our understand-
ing, makes the results and their proofs more natural and well motivated.

Chapter 2 contains necessary preliminary definitions and results.
In Chapter 3, section 1 we obtain primal space characterizations

of subtransversality. In the papers [19] and [20] (see Remark 3.5 in [19])
similar conditions are presented. It is proved that these conditions are
characterizations (both necessary and sufficient) only in the convex case.

Our approach is to some extent motivated by the considerations in the
paper [9]. In it, the notion of tangential transversality (3) is introduced
as a sufficient condition for nonseparation of sets, tangential intersection
properties and a Lagrange multiplier rule.

Now we introduce a weaker notion. Note that the main difference
is that “there exists a sequence {tn}∞n=1 of positive reals tending to zero
such that for every tn belonging to it . . . " is replaced by “there exists
a positive real θ such that . . . ". This is indeed a significant difference,
as it will be shown later on. The other weakening in the definition,
“x̄ ∈ A∩B” to “A∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅, B∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅”, is for purely

technical reasons.

Definition 6. Let A and B be closed subsets of the metric space X and
x̄ ∈ X. We say that A and B have property (T ) at x̄ if there exist δ > 0
and M > 0 such that A ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅, B ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅ and
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for any xA ∈ A ∩ B̄δ(x̄) and xB ∈ B ∩ B̄δ(x̄) with xA ̸= xB there exist
θ > 0, x̂A ∈ A and x̂B ∈ B such that

d(xA, x̂A) ≤ θM , d(xB, x̂B) ≤ θM and d(x̂A, x̂B) ≤ d(xA, xB)− θ .

Equivalently, A and B have property (T ) at x̄ if and only if there exist
δ > 0 and M > 0 such that A ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅ , B ∩ B̄ δ

2(1+2M)
(x̄) ̸= ∅

and for any xA ∈ A ∩ B̄δ(x̄) and xB ∈ B ∩ B̄δ(x̄) with xA ̸= xB there
exist x̂A ∈ A and x̂B ∈ B such that

d(x̂A, x̂B) ≤ d(xA, xB)− 1

M
max{d(xA, x̂A), d(xB, x̂B)}

and max{d(xA, x̂A), d(xB, x̂B)} > 0.

The lemma below is the main technical result, whose direct corollaries
will justify the benefits of the above definition.

Lemma 7. Let A and B be closed subsets of the complete metric space
X and x̄ ∈ X. Let A and B have property (T ) at x̄ with constants

δ and M . Let xA ∈ A with d(xA, x̄) ≤ δ

1 + 2M
and xB ∈ B with

d(xB, x̄) ≤ δ

1 + 2M
. Then, there exists xAB ∈ A ∩B with

d(xAB, xA) ≤ Md(xA, xB) and d(xAB, xB) ≤ Md(xA, xB) .

Completeness is crucial in the above lemma. The following theorem
is formulated in a way that enables us to use it to obtain primal space
characterizations both for subtransversality and transversality.

Theorem 8. Let A and B be closed subsets of the complete metric space
X and x̄ ∈ X. If A and B have property (T ) at x̄, then there exist K > 0
and δ > 0 such that

d(x,A ∩B) ≤ K(d(x,A) + d(x,B)) (1)

for all x ∈ B̄δ(x̄).
If there exist K > 0 and δ > 0 such that (1) holds for all x ∈ B̄δ(x̄),

A∩B̄ δ
4K+10

(x̄) ̸= ∅ and B∩B̄ δ
4K+10

(x̄) ̸= ∅, then A and B have property
(T ) at x̄.
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As a corollary we obtain that property (T ) is an equivalent charac-
terization of subtransversality in the presence of completeness.

Corollary 9. If x̄ ∈ A ∩ B, where A and B are closed subsets of the
complete metric space X, then A and B have property (T ) at x̄ if and
only if A and B are subtransversal at x̄.

The following proposition is a reformulation of Corollary 9.

Proposition 10. Under completeness of the space X, A and B are
subtransversal at x̄ if and only if there exist δ > 0 and κ > 0 such that
for all x ∈ A ∩ B̄δ(x̄) and y ∈ B ∩ B̄δ(x̄), x ̸= y, it holds

|∇ϕ|⋄(x, y) = sup
(u,v) ̸=(x,y)

max{ϕ(x, y)− ϕ(u, v), 0}
d((x, y), (u, v))

≥ κ.

In Section 2, we continue to obtain primal space characterizations of
transversality. A direct consequence of the definition of transversality
and Theorem 8 is a characterization of transversality in terms of “trans-
lated” subtransversality.

Proposition 11. Let A and B be closed subsets of the Banach space X
and x̄ ∈ A ∩B. Then A and B are transversal at x̄ if and only if there
exist δ > 0 and M > 0 such that for any a ∈ B̄δ(0) and b ∈ B̄δ(0), any
xA ∈ A∩ B̄δ(x̄+ a) and xB ∈ B ∩ B̄δ(x̄+ b) with xA− a ̸= xB − b there
exist θ > 0, x̂A ∈ A and x̂B ∈ B such that

∥xA − x̂A∥ ≤ θM , ∥xB − x̂B∥ ≤ θM and

∥x̂A − x̂B − (a− b)∥ ≤ ∥xA − xB − (a− b)∥ − θ .

Strengthening in one of the directions of this proposition gives a char-
acterization of transversality in terms of “translated” tangential transver-
sality. Here

Proposition 12. Let A and B be closed subsets of the Banach space X
and x̄ ∈ A ∩B. Then A and B are transversal at x̄ if and only if there
exist δ > 0 and M > 0 such that for any a ∈ B̄δ(0) and b ∈ B̄δ(0), any
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xA ∈ A∩ B̄δ(x̄+ a) and xB ∈ B ∩ B̄δ(x̄+ b) with xA− a ̸= xB − b there
exist {xAm}m≥1 ⊂ A, {xBm}m≥1 ⊂ B and tm ↘ 0 such that for each m

∥xAm − xA∥ ≤ tmM , ∥xBm − xB∥ ≤ tmM and

∥xAm − xBm − (a− b)∥ ≤ ∥xA − xB − (a− b)∥ − tm .

Remark 13. In the above proposition we can obtain the (formally)
stronger statement that there exists λ > 0 such that the decreasing prop-
erty holds for any t ∈ (0, λ] instead of the sequence {tn}∞n=1 tending to
zero from above.

Analogously to Proposition 10 we can obtain similar slope type char-
acterizations of transversality.

In Section 3 we provide a metric characterization of intrinsic transver-
sality. This characterization could be used as a definition of intrinsic
transversality in general metric spaces. Moreover, we show that it is al-
most equivalent to the notion of tangential transversality, via observing
a slope type characterization of the latter. Finally we show that the
metric characterization we provide is equivalent in Hilbert spaces to a
characterization introduced and studied in [61].

Similarly we obtained a characterization of tangential transversality
in terms of the slope of the coupling function.

Proposition 14. The subsets A and B of the metric space X are tan-
gentially transversal at x̄ if and only if there exist δ > 0 and κ > 0 such
that for any two different points x ∈ A ∩ B̄δ(x̄) and y ∈ B ∩ B̄δ(x̄) it
holds

|∇ϕ|(x, y) = lim sup
(u,v)→(x,y)

max{ϕ(x, y)− ϕ(u, v), 0}
d((x, y), (u, v))

≥ κ .

Drusvyatskiy, Ioffe and Lewis found a characterization of intrinsic
transversality in finite dimensional spaces in terms of the slope of the
coupling function (cf. Proposition 4.2 in [30]). We use this characteriza-
tion as a definition of intrinsic transversality in general metric spaces.
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Definition 15. Let X be a metric space. The closed sets A,B ⊂ X are
intrinsically transversal at the point x̄ ∈ A∩B, if there exist δ > 0 and
κ > 0 such that for all xA ∈ B̄δ(x̄) ∩ A \ B and xB ∈ B̄δ(x̄) ∩ B \ A it
holds true that

|∇ϕ|(xA, xB) ≥ κ .

It is obvious there is “almost” equivalence between intrinsic transver-
sality and tangential transversality. Here Due to Proposition 14 we have
that the only difference between tangential transversality and intrinsic
transversality is that in the original definition of tangential transversal-
ity the required condition should hold for all points of A and B (respec-
tively) near the reference point, whereas in intrinsic transversality – only
for points in A \B and B \A (respectively). We introduce the following
property.

Definition 16 (Property (LT )). We say that the closed sets A and B
satisfy property (LT ) at x̄ ∈ A ∩B, if there exist ε > 0 and θ > 0 such
that for any two different points xA ∈ B̄ε(x̄)∩A \B and xB ∈ B̄ε(x̄)∩
B \ A, there exist sequences tm ↘ 0, {xAm}m≥1 ⊂ A and {xBm}m≥1 ⊂ B
such that for all m

d(xAm, x
A) ≤ tm, d(xBm, x

B) ≤ tm, d(xAm, x
B
m) ≤ d(xA, xB)− tmθ .

The comments above yield the following

Corollary 17. The sets A and B are intrinsically transversal at x̄ ∈
A ∩B if and only if they satisfy property (LT ) at x̄.

In this way we answer a question of Prof. A. Ioffe about finding a
metric characterization of intrinsic transversality, as well as some of the
questions posed in [9].

We provide an example which shows that although the difference is
slight, the notion of tangential tranvsersality is stronger than the one of
intrinsic transversality.

It is known that intrinsic transversality and subtransverslity coincide
for convex sets in finite-dimensional spaces (cf. Proposition 6.1 in [38]
or Corollary 3.4 in [50] for an alternative proof). Both proofs exploit the
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dual characterizations of intrinsic transversality and substransversality.
Now we can easily obtain the slightly stronger result

Corollary 18. Let X be a Banach space. The closed convex sets A,B ⊂
X are tangentially transversal at the point x̄ ∈ A∩B, if and only if they
are subtransversal at x̄.

In the papers [50] and [61] a generalization of intrinsic transversal-
ity to Hilbert spaces is derived. It is based on the normal structure -
Definition 2(ii) in [50] and Definition 3 in [61]. Moreover, in paper [61]
a so called property (P) is introduced. It is in primal space terms and
is shown to be equivalent to the afformentioned extension of intrinsic
transversality in Hilbert spaces based on the normal structure (Defini-
tion 2(ii) in [50] and Definition 3 in [61]).

In order to state it we need the following notation - for a normed
space X,

d(A,B,Ω) := inf
x∈Ω,a∈A,b∈B

max{∥x− a∥, ∥x− b∥}, for A,B,Ω ⊂ X

with the convention that the infimum over the empty set equals infinity.
Here is the corresponding definition.

Definition 19 (Property (P)). A pair of closed sets {A,B} is said to
satisfy property (P) at a point x̄ ∈ A∩B if there are numbers α ∈ (0, 1)
and ε > 0 such that for any a ∈ (A \ B) ∩ B̄ε(x̄), b ∈ (B \ A) ∩ B̄ε(x̄)
and x ∈ B̄ε(x̄) with ∥x − a∥ = ∥x − b∥ and number δ > 0, there exists
ρ ∈ (0, δ) satisfying

d
(
A ∩ B̄λ(a), B ∩ B̄λ(b), B̄ρ(x)

)
+αρ ≤ ∥x−a∥, where λ := (α+1/

√
ε)ρ

The following two theorem show that in general normed spaces prop-
erty (P) implies property (LT ), while in Hilbert spaces they are equiv-
alent.

Theorem 20. Let X be a normed space, A and B be closed subsets of
X and x̄ ∈ A ∩ B. Assume that A and B satisfy property (P) at x̄.
Then they satisfy property (LT ) at x̄. If X is moreover a Hilbert space,
then the reverse is also true - if the sets satisfy property (LT ) at x̄, then
they satisfy property (P) at x̄.
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In section 4 we show that regularity and subregularity could be char-
acterized in terms of transversality and subtransversality. The same
sets as in the formulations below appear in the papers [21](Theorem
5.2), [22] (Theorem 4.2) and [12] (Theorem 4), but the equivalence with
(sub)regularity is not explicitly stated.

Theorem 21. Let F : X ⇒ Y be a set-valued mapping between the
metric spaces X and Y , and (x̄, ȳ) ∈ Gr F . Define the sets A := Gr F
and B := X × {ȳ}. Then F is subregular at (x̄, ȳ) if and only if A and
B are subtransversal at (x̄, ȳ).

Corollary 22. Let F : X ⇒ Y , X and Y be metric spaces, and (x̄, ȳ) ∈
Gr F as above. Define the sets A := Gr F and By := X × {y}. Then
F is regular at (x̄, ȳ) if and only if there are constants δ > 0 and K > 0
such that for any (x, y) ∈ B̄δ((x̄, ȳ)) and any ŷ ∈ B̄δ(ȳ)

d((x, y), A ∩Bŷ) ≤ K(d((x, y), A) + d((x, y), Bŷ)) . (2)

If in addition X and Y are normed spaces, then this is also equivalent
to A and B := Bȳ being transversal at (x̄, ȳ).

In sections 5 and 6 we prove characterizations of subregularity and
regularity using our previously established characterizations for sub-
transversality and transversality. As corollaries we obtain the classical
”rate of descent“ characterizations of subregularity and regularity.

Using the above theorem, we establish a characterization of metric
regularity of a map F : X ⇒ Y , X – complete metric space and Y
– Banach space, using its first order (contingent) variation F (1)(x, y).
This is first done in [31] (see also Theorem 4.13 and Remark 4.14(c) in
[3] for a proof in Banach spaces or [41] for an alternative proof). Given
(x, y) ∈ GrF , define F (1) : X × Y ⇒ Y by

F (1)(x, y) := lim sup
t→0+

F (B̄t(x))− y

t
,

where lim sup stands for the Kuratowski limit superior of sets. Our proof
is done via a sequential characterization of metric regularity, which we
have not seen stated anywhere in the literature.
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Corollary 23. Let us consider F : X ⇒ Y with closed graph, where X
is a complete metric space and Y is a Banach space. Then, the following
are equivalent

(i) F is regular at (x̄, ȳ) ∈ Gr F

(ii) there exist δ > 0 and r > 0 such that

Br(0) ⊂ F (1)(x, y) for all (x, y) ∈ B̄δ(x̄, ȳ) ∩ Gr F

(iii) there exist δ > 0 and τ > 0 such that for all (x, y) ∈ Gr F ∩
B̄δ((x̄, ȳ)) and all ŷ ∈ B̄δ(ȳ), there is a sequence {(xn, yn)}n≥1 ⊂
Gr F \ {(x, y)} converging to (x, y) such that for all n it holds

∥yn − ŷ∥ ≤ ∥y − ŷ∥ − τd((xn, yn), (x, y)) .

We also obtain the as a corollary the classical result (cf. Theorem
1.2 in [25] and Theorem 4.13 and Remark 4.14(b) in [3]) establishing the
relation between the metric regularity of a map F : X ⇒ Y , X and Y –
Banach spaces, and its graphical (contingent) derivative.

In Chapter 5, Section 1 and 2, we state some necessary preliminary
definitions and results. The following definition is from [44]:

Definition 24. Let S be a closed subset of X and x0 belong to S. We say
that the bounded set DS(x0) is a uniform tangent set to S at the point
x0 if for each ε > 0 there exists δ > 0 such that for each v ∈ DS(x0)
and for each point x ∈ S ∩ (x0 + δB) one can find λ > 0 for which
S ∩ (x+ t(v + εB)) is nonempty for each t ∈ [0, λ].

Next we remind the classical concept of compactly epi-Lipschitz sets
in Banach spaces. It was introduced by J.M. Borwein and H.M. Stro-
jwas in 1985 in [11] and it includes all finite-dimensional and all epi-
Lipschitsian sets in Banach spaces. Since then, it has been an important
notion in nonsmooth analysis and has been frequently used in qualifica-
tion conditions for obtaining normal intersection properties and calculus
rules concerning limiting Fréchet cones and subdifferentials (in Asplund
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spaces, cf. [55] and [56]) and G-cones and G-subdifferentials (in general
Banach spaces, cf. [43] and [38]). Compactly epi-Lipschitz sets are called
massive in [39]. Here is the corresponding

Definition 25. Let A be a closed subset of the Banach space X and
x0 ∈ A. We say that A is compactly epi-Lipschitz (massive) at x0, if
there exist ε > 0, δ > 0 and a compact set K ⊂ X, such that for all
t ∈ [0, δ] the following inclusion holds true

A ∩ (x0 + δB) + εB ⊂ A+ tK .

In section 3, we state and prove the main result of the chapter.
For its statement we will need the notion of ε-density: we say that a

set A is ε-dense in the set B, if for all v ∈ B there is u ∈ A such that
∥v−u∥ < ε. It is in part motivated by the notion of massive sets, which
is now ”split“ between the sets.

Theorem 26. Let A and B be closed subsets of the Banach space X and
let x0 ∈ A ∩ B. Assume that there exist ε > 0, δ > 0, q1 > 0, q2 > 0,
such that q1 + q2 < 1 and:

(i) there exist bounded “ball covering” sets MA and MB such that
MA −MB is εq1-dense in εB and “correcting” sets UA, UB such that

A ∩ (x0 + δB) + tMA ⊂ A+ tUA and B ∩ (x0 + δB) + tMB ⊂ B + tUB

whenever t ∈ [0, δ];
(ii) there exist two bounded sets DA and DB such that DA −DB is

εq2-dense in UA−UB and they are “η-uniform” with η := (1−q1−q2)/3,
i.e. for each t ∈ [0, δ]

A∩ (x0 + δB) + tDA ⊂ A+ tηB and B ∩ (x0 + δB) + tDB ⊂ B + tηB.

Then A and B are tangentially transversal at x0.

In Section 4 we provide applications of the main result. Two sufficient
conditions for tangential transversality, namely Theorem 5.2 from [9] and
Proposition 3.3 from [8] are obtained from the main result of this chapter
in a unified manner.
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Theorem 27. Let X and Y be Banach space and let f : X × Y → R
be proper lower-semicontinuous function. Let L : Y → X be continuous
linear operator and

S = {(Ly, y) | y ∈ Y }.
Let (x̄, ȳ) ∈ S be such that there exists δ̄ > 0 and K > 0, such that for
all y ∈ ȳ + δ̄B̄Y and for all x′ ∈ x̄+ δ̄B̄X , x′′ ∈ x̄+ δ̄B̄X holds

|f(x′, y)− f(x′′, y)| ≤ K∥x′ − x′′∥.

Moreover, let T̂epi f((x̄, ȳ, f(x̄, ȳ)))−T̂S×(−∞,f(x̄,ȳ)]((x̄, ȳ, f(x̄, ȳ))) be dense
in X × Y × R and X and Y are separable Banach spaces. Then epi f
and S × (−∞, f(x̄, ȳ)] are tangentially transversal.

Below we formulate an abstract (infinite-dimensional) version of the
well-known Aubin condition from [15] for the basic problem of the cal-
culus of variations:

Definition 28. Let X and Y be Banach spaces and f : X × Y →
R ∪ {+∞} be a proper lower semicontinuous function which has finite
value at (x, y) ∈ X × Y . It is said that f satisfies the Aubin condition
at (x, y, f(x, y)) iff there exist positive reals δ > 0 and K > 0 such that
for every t ∈ [0, δ] the following inclusion holds true:

epi f ∩
(
(x, y, f(x, y)) + δ ·BX×Y×R

)
+ t
(
BX ,0, 0

)
⊂

⊂ epi f + t
(
0, K ·BY , K[−1, 1]

)
.

The next theorem is the main motivation of our research:

Theorem 29. Let X and Y be Banach spaces and f : X × Y → R ∪
{+∞} be a proper lower semicontinuous function which satisfies the
Aubin condition at (x, y, f(x, y)). Let L : Y −→ X be a compact linear
operator and S := {(Ly, y) : y ∈ Y }. We assume that

T̂epi f(x, y, f(x, y))− S × (−∞, 0]

is dense in X×Y ×R. Then epi f and S×(−∞, f(x, y)] are tangentially
transversal at (x, y, f(x, y)).
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The next definition is an extension of the notion of a massive set to
“massiveness” of two sets as a pair.

Definition 30. Let A and B be closed subsets of the Banach space X
and x0 ∈ A∩B. We say that A and B are jointly massive at x0 if there
exist ε > 0, δ̄ > 0, bounded sets MA ⊂ X, MB ⊂ X and a compact set
K ⊂ X such that:
(i) εBX ⊂ MA −MB;
(ii) A∩ (x0+ δ̄B)+ tMA ⊂ A+ tK and B∩ (x0+ δ̄B)+ tMB ⊂ B+ tK
whenever t ∈ [0, δ̄].

We easily observe that if the sets A and B are closed, x0 ∈ A ∩ B
and A is massive at x0, then A and B are jointly massive at x0.

The next assertion is a direct generalization of Theorem 4.3 of [9].

Proposition 31. Let A and B be jointly massive at x0 and T̂A(x0) −
T̂B(x0) be dense in X. Then A and B are tangentially transversal at x0.

The obtained sufficient conditions could be applied with Theorem
3.3 from [9], to derive Lagrange multipliers in different situations, as
summarized in the following

Theorem 32. Let X and Y be Banach spaces. We consider the opti-
mization problem

f(x, y) → min subject to (x, y) ∈ S ,

where f : X × Y −→ R∪{+∞} is lower semicontinuous, proper and S
is a closed subset of X × Y . Let one of the following three conditions be
satisfied:

1. X and Y are separable, S = {(Ly, y) | y ∈ Y }, where L is a
continuous linear operator and there exist δ̄ > 0 and K > 0, such
that for all y ∈ ȳ+ δ̄B̄Y and all x′ ∈ x̄+ δ̄B̄X , x′′ ∈ x̄+ δ̄B̄X holds
|f(x′, y)− f(x′′, y)| ≤ K∥x′ − x′′∥

2. epi f and S × (−∞, f(x̄, ȳ)] are jointly massive at (x̄, ȳ, f(x̄, ȳ)).
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3. S = {(Ly, y) | y ∈ Y }, where L is a compact linear operator and
f satisfies the Aubin condition at (x̄, ȳ).

Then there exists a triple (ξ, η, ζ) ∈ X∗ × Y ∗ × R such that

(i) (ξ, η, ζ) ̸= (0, 0, 0);

(ii) ζ ∈ {0, 1};

(iii) ⟨ξ, Ly⟩+ ⟨η, y⟩ ≤ 0 for every y ∈ Y ;

(iv) ⟨ξ, u⟩+ ⟨η, v⟩+ ζs ≥ 0 for every (u, v, s) ∈ T̂epif(x, y, f(x, y)).

Remark 33. In cases 1. and 3. equality holds in (iii) since Y is a
vector space. In case 2. we might just have f : X → R.

In Chapter 5, we study the optimal value map associated to an op-
timization problem. We will assume that Sval assumes only finite values.
Throughout the chapter, all the topological spaces involved will be met-
ric spaces with the property that every open ball is connected (clearly
this is the case for normed vector spaces).

For a subset A of X and ε > 0 we define

Aε =
⋃
x∈A

Bε(x) = {z ∈ X | ∃x ∈ A, ρ(z, x) < ε}.

We will consider set-valued maps with closed values only.
We introduce the two continuity (semi-continuity) notions considered

in this chapter.

Definition 34. Two notions of upper semicontinuity.

• Topological upper semicontinuity (t-usc). F : X ⇒ Y is t-usc at
x̄ ∈ X if for any open U containing F (x̄), there exists an open
neighbourhood V of x̄ such that F (x) ⊆ U for all x ∈ V .

• Pompeiu-Hausdorff upper semicontinuity (h-usc). F : X ⇒ Y is
h-usc at x̄ ∈ X if for any ε > 0, there exists an open neighbourhood
V of x̄ such that F (x) ⊆ F (x̄)ε for all x ∈ V .
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Clearly t-usc implies h-usc. However, the reverse implication might
not hold, since in general there are open sets U containing F (x̄) which
do not contain a set of the form F (x̄)ε. However, both notions coincide
when F (x̄) is compact as observed in [2], [6], [27]. There are a number of
concepts of continuity of set-valued mappings that are usually tied with
corresponding concepts of convergence of sequences of sets; among them
the popular Kuratowski-Painleve continuity ([27]), based on the notion
of set convergence introduced by Painleve and elaborated by Kuratowski.
A good reference for convergence of sets is the survey by Sonntag and
Zalinescu [59].

In Section 1 we provide a counterexample and a remedy. We begin
with a counterexample to Theorem 5 if continuity is in the Pompeiu-
Hausdorff sense.

Counterexample 35. Let X = R, Y = R2. Consider

D(p) = {(x, y) ∈ R2 | y ≥ −|p|}

and

g(x, y) =


0, y ≤ − 1

1+x2

(1 + x2)y + 1, − 1
1+x2 < y < 0

1, y ≥ 0

Then D is continuous at p̄ = 0, g is continuous on all of R2 (in the
sense of Pompeiu-Hausdorff), Sval (0) = 1, while for p ̸= 0, Sval (p) = 0.

It is evident, that the conclusion fails, because the function g is arbi-
trary steep around ∂D(0). To circumvent this possibility, we introduce
a "relaxed" uniform continuity around ∂D(p̄).

According to the authors knowledge the following definition is new.

Definition 36. Let F : X ⇒ Y be a set-valued map and f : Y → R.
We say that the couple (F, f) satisfies the relaxed uniform continuity
assumption (RUCA) at x̄ if

Theorem 37. Assume that for some p̄ ∈ X, D is h-continuous at p̄
and g is continuous on D(p̄). Assume moreover that the couple (D, g)
satisfies (RUCA) at p̄. Then Sval is continuous at p̄.
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It is easy to observe that the pair (D, g) from Counterexample 35
does not satisfy (RUCA). From this theorem we obtain the following
corollary, which could also be derived as a special case of the theorem of
Berge, since, as noted, when D(p̄) is compact, h-continuity is equivalent
to t-continuity.

Corollary 38. Let X be a complete metric space. Assume that for some
p̄ ∈ X, D is h-continuous at p̄, g is continuous on D(p̄) and D(p̄) is
totally bounded (bounded if X is finite dimensional normed vector space).
Then Sval is continuous at p̄.

In section 2 we turn our attention to the case of t-continuity of the
feasibility mapping. As noted earlier, the following theorem follows from
a result of Berdyshev [6] (and is essentially equivalent to it in the case
of metric spaces).

Theorem 39. Assume that for some p̄ ∈ X, D is t-continuous at p̄ and
g is continuous on D(p̄). Then Sval is continuous at p̄.

The results developed at the end of the section generalize the preced-
ing theorem.

Another result following from Berdyshev’s work is the following

Theorem 40. Assume that for some p̄ ∈ X, D is h-continuous at p̄
and g is uniformly continuous on D(p̄). Then Sval is continuous at p̄.

It could be proved along the lines of our results so far. Next we
involve the measure of noncompcatness as an intermediary to obtain
characterization of t-usc via (RUCA).

Clearly (RUCA) for (F, f) at x̄ is a property depending on both
the set-valued map F and the real-valued function f . However, in some
cases, strong properties of only one of the objects ensures (RUCA) inde-
pendently of the other object. For example, if the function f is uniformly
continuous on the whole of Y , (RUCA) is satisfied independently of the
properties of the set-valued map F - i.e. for any map F . On the other
hand, as in Corollary 38, if F is h-usc at x̄ and F (x̄) is totally bounded,
then (RUCA) is satisfied for any function f which is continuous on F (x̄).
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The following Proposition clarifies when such a situation is present. It
shows that if F is h-usc at x̄, then (RUCA) for (F, f) at x̄ holds for
any function f continuous on F (x̄) if and only if F is t-usc.

Proposition 41. Let F : X ⇒ Y and x̄ ∈ X. The following are
equivalent

(i) F is t-usc at x̄;

(ii) F is h-usc at x̄ and for every ε > 0 there exists an open neigh-
bourhood V of x̄ such that

α

(⋃
x∈V

F (x) \ F (x̄)

)
< ε;

(iii) F is h-usc at x̄ ∈ X and for any function f : Y → R which is
continuous on F (x̄), the couple (F, f) satisfies (RUCA) at x̄.
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1 Author’s reference
These are the main accomplishments in the thesis due to the author:

1. A general sufficient condition for tangential transversality is ob-
tained. It is shown that it has as special cases some known suffi-
cient conditions for tangential transversality

2. The general condition for tangential transversality is applied to
derive tangential transversality of the feasible set of a minimiza-
tion problem and the epigraph of the function in interest, at a given
reference point. More specifically, three different scenarios are con-
sidered: the function satisfies Lipschitz condition with respect to
the first variable, uniformly in the second, the feasible set is the
graph of a continuous linear operator, and there exists a uniform
tangent set generating the Clarke tangent cone to the epigraph at
the reference point; The function satisfies the Aubin condition at
the reference point and the feasible set is the graph of a compact
linear operator; The graph and the feasible set are jointly massive
at the referrence point. In each of the three cases, we used the
obtained tangential transversality to derive a Lagrange multiplier
rule if the reference point is a solution to the minimization problem.

3. Characterization of subtransversality, transversality and intrinsic
transversality are obtained in the spirit of the original definition of
tangential transversality, i.e. primal space characterizations. The
question of the relation between all these notions is fully answered.
A characterization of transversality in terms of ”translated“ tan-
gential transversality is derived.

4. Extension of intrinsic transversality to infinite-dimensional spaces
is proposed. It is shown to be implied by a previously proposed
extension ([61]), and is proved that both coincide in the case of
Hilbert spaces.

5. It is clearly stated and proved that transversality and subtransver-
sality could be used as a characterization of metric regularity and
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metric subregularity. This is later used to obtain new proofs of the
well-known primal space characterizations of the regularity con-
cepts. We use sequential primal space characterization of metric
regularity to provide new proof of the characterization of regularity
via the first order variation and via the graphical derivative.

6. The optimal value map associated with a minimization problem
whose feasible set depends on a parameter is considered. It is
provided a counterexample to a probable interpretation of a result
concerning the continuity of such map. We propose an additional
assumption (RUCA) under which we could prove continuity. We
go on to show that (RUCA) is in some sense necessary to obtain
continuity of the map: (RUCA) is satisfied for all functions in
interest if and only if the multivalued map which defines the feasible
set is topologically continuous.

2 Publications related to the thesis
1. Apostolov, S.; Krastanov, M.; Ribarska, N. (2020) ”Sufficient Con-

dition for Tangential Transversality“, Journal of Convex Analysis
27, 19-30

2. Apostolov, S. (2021) ”On continuity of optimal value map“, Comptes
rendus de l’Academie bulgare des Sciences, Vol 74, No4, pp 506-513

3. Apostolov, S.; Bivas, M.; Ribarska, N. (2022) ”Characterizations of
Some Transversality-Type Properties“. Set-Valued and Variational
Analysis. https://doi.org/10.1007/s11228-022-00633-4

4. Apostolov, S.; Bivas, M. Characterizations of metric (sub)regularity
via (sub)transversality, submitted.

3 Approbation of the thesis
The results from the thesis have been presented in the following talks:
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1. ”Sufficient conditions for tangential transversality“, 47th Winter
School in Abstract Analysis, Svratka, Czech Republic, 2019,
https://www2.karlin.mff.cuni.cz/ lhota/ (based on a joint work
with Mikhail Krastanov and Nadezhda Ribarska)

2. ”Intrinsic transversality and tangential transversality“, 15-th Inter-
national Workshop on Well-Posedness of Optimization Problems
and Related Topics, June 28 - July 2, 2021, Borovets, Bulgaria,
http://www.math.bas.bg/ bio/WP21/ (based on a joint work with
Mira Bivas and Nadezhda Ribarska)

3. ”Intrinsic transversality and tangential transversality“, The 13th
International Conference on Large-Scale Scientific Computations
LSSC 2021, June 7 - 11, 2021, Sozopol, Bulgaria (based on a joint
work with Mira Bivas and Nadezhda Ribarska)

4. ”Intrinsic transversality and tangential transversality“, Spring Sci-
entific Session, Faculty of Mathematics and Informatics, Sofia Uni-
versity, 27 March 2021 (based on a joint work with Mira Bivas and
Nadezhda Ribarska)

5. ”On continuity of optimal value map“, Spring Scientific Session,
Faculty of Mathematics and Informatics, Sofia University, 26 March
2022
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The author declares that the thesis contains original results obtained by
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[62] Van Ngai, H.; Théra, M. (2008) Error bounds in metric spaces and
application to the perturbation stability of metric regularity. SIAM
Journal on Optimization 19(1), 1–20

35


	Author's reference
	Publications related to the thesis
	Approbation of the thesis
	Declaration of originality
	Acknowledgements
	References

