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Chapter 1

Introduction

Analogy is a strategy for analyzing and comprehending the world, for gaining insight
into various natural occurrences that are connected with similar features or compara-
ble behaviors, and it is thus regarded as the greatest method for transferring thoughts
throughout scientific areas [1]. Analogies across diverse disciplines of physics research
have proven highly useful in comprehending basic physical principles and the limita-
tions of applicability of various theories.

This dissertation focuses not only on the existence of some quantum-classical
analogies between coherent quantum control techniques and some classical systems,
but additionally on their applications. The principal goal of these applications is
to make these sensitive classical systems as robust and broadband as the quantum
systems robustly manipulated by coherent quantum control schemes, especially the
composite pulses (CPs). this technique is extensively used in NMR [2–6], quantum
optics [7, 8], atomic physics [9–14] and quantum computing [15–23]. The idea of the
composite pulses technique is based on the application of a sequence of adjacent radio-
frequency (rf) pulses, where each has its own optimized parameters, to manipulate
two- and three-state quantum systems. CPs offer the distinct advantage of combin-
ing ultrahigh precision with resilience to parameters imperfections, where the pulses
sequence acts like a single perfect pulse.

On the other hand, the classical optics systems are known as sensitive in terms
of many experimental factors such as the wavelength, the temperature, the medium’s
properties and the propagation geometric path [24–28]. Two interesting classical sys-
tems are the polarization manipulation and the nonlinear frequency conversion. The
first takes place when the optical wave passes through an optical element capable of
transforming its polarization state. The second is obtained by the passage of the laser
beams through a nonlinear crystal. Typically, both systems are sensitive due to the
birefringence and several other parameters.

However, quantum-classical physics analogy is the key to overcome the sensitivity
of these classical systems and many others. First, the notion of CPs technique is
adopted to make composite polarization rotator (Chapter 3) and segmented optical
parametric amplification (Chapter ??) that are robust and broadband. Then, the
mathematical formalism describing the population transfer in three-state quantum
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system via a decaying state can be used to stabilize the spatial powers in cascaded
nonlinear frequency generation in dissipative media (Chapter 5). Furthermore, in
Chapter 6, we address the design of the nonreciprocal wave retarder, whose retarda-
tion depends on the light propagation direction. Finally, Chapter 7 how to build a
polarization independent optical isolator whose isolation levels ranging between 43 dB
to 50 dB.
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Chapter 2

Coherent Quantum Control
Techniques

In modern atomic and molecular physics, atoms and molecules prepared in specific
quantum conditions are essential not only in connection to studies on dynamic collision
or laser-controlled chemical reactions, but also in several new fields. New opportunities
have opened up for coherent laser control of the atomic and molecular process by
developing selective population transfer schemes, such as the composite pulses (CPs),
the rapid adiabatic passage (RAP), and the stimulated Raman adiabatic passage
(STIRAP), which are commonly used to manipulate two- and three-state quantum
systems. These coherent quantum control techniques are extensively used in NMR
[2–5], quantum optics [7, 8, 29], atomic physics [9–13] and quantum computing [15–
23]. This manipulation allows an atom or molecule to be efficiently and selectively
excited at a certain energy level. The response of the quantum system to incoherent
radiation usually leads to an equilibrium excitation, which differs from that of coherent
radiation reactions (laser beam), often resulting to entire or partial excitation or
population transfer. The two-state and three-state quantum systems, as schematized
in the following Fig. 2.1, are the most utilized quantum systems.

In this chapter, we will first introduce two- and three-state quantum systems,
and then we will discuss the concept of the Composite pulses techniques and the
manipulation of three-state system via a decaying state.

2.1 Composite Pulses

Composite pulses (CPs) technique plays an essential role in the preparation of robust
quantum states in several modern physics fields such as NMR, quantum optics, atomic
physics, and quantum information [2–5, 7, 8, 11, 13, 18–20, 23, 29]. In NMR, CPs
technique is the best option for experiments where a single radio-frequency (RF) pulse
isn’t enough owing to bandwidth constraints. It was created to manipulate quantum
systems (essentially in NMR) and is now frequently utilized to create reliable and
efficient quantum gates [16, 17, 20, 22].
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Figure 2.1: Schemes of the linkage diagrams of (a) Two-state and (b)
Three-state Quantum systems. In both cases, population is initially
at the state |ψ1⟩. Target state is (a) |ψ2⟩ and (b) |ψ3⟩. ΩP and ΩS are
the Rabi frequencies of the pump and the Stokes pulses, respectively.
The detunings of Pump and Stokes are depicted by ∆P and, ∆S re-

spectively.

2.1.1 Two-state quantum system

A two-state quantum system comprises two energy levels, as shown in Fig. 2.1(a). The
population is initially at the ground state ψ1. By applying a pump field (for example,
a laser beam electric field), the system is excited by transferring the population into
state ψ2. Occasionally, such a system could spontaneously decay to state ψ1 or other
energy levels. The parameter ∆ = ω−ω0 is called the detuning, which is the difference
between the applied laser field frequency ω and the Bohr transition ω0. The general
quantum state of such a system is defined as a linear combination of two states |ψ1⟩
and |ψ2⟩ as

|Ψ⟩ =
∑
n=1,2

cn(t) |ψn⟩ = c1(t) |ψ1⟩+ c2(t) |ψ2⟩ , (2.1)

where cn(t) are the probabilities amplitudes. The probability of the quantum state
|Ψ⟩ to be in the |ψn⟩ is therefore Pn(t) = |cn(t)|2. The Rabi frequency Ω ≡ ΩP (also
known as the frequency of population oscillation) is directly related to the interaction
strength and is linked to the transition dipole moment d⃗ and the electric field E⃗ as
Ω = d⃗ · E⃗/h̄ When the radiation amplitude fluctuates over time, the pulse area A(t)
takes the place of the term Ωt, as

Ωt→ A(t) =

∫ t

−∞
Ω(t′)dt′. (2.2)

Depending on the value of the pulse area A(t), the transfer efficiency oscillates between
0 and 1.
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2.1.2 Concept of Composite Pulses

The CPs approach imitates the effect of a single pulse by using a train of contiguous
or near contiguous constant amplitude rectangular pulses with a fixed RF frequency
and different phases. Among quantum control schemes, CPs has the unique benefit
of combining ultrahigh accuracy as resonant techniques with resilience to parame-
ter imperfections as adiabatic passage approaches. Furthermore, CPs allow for the
customization of the excitation profile, which is unachievable with a single resonant
pulse or adiabatic methods. CPs also feature a built-in compensating mechanism that
makes the system more robust. This robustness may be used to overcome common
experimental flaws such as the amplitude spread as well as the limited strength of
the applied field as compared to spin-spin couplings or molecular electron cloud in-
teractions. The phases of the pulses are set with care to ensure that the composite
excitation performs better than a single-pulse excitation. For a coherently driven
two-state quantum system, the Schrödinger equation can be written as

ih̄
d

dt
c(t) = H(t)c(t), (2.3)

where H(t) is the Hamiltonian of the system, and c(t) = [c1(t), c2(t)]
T is a vector

column comprising the two probability amplitudes. Unfortunately, this last equation
is non-integrable, which means it cannot be solved analytically. We may use an ap-
proximation approach known as the Rotating Wave Approximation (RWA) to achieve
an analytic approximate solution [30–32]. In the limits of this approximation, the
Schrödinger equation describing a coherent excitation in such a quantum system can
be expressed as

i
d

dt

[
c1(t)

c2(t)

]
=

1

2

[
0 Ω(t)e−iD(t)

Ω∗(t)eiD(t) 0

][
c1(t)

c2(t)

]
, (2.4)

where Ω is the Rabi frequency, and D(t) =
∫ t
ti
∆(t′)dt′ with ∆ = ω− ω0. At resonant

excitation (∆ = 0), regardless of the shape of Ω(t), this Schrödinger equation has
a unique analytic solution U. This latter, called the evolution matrix, connects the
values of c1 and c2 at the final instant tf to those at the initial moment ti. It is a prop-
agator of type SU(2), and is parametrized by the complex Cayley-Klein parameters a
and b (|a|2 + |b|2 = 1) [33],[

c1(tf )

c2(tf )

]
= Uϕ

[
c1(ti)

c2(ti)

]
=

[
a be−iϕ

−b∗eiϕ a∗

][
c1(ti)

c2(ti)

]
. (2.5)

where ϕ is a constant phase shift in the Rabi frequency Ω → Ωeiϕ. The pulse area
A =

∫ tf
ti

Ω(t)dt (Eq. 2.2) is the only factor that determines the parameters a and b

as, a = cos (A/2) and b = −i sin (A/2), with Ω(t) is assumed to be real, then the
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evolution matrix becomes

Uϕ(A) =

[
cos (A/2) −ie−iϕ sin (A/2)

−ieiϕ sin (A/2) cos (A/2)

]
. (2.6)

The transition probability is P1→2 = |b|2 = 1−|a|2. For a train of N pulses, each with
a pulse area Ak and a phase ϕk, the overall propagator UN is obtained by multiplying
all the evolution matrices as:

UN = UϕN
(AN )UϕN−1

(AN−1)...Uϕ2(A2)Uϕ1(A1). (2.7)

The benefit is that all parameters may be freely adjusted to guarantee a reliable and
broad population transfer from |ψ1⟩ to |ψ2⟩. We define the fidelity F as the half of
the trace of the product of two matrices in order to evaluate the efficiency of the
transition, as

F =
1

2

∣∣Tr{R−1UN
}∣∣, (2.8)

where R is the target matrix describing the ideal excitation. In terms of 2× 2 SU(2)
matrices, fidelity F is equivalent to the probability P1→2 ≡ Pe that quantifies the
transfer efficiency.

2.2 Population transfer via a decaying state in a three-
state quantum system

In a multi-state quantum system, population dissipation is one of the most limiting
factors that reduces population transfer efficiency [34, 35]. The dissipation takes place
as a result of a variety of mechanisms, including spontaneous emission, ionization, or
collisional relaxation. In three-state quantum systems, in case of a decaying inter-
mediate state, several quantum approaches, such as the Stimulated Raman Adiabatic
Passage (STIRAP) and the adiabatic elimination, can be used to overcome this prob-
lem and to enhance the transfer efficiency [34]. In this thesis, the quantum-classical
analogy is used to profit from dissipation rather than overcome it. To fully grasp this
analogy, we first address the concept of a three-state quantum system, then we will
discuss the formalism of this problem using the bright-dark basis.

2.2.1 Three-state quantum system

A three-state quantum system (Fig. 2.1(b)) encompasses three states: the initial,
the intermediate, and the final states depicted by |ψ1⟩, |ψ2⟩ and |ψ3⟩, respectively.
Initially, the population is at the ground state |ψ1⟩. In order to transfer this population
to the target state |ψ3⟩, two laser pulses, called the pump and the Stokes pulses, are
consequently applied. The states |ψ1⟩ and |ψ2⟩ (|ψ2⟩ and |ψ3⟩) are coupled by the
Rabi frequency ΩP (ΩS).
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The phases ΩP t and ΩSt must be replaced by two pulse areas AP (t) and AS(t) if
the amplitudes of radiations fluctuate over time, as

ΩP (t)t→ AP (t) =

∫ t

0
ΩP (t

′)dt′, (2.9)

ΩS(t)t→ AS(t) =

∫ t

0
ΩS(t

′)dt′. (2.10)

Because there are two Rabi cycles, the necessary passing through the interme-
diate state |ψ2⟩ influences the transfer efficiency, as population may be lost due to
spontaneous emission or decay into other states.

2.2.2 Bright-Dark basis

In this section, we will explore population transfer in a three-state quantum system via
an irreversibly decaying intermediate state with a decay rate Γ, as illustrated by the
energy diagram of a Λ-type three-level quantum system in Figure 2.2. As previously

|"!⟩

|""⟩
|"#⟩

Ω$
Ω%

∆Γ

Figure 2.2: Energy diagram of a Λ-type three-state quantum system
via an intermediate decaying state |ψ2⟩, whose decaying rate is Γ (s−1).
The Rabi frequencies of the pump and the Stokes pulses are depicted
by Ωp and Ωs, respectively. The intermediate state detunings are
assumed to be ∆ = ∆p = ∆s being the detunings for the pump and

the Stokes pulses, respectively.

mentioned in the Section 2.2.1, two optical fields-the pump and the Stokes waves-are
required in the three-state quantum system to transfer population from the ground
state |ψ1⟩ to the target state |ψ3⟩. The pump pulse links states |ψ1⟩ and |ψ2⟩, while the
Stokes pulse connects the originally unpopulated states |ψ2⟩ and |ψ3⟩. The general
state of such a system is written as a linear combination of the three unperturbed
states as,

|Ψ(t)⟩ = c1(t) |ψ1⟩+ c2(t) |ψ2⟩+ c3(t) |ψ3⟩ , (2.11)
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with c1(t), c2(t) and c3(t) being the probability amplitudes of the three bare states
|ψ1⟩ , |ψ2⟩ and |ψ3⟩, respectively. In the limit of the rotating wave approximation
(RWA) where the rapidly oscillating terms are neglected, the probability amplitudes
obey the Schrödinger equation as,

i
d

dt

 c1

c2

c3

 =

 0 Ωp 0

Ωp ∆− iΓ Ωs

0 Ωs ∆p −∆s


 c1

c2

c3

 . (2.12)

The intermediate state detunings of the pump and Stokes pulses, respectively depicted
by ∆p and ∆s, are assumed to be equal ∆ = ∆p = ∆s; thus the last item of the
Hamiltonian matrix is vanished. This system may be treated in either the adiabatic
or bright-dark basis, however in this section, we will employ the bright-dark states basis
to depict it. The probability amplitudes of the bright and dark states, respectively
denoted by Cb(t) and Cd(t), can be obtained from the probability amplitudes of the
bare states via the orthogonal transformation c1

c2

c3

 =

 sinϑ 0 cosϑ

0 1 0

cosϑ 0 − sinϑ


 Cb

C2

Cd

 , (2.13)

where, the mixing angle ϑ(t) is defined (modulo π) as,

ϑ(t) = arctan

[
ΩP (t)

ΩS(t)

]
. (2.14)

The intermediate state appears in both bare and bright-dark bases. In this context,
Eq. 2.12 becomes

i
d

dt

 Cb

C2

Cd

 =

 0 Ω0 −iϑ̇
Ω0 −∆− iΓ 0

iϑ̇ 0 0


 Cb

C2

Cd

 . (2.15)

where Ω0(t) =
√
Ω2
P (t) + Ω2

S(t) and ϑ̇ depict the effective coupling and the time-
derivative of the mixing angle, respectively. In a special scenario, when ΩP and ΩS

are even constant in time or equal, the mixing angle ϑ(t) becomes constant, and the
time-derivative becomes null, ϑ̇ = 0. Therefore, the dark state Cd(t) is decoupled
from two other states Cb(t) and C2(t). Thus, the three-state problem is reduced to a
two-state system as

i
d

dt

[
Cb

C2

]
=

[
0 Ω0

Ω0 −∆− iΓ

][
Cb

C2

]
. (2.16)

This equation shows that the effective Rabi frequency Ω0 connects the bright state
Cb(t) to the intermediate bare state c2(t), which decays out of the system with the
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decay rate Γ. Because of this coupling, the population that has reached the bright
state Cb(t) is moved to the intermediate state c2(t), where it will be eliminated out
of the system. Therefore, all the population of this two-state system will be lost after
a long interaction period in the case of a large detuning. But because the dark state
Cd(t) is decoupled from the other states, its initial population is conserved until the
end of the interaction.

We adopted this procedure to apply the quantum-classical analogy between this
non-Hermitian three-state quantum system and the cascaded nonlinear frequency gen-
eration in a dissipative medium. By spatially stabilizing the powers of the interacting
waves along the nonlinear crystal, this analogy tries to transform dissipation into ad-
vantage. The theoretical concept and results will be examined in detail in Chapter
5.

2.3 Conclusion

In this chapter, we explored the concepts of the Composite pulses (CPs) which is
widely used in manipulating two-state quantum systems. Manipulation therefore
refers to the effective and selective excitation of an atom or a molecule to a spe-
cific energy level. The idea behind CPs is to employ a series of coherent field pulses,
each possessing a specific phase and area. In addition, we discussed the problem of a
non-Hermitian three-state quantum system with a decaying intermediate state. The
bright-dark basis is employed to understand the dynamics of such a system.



10

Chapter 3

Broadband Composite Polarization
Rotator

3.1 Introduction

Components able to convert the polarization state of a light wave are key elements
for several optical devices and applications [26, 36–38]. In the case where broadband
or tunable light sources are used, a robust and wide bandwidth operation of such
components becomes of crucial importance. Methods to realize compact achromatic
(broadband) retarders have been therefore the matter of interest for several decades
[39–48]. Notably, the recent advances leading to improved broadband performance
[44–48] take advantage of the formal analogy between the equations describing the
change of polarization in the birefringent plate and the Schrödinger equation for the
quantum-state dynamics of coupled two-level systems, pointed out first by Ardavan
[44]. The related transfer of concepts allows to apply the fault-tolerant composite
pulses approach [2] widely used in the field of nuclear magnetic resonance (NMR) to
polarization optics. To this line of ideas belong also the recent studies of achromatic
polarization rotators using a stack of several wave-plates [49–51] that we will discuss
below.

The most versatile way to realize tunable polarization rotators rely on the combi-
nation of several birefringent wave-plates (WPs). It is well known that two half-wave
plates (HWPs) with their fast axes making an angle α/2 lead to a rotator that turns
the polarization by an angle α. In principle, any rotator composed by a combina-
tion of WPs should become broadband if every single WP is broadband. Rangelov
and Kyoseva [49] have proposed a broadband composite polarization rotator based on
the combination of two effective broadband HWPs, each of which is composed by a
number of HWPs by the composite approach. The expected device performance was
analyzed theoretically in terms of the so-called fidelity (see below) for a total number
of HWPs between 6 and 18. This concept was developed further in a recent paper
[51], where an even number of HWPs (up to 10) oriented at predetermined angles
was used, and the broadband behavior was tested through the transmission of a white
light source through an analyzer placed after the HWP stack.

While the above approaches generally require a rather large number of WPs to
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achieve a sufficiently broadband operation (≥ 6), in the present work we consider
a simplified arrangement involving only three WPs: a full-wave plate between two
HWPs. The concept exploits additionally the freedom of rotation of all three ele-
ments in the row. It is shown that such a simple stack leads to a broadband polar-
ization rotator provided that the intermediate wave-plate is placed in such a way as
to counteract the dispersion of the HWPs. The rotator is robust against the initial
polarization direction and the rotation angle can be tuned by rotating only one of the
WPs.

3.2 Theory

The broadband polarization rotator proposed in this work is composed of three wave-
plate (WP) retarders as shown in Fig. 3.1(a). The first and the third WPs are half-
wave plates for the central target wavelength λ0 of the device, while the intermediate
wave-plate is a full-wave plate at the same wavelength. Even though this element
leaves the wave unchanged and acts as a neutral element at the wavelength λ0, the
importance of this crucial element for the broadband behavior will become clear below.

As it is well known, a wave-plate retarder is a birefringent element which adds
different phases φ/2 and −φ/2 to two perpendicular linear polarization components
of the light propagating through it. In the framework of Jones calculus [26, 36] and
in the LR-basis formed by the Jones vectors for Left and Right circular polarizations,
the Jones matrix for a retarder whose fast axis is rotated with an angle θ (with respect
to the HV-axes) is given as

Jθ (φ) =

 cos
φ

2
ie−2ıθ sin

φ

2
ie2ıθ sin

φ

2
cos

φ

2

 . (3.1)

Here
φ = 2πL(ns − nf )/λ (3.2)

is the wave-plate retardation. The quantities nf and ns are the refractive indices along
the fast and slow axes, respectively, λ is the vacuum wavelength of the light and L is
the thickness of the retarder plate. The most commonly used retarders are the HWPs
(φ = ±π) and the QWPs (φ = ±π/2). A full-wave plate (FWP) has a retardation of
φ = ±2π. In addition, the Jones matrix of an axis rotation of an angle α is given as

JR (α) =

[
e−iα 0

0 eiα

]
. (3.3)

For our sequence of HWP-FWP-HWP shown in Fig. 3.1(a) we have φ1 = π,
φ2 = ±2π and φ3 = π, the corresponding orientations for the three wave-plates
are θ1, θ2 and θ3, respectively. The overall Jones matrix describing this composite
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Polarizer Analyzer

Rotator 
sequence

Photodiode

Spectrometer

Spectral 
Filter

Removable 
mirror

Light 
Source

HWP
𝜃1

𝜑1 = 𝜋

FWP
𝜃2

𝜑2 = −2𝜋

HWP
𝜃3

𝜑3 = 𝜋

Input polarization Output polarization 
(rotated by an angle α)

α

(a)

(b)

Figure 3.1: (a) Principle of the proposed composite polarization ro-
tator composed of three wave-plates, a half-wave plate (HWP) followed
by a full-wave plate (FWP) and another HWP. The angles θi are the
orientation angles of each wave-plate and φi are the corresponding
retardations. (b) Experimental set-up for the characterization of the

composite rotator.

sequence is therefore
J = Jθ3 (π) Jθ2 (±2π) Jθ1 (π) , (3.4)

which gives

J =

[
e−2i(θ3−θ1) 0

0 e2i(θ3−θ1)

]
=

[
e−iα 0

0 eiα

]
. (3.5)

Obviously the last equality shows that J corresponds to the rotator matrix in the LR
basis in Eq. (3.3), therefore this sequence acts as a rotator with a rotation angle

α = 2(θ3 − θ1) . (3.6)

This equivalence is exact at the central wavelength, for which the retardations φ1,
φ2 and φ3 correspond exactly to those given above. However, we are principally
interested in the behavior found when these retardations depart from the values π,
±2π and π, as a result of using a different wavelength (see Eq. (3.2)). Therefore, in
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Figure 3.2: Absolute value of the fidelity |F| as a function of the
relative retardation deviation δ for four different optical rotator con-
figurations. (a) Two HWP with their fast axes making an angle of α/2,
equivalent to φ = π for both wave-plates at the central wavelength.
(b) Two HWP with the fast axis of the first making an angle α/2 with
the slow axis of the second, equivalent to φ1 = π = −φ2. (c) Three
wave-plates, a FWP sandwiched between two HWPs. The fast axis of
the FWP makes an angle of +α/4 (−α/4) with respect to the fast axis
of the first (third) waveplate. The retardations are φ1 = π, φ2 = +2π
and φ3 = π. (d) Same as (c) but the fast and slow axes of the FWP
are switched (see Eq. (3.9)), here φ1 = π, φ2 = −2π and φ3 = π. The
curves are for following target rotation angles: α = 15 deg (dotted red
line), α = 30 deg (solid black line), α = 60 deg (dashed blue line) and

α = 90 deg (dashed-dotted green line).

order to explore the behavior in the φ space, we define the fidelity factor according to

F ≡ 1

2
Tr

[
J−1
R (α) J

]
, (3.7)

where we note that J−1
R (α) = JR (−α). The fidelity F is therefore a kind of measure

on how close the composite matrix J approaches the target matrix JR(α). In the
case where the output light maintains a linear polarization state, the fidelity F finds
a more direct physical interpretation, as will be mentioned later in the experimental
section.

Let us consider the relative deviation δ from the retardation values φi = φ(λ0) of
the three wave-plates defined as

δ ≡ φ(λ)

φ(λ0)
− 1 =

∆n(λ)

∆n(λ0)

λ0
λ

− 1 , (3.8)

where λ0 is the central wavelength for which the composite structure is designed and
∆n = ns − nf in Eq. (3.2).
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While the orientation angles θ1 and θ3 are related by Eq. (3.6), the optimum
angle θ2 can be found by maximizing the integral of the fidelity F over the range
−1 ≤ δ ≤ 1, which means searching for the broadest fidelity curves F(δ). It can be
shown analytically that this integral is maximized if

θ2 = θ1 + α/4− π/2 = θ3 − α/4− π/2 . (3.9)

The additional angle π/2 appearing above is important. In fact, the analysis was
performed by assuming φ2(λ0) = +2π, however, the additional angle of π/2 implies
that the role of the slow and fast axis should be permuted for the intermediate FWP,
meaning that the optimum is found for a negative retardation φ2(λ0) = −2π (by
simultaneously dropping the −π/2 term in Eq. (3.9)).

To illustrate the expected robustness of the composite rotator we depict in Fig. 3.2
the expected fidelity as a function of the relative retardation deviation δ. The quantity
being represented is

|F(δ)| = 1

2
|Tr

[
J−1
R (α) J(δ)

]
| , (3.10)

with
J(δ) ≡ Jθ3 (π(1 + δ)) Jθ2 (−2π(1 + δ)) Jθ1 (π(1 + δ)) . (3.11)

Note that here a unique value of the parameter δ can be considered for the three wave-
plates provided that their dispersion is the same, which is the case for the system
used in our experimental study. Note also that it is sufficient to consider target
rotation angles |α| ≤ 90 degrees because larger angles are redundant, also the situation
for negative angles α is symmetric to the one for positive ones. First we show in
Fig. 3.2(a) the standard case where two HWPs under a relative angle α/2 are used
to create a rotator by an angle α. While such a configuration acts as a perfect
rotator at the central wavelength (F = 1 for δ = 0), for all four considered angles
α between 15 and 90 degrees the fidelity is found to drop quite quickly as δ departs
from zero. This means that such a structure is not spectrally robust. Interestingly,
the robustness improves already significantly by means of a small modification, still
using only two wave-plates. If the second HWP is turned by an additional 90 degrees,
its retardation becomes negative (= −π) and, as seen in Fig. 3.2(b), the function F(δ)

remains large over a much wider range of the parameter δ. Figure 3.2(c) show the
case where the sequence of Fig. 3.1(a) is implemented with φ1 = π, φ2 = +2π and
φ3 = π. In this case the retardation dispersion associated to the FWP reinforces the
dispersion of the HWPs and the fidelity drops even faster than in the case of Fig. 3.2(a).
Finally, Fig. 3.2(d) show our chosen configuration for which the orientation angles
follow Eq. (3.9) meaning that the slow axis of the FWP is aligned in between the fast
axes of the external HWPs. It is evident that in this case the function F(δ) gets flatter
on the top and is wider than in any other case in Fig. 3.2. As we will discuss later,
the experimentally most relevant range for the parameter δ is roughly −0.5 ≤ δ ≤ 0.5,
for which this three wave-plate configuration of Fig. 3.2(d) is clearly outperforming
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any other case in Fig. 3.2. It is also worth noting that the curve F(δ) is found to be
broader for small target rotation angles α than for larger ones. It is worth noting that
by using our proposed sequence, the output light maintains its linear polarization. In
the next section, we will investigate this configuration experimentally.

3.3 Experiments

The experimental set-up for the characterization of our optical rotator is shown in
Fig. 3.1(b). The heart of the system is composed of two crystal polarizers (acting
as polarizer and analyzer) surrounding the three wave-plate rotator sequence. The
light source is a broadband white light source (Thorlabs SLS201L/M). By inserting
the switchable mirror before the detector, the use of the broadband source allows
detecting the whole transmitted spectrum through the analyzer with the help of a
spectrometer connected to a computer (OceanOptics USB4000-VIS-NIR).

The three wave-plates composing the rotator sequence are realized using three
tunable liquid crystal (LC) retarders (Thorlabs LCC1413-A), whose retardations are
adjusted with an external applied voltage. The voltage-retardation curve of each of
the LC retarder has been priorly calibrated over the spectral range of interest using
a Soleil-Babinet optical compensator (Thorlabs SBC-VIS) put in series with the LC
retarder and whose mechanically adjustable retardation is known.

We first analyze the behavior of the three-WP rotator at the wavelength λ0 for
which it is designed. The LC wave-plates are adjusted to be half- or full wave-
plates at this wavelength. The dependence of the transmitted intensity I(β) on
the analyzer orientation β (with β = 0 being the extinction position in absence of
the rotator sequence) is I(β) = I0 sin

2 (β − αexp) + Imin, where I0 is the modula-
tion amplitude and Imin is the minimum transmission. Indeed, the degree of linear
polarization ξ corresponds to the fringe visibility of such measurements, given by
(Imax − Imin)/(Imax + Imin) = I0/(I0 + 2Imin).

Next, we test the broadband behavior and the robustness of the rotator if the
used wavelength differs from the nominal wavelength λ0 = 550 nm. First, we send the
whole spectrum of the broadband source through the composite rotator and detect the
corresponding spectrum after passing the analyzer with the optical spectrometer (see
Fig. 3.1(b)). The analyzer is put either in transmission mode (transmitted intensity
= I∥) or in extinction mode (transmitted intensity = I⊥). In transmission mode, the
analyzer transmission axis is put parallel to the expected output polarization direction
under the target rotation angle α for the nominal wavelength, while in extinction
mode it is put perpendicular to this direction. For a direct comparison with the
theoretically expected intensity, we normalize the intensity I∥ as Ĩ∥ ≡ I∥/(I∥ + I⊥).
Figure 3.3 shows the corresponding spectra for Ĩ∥(λ) together with the theoretically
expected ones. The latter are obtained by applying the resulting Jones matrix (3.10)
to the input polarization Jones vector and projecting the resulting expected output
polarization onto the analyzer to obtain the expected transmitted intensity as the
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square of the module of the projected polarization vector. The conversion between
the wavelength λ and the relative retardation deviation δ is made by means of

δ(λ) =
λ20 − λ̄2

λ2 − λ̄2
λ

λ0
− 1. (3.12)

with an effective oscillator wavelength λ̄ = 221.2 nm. The above expression is obtained
by assuming a simplified Sellmeier-like function for the dispersion of the LC birefrin-
gence ∆n = ns − nf entering Eq. (3.2). As can be seen in Fig. 3.3, the agreement
between the measured and the expected normalized transmission spectra is excellent.
Even in the worst case scenario (α = 90◦ and a wavelength exceeding the nominal
wavelength by 300 nm) the normalized transmitted intensity Ĩ∥ is still ≈ 70%. A
careful analysis shows that, in the case where the output light is still linearly polar-
ized, the normalized transmitted intensity Ĩ∥ corresponds to the square of the fidelity
|F(δ)|2.
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3.4 Conclusion

We have proposed theoretically and verified experimentally a new design for a compos-
ite broadband polarization rotator composed of only three wave-plates, two half-wave
plates and one full-wave plate for the central nominal wavelength. We have shown
that the output polarization state remains nearly linear even for strong departure
from the nominal central wavelength λ0 and that the polarization rotation angle has
its maximum at λ0 and diminishes smoothly away from this wavelength. The rota-
tion angle can be tuned by rotating only one of the wave-plates and is robust against
the initial polarization direction. The design presented here is simpler with respect
of earlier broadband composite rotators composed of a larger number of wave-plates
[49–51].
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Chapter 4

Segmented Composite Optical
Parametric Amplification

4.1 Introduction

Some optical applications require short optical pulses with large peak power, which
may be obtained with the help of optical parametric amplifiers (OPAs) [52–55], that
are among the most useful nonlinear optical devices. Optical parametric amplification
consists of the nonlinear interaction of three waves. In this process, the two waves at
the longer wavelengths—the input signal wave as well as the idler wave—gain power
at the expense of the pump wave being at the shortest wavelength. In OPA, the
main obstacle encountered when short pulses are used is to combine a high signal
amplification and a sufficiently broad amplification bandwidth. The latter is limited
because material dispersion imposes that, for a given wave interaction configuration,
the exact phase-matching condition can be strictly satisfied only for a single set of
wavelengths of the three waves.

In this chapter, we explore a method to achieve broadband amplification band-
width together with high amplification. The technique involves a combination of
quasi-phase-matching (QPM) gratings together with a segmentation of the crystal
that implements the equivalent to the composite pulses approach used in Nuclear
Magnetic Resonance (NMR) to prepare given quantum states in a robust way [56–58].
The present approach leads to a highly increased robustness of the nonlinear ampli-
fication process with respect to both the phase mismatch (associated to a change of
wavelength or of temperature) and the coupling strength. Note that the approach
presented here does not involve the stretching and chirping of the pulses before the
parametric amplification and a final recompression, as used in Optical Parametric
Chirped Pulse Amplification (OPCPA) [59–62]. Such steps are generally necessary
for the shortest (few cycles) pulses and the highest pulse energies to avoid excessive
third order nonlinear effects and/or a damage of the samples.
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4.2 Theory

We start with the simmetrized coupled wave equations for collinear three-wave mixing
in the slowly varying envelope approximation [24, 63]

i∂zA1 = Ω̃A∗
2A3 exp [−i∆kz] , (4.1a)

i∂zA2 = Ω̃A∗
1A3 exp [−i∆kz] , (4.1b)

i∂zA3 = Ω̃A1A2 exp [i∆kz] , (4.1c)

where Ω̃ = −(2χ(2)/πc)
√
ω1ω2ω3/n1n2n3 is the effective nonlinear coupling coefficient

for first-order QPM, z is the position along the propagation axis, ωj are the frequencies
of the three involved waves, and nj are their refractive indices. Here j = 1, 2, 3

refer to the signal, idler and pump waves, respectively. The quantity χ(2) in Ω̃ is
the effective second-order susceptibility and c is the speed of light in vacuum. The
amplitudes Aj ≡

√
nj/ωj Ej in (4.1) are proportional to the amplitudes Ej of the

wave electric fields; |Aj |2 is proportional to the number of photons associated to the
jth wave. Note that Eq. (4.1) is written in a form that assumes that quasi-phase-
matching is implemented and that the quasi-phase matching period is sufficiently short
as compared to the interaction length. Therefore, the phase mismatch parameter ∆k
already contains the mismatch compensation term associated to the periodic grating,
that is,

∆k = k1 + k2 − k3 + 2π/Λ ≡ ∆̃k + 2π/Λ. (4.2)

where Λ is the quasi-phase-matching period, that is, the first-order local poling pe-
riod in the case of periodically poled crystals. Obviously, for the central operation
wavelengths at which the device is designed, one has ∆k = 0. Concurrently, the true
phase mismatch ∆̃k = k1+ k2− k3, which depends only on the wave-vectors kj of the
three interacting waves, is generally quite far from vanishing.

Here, we consider the OPA case, we assume that ω3 = ω1 + ω2 and we treat first
Eq. (4.1) in the limit of validity of the undepleted pump approximation (A3 = const).
In this limit and for ∆k = 0, we find that both signal and idler increase initially
exponentially in a parallel way as

|A1 (z)| ≈ |A2 (z)| ≈
|A1 (0)|

2
exp [Ωz] (4.3)

In this work, we are interested in an optimization of the signal intensity amplification
factor a, defined as

a =
|A1 (z)|2

|A1 (0)|2
=
I1 (z)

I1 (0)
. (4.4)

The above argumentation, in connection with Eq. (4.3), indicates that, when the
phase-matching condition is satisfied (∆k = 0), the OPA process is the most efficient.
However, this is not entirely true, because the solutions (4.3) are derived only in the
limit of the undepleted pump approximation. If one considers the depleted pump
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Figure 4.1: Sign reversal of χ(2) nonlinear coefficient for (a) standard
quasi-phase matching (QPM) technique with local modulation period
Λ. (b) Composite segmented periodically poled design, with example
of 3 segments. All segments are periodically poled with the same
period Λ, however once a new segment begins, the sign reversal order

of χ(2) is changed.

regime, the nonlinear Eq. (4.1) has solutions in terms of Jacobi elliptic functions [64,
65]. These, like trigonometric functions, are periodic functions, and thus the energy
transfer oscillates back and forth between pump field and signal field.

Here, in analogy with the technique of composite pulses from quantum physics
[2, 3, 8, 56–58, 66–68], we propose to use segmented composite crystals for OPA. In
the case of OPA, there is no SU(2) symmetry, and it is thus not possible to exploit
known composite pulses analytic solutions. Instead, we are going to derive numer-
ically solutions that achieve broadband amplification bandwidth together with high
amplification in the depleted pump regime.

4.3 General Numerical Approach and LiNbO3 Crystal Sim-
ulations

The procedure that we track is the following. The period of the flip sign of the
nonlinear susceptibility χ(2) is such that the phase mismatch for the OPA process
will be zero in Eq. (4.2) due to QPM, resulting in a local modulation period Λ (Fig.
4.1a). Furthermore, at specified boundaries, we introduce further sign flips of the
coupling coefficient. In practice, two domains with the same orientation combine at
each segment border to form a single double-as-long domain, as shown in Fig. 4.1b.
The periodic sign switch of χ(2) ensures the phase matching for OPA (∆k = 0) and
the additional sign switches of χ(2) at the segment boundaries will change the sign
of Ω̃ in the whole crystal segment similarly as in Shaka–Pines pulses from NMR [57,
58]. We denote the intervals between two double length domains as l1, l2, l3...lN , as
shown in Fig. 4.1b. The determination of the optimum segment lengths lk is done
using Monte Carlo simulations in the depleted pump regime. In practice, it consists
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in a maximization of the integral Q of the (normalized) amplification a over a surface
of interest in the (∆k, Ω̃)-space, where the values of ∆k and Ω̃ are in units of the
reciprocal crystal length 1/L. The Figure-of-Merit integral Q is bounded by 1 and is
given as

Q ≡ 1

r

1

2Ω̃max∆kmax

∫ ∆kmax

−∆kmax

∫ Ω̃max

0
a
(
Ω̃,∆k

)
d(∆k) dΩ̃ , (4.5)

where r is the initial pump-to-signal photon-intensity ratio, r ≡ I3(0)/I1(0). In our
case, we have chosen ∆kmax = 15/L and Ω̃max = 30/L, the optimization of the
integral Q is done over 105 random sets of the segment lengths l1, l2, l3...lN . Those
corresponding for the best solutions are listed in Table 4.1. We have found that the
use of a small number of composite segments (two, three, and partly four) do not
lead to any strong improvement with respect to the standard QPM case. In contrast,
already, for a moderate number of segments between six and eight, we find a significant
improvement of the robustness of the amplification process. In this case, our analysis
shows that there are different solutions for the optimum segment configurations (given
in Table 4.1), which works better depending on the initial amplitude of the signal wave
A1(0) (as compared to the pump wave amplitude taken as A3(0) = 1).

Table 4.1: Numerically found segment lengths li (in units of total
crystal length L) for composite segmented periodically poled design
with N segments. The given values for li are such as to optimize
the robustness of the OPA process against variations of the nonlinear

coupling coefficient and of the phase mismatch ∆k.

N Name Segment Lengths l1; l2; . . . ; lN in Units of L

3 3 0.373; 0.594; 0.033
4 4 0.303; 0.522; 0.124; 0.051
6 6a 0.293; 0.258; 0.003; 0.255; 0.124; 0.067
6 6b 0.168; 0.035; 0.345; 0.023; 0.222; 0.207
6 6c 0.223; 0.005; 0.404; 0.175; 0.113; 0.080
8 8 0.022; 0.064; 0.046; 0.205; 0.270; 0.096; 0.222; 0.075

In order to prove the concept, we apply it to specific practical examples, and we
make the numerics for a real crystal: 5 mol. % Magnesium Oxide doped Lithium
Niobate (MgO:LiNbO3). This ferroelectric nonlinear crystal possesses higher damage
threshold compared to undoped LiNbO3, high nonlinear optical coefficient, broad
transparency range, and is suitable for domain poling [27]. We compare the standard
quasi phase matching with the composite approach for OPA when the three interacting
beams share the same extraordinary polarisation (Type 0 configuration, all beams
polarized parallel to crystal c-axis) associated to the largest element of the nonlinear
tensor d333 = χ(2) = 27 pm/V.

The color plots in Figure 4.2 illustrate the signal intensity amplification a for
MgO:LiNbO3 for standard QPM (Λ = 29.71 µm) and for a composite crystal made of
six segments. It also shows the less optimum case where there are only three composite
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Figure 4.2: (Color online) Color plots of the signal intensity ampli-
fication a as a function of the input pump intensity I3 and the signal
wavelength λ1 for the case of MgO:LiNbO3 and with initial conditions
A1(0) = 0.1, A2(0) = 0, and A3(0) = 1 so that r = 100. The total
crystal length is L = 5 mm. A pump intensity of 1 GW/cm2 corre-
sponds to a modified coupling coefficient Ω = 1.32 1/mm at the central
wavelength of 1.55 µm. (a) QPM periodic design only. (b) Composite
crystal with three segments (3 from Table 4.1). (c) Composite crystal
with six segments (6b from Table 4.1). In all cases, the poling period
is Λ =29.71 µm. The color code for the amplification a is given in
the color bar on the right-hand side. The three isolines mark intensity

amplification levels of 30, 60, and 90.

segments. The nonlinear susceptibility is fixed, and the plots are represented for
varying input pump intensity (at the fixed wavelength of 1064 nm) and for varying
signal wavelength (with center at λ1 = 1550 nm). Note that here, to keep the ratio
r constant for each plot, the input signal intensity changes in the same way as the
input pump intensity. Note also that the pump intensity (y-axis) takes the role of the
coupling coefficient Ω̃. Similarly, as a variation of the signal wavelength with respect
to the central one gives rise to a phase mismatch ∆k; here, the signal wavelength
(x-axis) takes the role of ∆k. The amplification values are calculated numerically
from Eq. (4.1) in the cases when A1(0) = 0.1, A2(0) = 0, and A3(0) = 1. Clearly, a
greatly enhanced robustness and frequency bandwidth of the six-segment composite
OPA compared to the standard QPM OPA can be recognized.

We can conclude from Figs. 4.2 that the present composite OPA approach works
very well in the depleted pump case, because one has a significant pump depletion,
and thus a signal amplification approaching the maximum theoretically possible.
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4.4 Summary and Conclusions

In summary, we used the similarity between the three wave mixing equations and the
time-dependent Schrödinger equation to transfer concepts from quantum physics to
nonlinear optics. Specifically, we have suggested to use segmented composite crystals
for optical parametric amplification in analogy with the composite pulses in NMR
and quantum optics. The approach used here is based on sign-alternating dual-
compensating composite pulse sequences similar to those of Shaka and Pines [57, 58].
These are particularly suited for optical parametric amplification because besides the
standard quasi-phase-matching they require only additional sign flips of the nonlinear
optical susceptibility at specific locations corresponding to the segment frontiers. We
have demonstrated numerically that this technique is especially powerful for broad-
band OPA. The present approach does not require very long crystals and, for the given
example of MgO:LiNbO3, is compatible with pump intensities significantly below the
damage threshold for ps or sub-ps illumination [69, 70].
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Chapter 5

Cascaded Nonlinear Frequency
Conversion in Dissipative Medium

5.1 Introduction

The concepts of coherent quantum control schemes, which are extremely used to ro-
bustly manipulate multistate quantum systems, are adopted to make sensitive classical
systems robust against the experimental parameters; to name few, Rapid Adiabatic
Passage (RAP) in waveguides [71] and the Composite pulses approach in polariza-
tion optics (Chapter 3,[72]) and nonlinear optics (Chapter 4, [73]). Another example
is the analogy between the three state quantum system and the cascaded two-step
nonlinear frequency conversion. Recent researches focused on the usage of the Stim-
ulated Raman Adiabatic Passage (STIRAP) [74–76] and adiabatic elimination [77]
in cascaded nonlinear frequency conversion, two simultaneous three waves mixing
processes. The three wave mixing processes, such as second harmonic generation
(SHG), sum-frequency generation (SFG) and difference-frequency generation (DFG)
and others, are generally driven by the second order nonlinear susceptibility χ(2) in
second-order nonlinear crystals and differ by the amplitudes of the input fields [24,
25, 63, 78]. Each parametric process’s efficiency is dependent on the conservation of
linear momentum of the light, known as phase-matching. To fulfill this condition, the
quasi-phase-matching must be used [24, 79–83].

In cascaded nonlinear frequency conversions [84–101], when two processes occur
concurrently in the same crystal, phase-matching condition fulfillment becomes more
sophisticated and picky. In this situation, two QPM modulation periods must be
employed, resulting in aperiodic segmentation.

Almost all the researches which addressed the cascaded nonlinear frequency gener-
ation, with or without its analogy with the three-state quantum system, have consid-
ered the dissipation as a problem. Moreover, dissipation is not considered obstructive
in this work; rather, it is a fundamental feature of the primary subject, in which the
damping of the Rabi oscillations is used to stabilize the spatial powers of the inter-
acting waves along the crystal. The main concept is to use a lossy intermediate wave
whose frequency is ω2, while leaving the other waves lossless. By intermediate wave,
we mean the one generated during the first process by the interaction of the signal
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Figure 5.1: Diagrams of a Λ-type three-state quantum system (left-
frame) and its analogous classical system, the cascaded nonlinear fre-
quency conversion (right-frame). In the left-side diagram, the ground,
intermediate, and target states are depicted by |ψ1⟩, |ψ2⟩, and |ψ3⟩,
respectively. The two Rabi frequencies ΩP and ΩS represent the Pump
and the Stokes Rabi frequencies, respectively. In the right-frame, The
three frequencies ω1, ω2 and ω3 correspond to the input, intermediate,
and target waves, respectively. ω1 is converted by the sum-frequency
generation process (SFG) into ω2, which is converted, in its turn, into
ω3 by the difference-frequency generation process (DFG). Both pro-
cesses are driven by the second-order susceptibility χ(2). Γ (s−1) and
α (cm−1) represent the decaying and the absorption rates of |ψ2⟩ and

ω2, respectively.

(ω1) with the first intensive pump (ωp1). While this intermediate wave is absorbed
with a rate α, it interacts with the second intense pump (ωp2) to generate the target
wave (ω3).

5.2 Theoretical background

The cascaded two-processes nonlinear frequency conversion in a dissipative medium
is a classical system that mimics the non-Hermitian three-state quantum system [34]
{|ψ1,2,3⟩ (t)}, in which the intermediate state |ψ2⟩ decays out of the system with a rate
Γ (s−1). Generally, in a quantum system, the population is transferred from one state
to another as a consequence of the application (presence) of a coherent field, i.e., an
electromagnetic radio-frequency electromagnetic field (rf) or a laser beam.

Figure 5.1 presents this analogy between the three-state quantum system (left-
frame) and the cascaded two-step nonlinear frequency generation system (right-frame),
where the three states |ψ1⟩, |ψ2⟩, and |ψ3⟩ are analogous to the signal, intermediate
and target waves whose frequencies are ω1 ω2 ω3, respectively. The time-dependent
absorption rate Γ (s−1) and the spatial-dependent one α (cm−1) are analogous. This
analogy paves the ground for the usage of the similar mathematical formalism in order
to investigate the spatial evolutions of the numbers of photons (photons’ fluxes) of
the involved waves along the crystal.
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To well understand the mathematical formalism behind this analogy, we investi-
gate the case of two simultaneously cascaded processes, for example: SFG followed by
a DFG, in a dissipative medium with an absorption constant α for the intermediate
state. We assume that three waves are initially injected in the nonlinear medium: a
signal (at frequency ω1), and two intense pumps (ωp1 and ωp2), with intensities Ip1
and Ip2, respectively. During the SFG process, the signal wave combines with the
first pump to create the intermediate wave ω2 = ω1 + ωp1 . Simultaneously, the in-
termediate wave combines with the second pump, by a DFG process. This generates
the target wave at frequency ω3 = ω2 − ωp2 . Due to the dispersion in the nonlinear
crystal, the momentum is generally not conserved during the interaction where the
phase-mismatches for both SFG and DFG processes are defined as

∆kS = k1 + kp1 − k2, (5.1a)

∆kD = k3 + kp2 − k2, (5.1b)

where kj = ωjnj/c ≡ 2πnj/λj is the wave-number of the jth wave whose refractive
index and wavelength in the vacuum are depicted by nj ≡ n(ωj) and λj , respectively.
In the limit of the approximation of the undepleted pumps (Ap1,p2 ≫ A1, A2, A3), such
a system can be described by the symmetrized coupled wave equations for collinear
wave mixing in the slowly varying envelope approximation [24, 25, 63], as

i
d

dz
A1 = ΩSA2 exp e

−i∆kSz, (5.2a)

i
d

dz
A2 = ΩSA1e

i∆kS +ΩDA3e
i∆kDz − iαA2,

i
d

dz
A3 = ΩDA2e

−i∆kDz, (5.2b)

The amplitudes Aj ≡
√
nj/ωjEj are proportional to the amplitudes Ej of the applied

electric fields, and |Aj |2 is proportional to the number of photons Φj in the jth wave
(j = 1, p1, 2, p2 and 3). ΩS and ΩD depict the effective nonlinear coupling coefficients
for the SFG and DFG processes, respectively, expressed as,

ΩS = 2Ap1
dS

c

√
ω1ωp1ω2

n1np1n2
, (5.3a)

ΩD = 2Ap2
dD
c

√
ω2ωp2ω3

n2np2n3
, (5.3b)

where dS = χ(2)(ω1, ωp1 ;ω2)/2 and dD = χ(2)(ω2, ωp2 ;ω3)/2 are the effective second-
order nonlinear coefficients. It is interesting to describe this system in the bright-dark
basis. To do so, the amplitudes Aj are substituted by the phase-shifted amplitudes
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Bj ,

A1(z) = B1(z), (5.4a)

A2(z) = B2(z) exp [i∆kSz] , (5.4b)

A3(z) = B3(z) exp [−i (∆kD −∆kS) z] . (5.4c)

Then, the new amplitudes vector B⃗ = [B1, B2, B3]
T is transformed into the bright-

dark basis C⃗ = [Cb, C2, Cd]
T by undergoing the transformation B1

B2

B3

 =

 sinϑ 0 cosϑ

0 1 0

cosϑ 0 − sinϑ


 Cb

C2

Cd

 , (5.5)

where ϑ(t) = arctan(ΩS/ΩD) is the mixing angle. A similar treatment as in Section
2.2.2 leads to a simplified two-state system,

i
d

dz

[
Cb

C2

]
=

[
0 Ω0

Ω0 ∆− iα

][
Cb

C2

]
. (5.6)

The bright state is tied to the intermediate state, while the dark state is totally
decoupled from both of them. According to the presence of the signal wave at the
input (A1(0) = B1(0) = 1 and A2(0) = A3(0) = 0), we conclude that Cb(0) = sinϑ

and Cd(0) = cosϑ. The photons, which are initially in the bright state Cb, are
transferred to the intermediate state C2 to be absorbed, while those which are initially
in the dark state are conserved (Cb(L) = 0 and Cd(L) = cosϑ). As a consequence, at
the end of the crystal (z = L), the amplitudes are B1(L) = cos2 ϑ, B2(L) = 0, and
B3(L) = − sin 2ϑ/2.

The normalized number of photons (photons flux), Φj(z), associated to each wave
is defined as Φj(z) = |Bj(z)|/|B1(0)|. In order to have a maximum number of photons
at the output, Φ1(L) = Φ1(L) = 25%, we consider the special case ϑ = π/4, that
corresponds to equal coupling coefficients ΩS = ΩD. This means that the signal and
the target waves will carry each 25% of the initial number of signal photons, while
the remaining 50% of the photons initially carried by the bright state is lost as a
consequence of the coupling with the decaying intermediate state.

5.3 Example

To validate this analogy, the concept is applied in a lithium niobate (LiNbO3) nonlin-
ear crystal, where the second-order nonlinear coefficients driving both processes are
assumed to be equal, as are d0 ≈ dS ≈ dD ≈ d333 = 27 pm/V [27]. The crystal is
supposed to be L = 25 mm long and the temperature is T = 300K. Its spectrum
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Figure 5.2: (a) Spatial evolution of the normalized numbers of pho-
tons Φ(z) associated to the signal (red dotted-dashed curve), the in-
termediate (green), and the target (blue dashed) waves, as functions of
the z coordinates, for αL = 10 and Ip1 = 1 GW.cm−1 that corresponds
to ΩL = 18.5. Panel (b) presents the number of photons Φ3(z) of the
target wave for ΩL = 18.5 (Ip1 = 1GW.cm−2) for several normalized
absorption rates αL = 5, 10 and 20. In (c) the normalized absorption
is fixed at αL = 10, then the evolution of Φ3(z) is shown for several
values of ΩL =9.2, 13 and 18.5 which correspond to Ip1 =0.25, 0.5 and
1 GW.cm−2, respectively. For all these cases, the employed second
pump intensity is calculated by using the formula Ip2 = 0.69 × Ip1

from Eq. 5.9.

range of absorption is in the UV, then we choose this set of wavelengths:

(λ532nm
1 ) + (λ800nm

p1 ) → (λ319.5nm
2 ), (5.7a)

(λ319.5nm
2 )− (λ1064nm

p2 ) → (λ456.6nm
3 ). (5.7b)

All the interacted waves are supposed to be polarized in the extraordinary direc-
tion. The phase-mismatching relationships belonging to the processes SFG and DFG
are ∆kS = k1 + kp1 − k2 and ∆kD = k3 + kp2 − k2, respectively. To meet the
phase-matching criteria, we employ the Quasi-Phase-Matching (QPM) method. Both
phase-mismatches ∆kS and ∆kD are compensated with additional wavevectors KS =
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2πmS/ΛS and KD = 2πmD/ΛD, respectively, where mS and mD are the QPM or-
ders, and ΛS and ΛD are the QPM modulation periods. The corresponding first-order
QPM modulation periods for both processes are ΛS = 1.06 µm and ΛD = 1.18 µm at
300 K. To obtain the maximum value of the number of photons of the target wave,
Φ3 = 25%, the condition ϑ = π/4 must be fulfilled, which requires equal averaged
nonlinear coefficients as ΩS = ΩD. In short, the strength of the nonlinearity of the
system can be manipulated by two parameters: the correction factor Gm which is
connected to the QPM order and the intensities of the pumps. W still need to imple-
ment both processes in one crystal so that they can happen at the same time along
the crystal. To do so, the crystal must be tuned in such a way that it supports both
processes, employing a modulation function δ(z) [102] defined as

δ(z) =
d(z)

d0
= sign

[
sin (km.z) sin (∆k.z)

]
, (5.8)

where, km = (∆kS +∆kD)/2m and ∆k = ∆kS−∆kD
2 . The QPM periods are chosen to

be ΛS = 9.6µm and ΛD = 10.64µm, which correspond to the 9th QPM order, m = 9.
Because δ(z) can contain a number of domains with lengths that are small enough

to be difficult to manufacture, we aimed to be prudent by setting the threshold dis-
tance at 5 µm. Thus, δ(z) is corrected by flipping domains of lengths less than 5
µm. Therefore, the nonlinearities of both processes are no longer balanced, then the
connection between the pump intensities is

Ip2
Ip1

=
np2
np1

× n3.λ3
n1.λ1

×
(
mD

mS

)2

× γ, (5.9)

whith γ is a correction factor (γ ≈ 0.8). The Fourier coefficient for the simultaneous
cascaded SFG/DFG processes has the form

Gm =
1

m

(
2

π

)2

. (5.10)

The top-frame in Fig. 5.2 depicts the spatial evolutions of the number of photons
Φ1(z), Φ2(z) and Φ3(z), which are presented by the red, green and blue curves, respec-
tively, for αL = 10. The intensity of the first pump is assumed to be Ip1 = 1 GW.cm−2

whose corresponding normalized coupling coefficient ΩL = ΩS ×Gm × L = 18.5. By
using Eq. 5.9, the corresponding second pump’s intensity is Ip2 = 0.69 GW.cm−2.
This panel demonstrates that despite the correction of the gratings, the numbers of
photons of the signal and the target waves reach 25% of the initial number of signal
photons at the input. The panel (b) presents the evolution of Φ3(z) for several values
of αL with a constant ΩL = 18.4, while (c) illustrates Φ3(z) for different ΩL and a
constant αL = 10.



30 Chapter 5. Cascaded Nonlinear Frequency Conversion in Dissipative Medium

5.4 Conclusion

In conclusion, we have given a proposal for a cascaded nonlinear frequency conversion
in a dissipative medium in which system losses are used to stabilize the spatial powers
along the crystal. This system is similar to the non-Hermitian three-state quantum
system in that they are both governed by the same mathematical framework.

This study focuses on cascaded SFG-DFG processes, but it does not rule out the
employment of other processes, such as DFG-SFG, SFG-SFG, or DFG-DFG. As an
example, we discussed the use of a lithium niobate nonlinear crystal as a dissipative
medium. Finally, the simulations are in full agreement with the theory.
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Chapter 6

Non-reciprocal wave retarder based
on optical rotators combination

6.1 Introduction

A conventional wave retarder is generally composed of a transparent birefringent crys-
tal plate inducing a phase shift between the two eigenpolarizations of the plate [26,
36, 103]. They can for instance be used to transform the state of light polarization
between linear, circular or elliptical states, as often required in optical experiments
and technologies. Being lossless linear optical elements, such retarders are reciprocal
owing to the time reversal symmetry connected to the time reversal invariance of the
underlying Maxwell equations and of the linear wave equation. Here the reciprocity
has the consequence that forward and backward propagating light through the plate
are subjected to the same phase shift. However there exist various optical systems
capable of breaking reciprocity [104–113].

In this chapter, we propose an approach to realize adjustable non-reciprocal wave
retarders on the base of a non-reciprocal Faraday rotator combined to a reciprocal
rotator composed of two half-wave plates. It is shown that if these elements are
sandwiched between crossed quarter-wave plates they act as wave retarders with a
retardation differing in forward and backward direction. The forward and backward
phase shifts depend on the combined rotation angle of the rotators and can be adjusted
by turning one of the half-wave plates in the reciprocal rotator. Section 2 presents
the concept and its theoretical background, while Sect. 3 gives two simple examples
of experimental verification using off-the-shelf optical elements.

6.2 Concept background

The principle of the non-reciprocal wave retarder is illustrated in Fig. 6.1(a) for the
forward and backward light propagation directions. The two central elements are a
reciprocal rotator (RR) turning a linear polarization by an angle θ1 in forward direction
(and turning it back by −θ1 in the backward direction) and a non-reciprocal Faraday
rotator (FR) that turns the polarization by an angle θ2 for both propagation directions.
These two elements are sandwiched between two quarter-wave plates (QWP1 and
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Figure 6.1: (a) Non-reciprocal wave retarder sequence for forward
(top) and backward (bottom) propagation direction. QWP1 and
QWP2 are two crossed quarter-wave plates. RR is a reciprocal polar-
ization rotator (rotation angle θ1) composed of two half-wave plates
(HWPs) and FR is a non-reciprocal Faraday rotator (rotation angle
θ2). (b) Scheme of the set-up for experimental verification. F: spectral
filter, P: polarizer, A: analyzer. The bottom diagrams show the orien-
tation of the fast and slow axes of the two QWPs. The top diagram
show the 45 deg orientation of the resulting effective retarder having
a phase retardation φf = 2 (θ1 + θ2) and φb = 2 (θ2 − θ1) in forward
and backward directions, respectively. Panel (c) gives the measured
dispersion (blue circles) of the rotation angle θ2 of the FR, as well as

the fit with Eq. (6.6) (red curve).

QWP2) with their fast axes aligned along the vertical and horizontal laboratory axes,
respectively. The Jones matrix [26, 36] of a waveplate retarder whose axes are rotated
by an angle θ with respect to the laboratory axes x and y is written as

Jθ (φ) =

[
eiφ/2 cos2 (θ) + e−iφ/2 sin2 (θ) −i sin (2θ) sin (φ/2)

−i sin (2θ) sin (φ/2) e−iφ/2 cos2 (θ) + eiφ/2 sin2 (θ)

]
, (6.1)

where φ = 2πL(ns − nf )/λ is the retarder phase shift between the fast and the
slow polarization components, λ is the wavelength in vacuum, nf and ns are the
refractive indices along the fast and slow axes respectively, and L is the thickness of
the waveplate. On the other hand, the rotation matrix R (θ) in the horizontal-vertical
(HV) basis is given by

R (θ) =

[
cos θ − sin θ

sin θ cos θ

]
. (6.2)

It is well known that a reciprocal polarization rotator can be built by combining
two half-wave plates (HWP) for which φ = π and oriented under the angles θA and
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θB [49, 50]. The corresponding Jones matrix of the RR is obtained directly from (6.1)
as

JR (θ1) = JθB (π) JθA (−π) (6.3)

=

[
cos [2(θB − θA)] sin [2(θB − θA)]

− sin [2(θB − θA)] cos [2(θB − θA)]

]
≡

[
cos θ1 sin θ1

− sin θ1 cos θ1

]
,

and has, up to a minus sign in the angle, the same form as the rotation matrix (6.2),
with a polarization rotation angle θ1 = 2(θB − θA).

The combination of the above RR with a FR that rotates further the polarization
by an angle θ2 will lead to a total rotation θf = θ1 + θ2 in forward direction, and
to a rotation θb = θ2 − θ1 in backward direction, characterized by the Jones matri-
ces JR (θ1 + θ2) and JR (θ2 − θ1), respectively. A tunable polarization rotator can be
transformed into a tunable retarder by placing it between crossed QWPs (character-
ized by the Jones matrix Jθ (π/2)). Indeed, the overall Jones matrix Jseq for the
sequence shown in Fig. 6.1(a) is found as

Jseq = Jπ/2 (π/2) JR (θf ) J0 (π/2) =

[
cos θf −i sin θf

−i sin θf cos θf

]
= Jπ/4 (2θf ) , (6.4)

where the last equality can be easily verified by comparing with Eq. 6.1. An equivalent
expression (containing the angle θb instead of θf ) holds for the backward direction.
It is worth noting that the above transformation is equivalent to the one connecting
the rotation gate and the phase gate via the Hadamard gate in quantum information
[114]. Equation 6.4 shows that the whole sequence acts as an effective waveplate with
two distinct phase retardations in both forward (φ) and backward (φ) propagation
directions, as

φf = 2θf = 2(θ1 + θ2), and φb = 2θb = 2(θ2 − θ1). (6.5)

This effective waveplate is oriented at an angle of θ = 45 deg with respect to the
horizontal and vertical laboratory axes and thus also at 45 deg with respect to the
orientations of the crossed input and output QWPs. Therefore the arrangement acts as
a non-reciprocal waveplate with retardations tunable by the orientations of the internal
HWPs. The orientation of the effective non-reciprocal waveplate can be changed by
rotating both external QWPs by the same amount in a common direction.

6.3 Experiments

Equations (6.5) show that in principle it is possible to realize any combination of
the retardations φf and φb provided that the rotation angles θ1 for the RR and θ2

for the non-reciprocal FR can be adjusted independently. In this section we verify
experimentally a specific case where the system acts approximately as a HWP in
forward direction and as a QWP in backward direction.
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The detailed experimental arrangement is shown schematically in Fig. 6.1(b). The
light source is either a broadband white light source (ThorLabs SLS201L) filtered by
a spectral filter (F) transmitting a bandwidth ∆λ = 10nm (at FWHM) or a He-Ne
laser at the wavelength λ = 632.8 nm without spectral filter. The two HWPs used
to realize the RR are built by the combination of two pre-calibrated adjustable liquid
crystals waveplates (LCWP, ThorLabs: LCC1421-A) with the applied voltage tuned
to a retardation of π for the wavelength of interest. For wavelengths different from
632.8 nm the two QWPs are composed by another LCWP and an optical compensator
(ThorLabs SBC-VIS), both tuned to a retardation of π/2, while for λ = 632.8 nm
two commercial QWPs at this wavelength are used. The used Faraday rotator FR
(ThorLabs: IO-3-780-HP) has a central wavelength of 780 nm. We have characterized
the dispersion of its rotation angle θ2 at nine wavelengths between 450 and 800 nm
using different spectral filters for the broadband source, as shown in Fig. 6.1(c).
Here the experimentally measured rotation angles are fitted by the simplified relation
usually applied to the Verdet constant [115, 116]

θ2 =
A

λ2 − λ20
, (6.6)

with A = 24.7 deg (µm)2 and an effective oscillator wavelength λ0 = 273.8 nm.
The arrangement in Fig. 6.1(b) corresponds to the forward direction. The backward
direction is obtained by interchanging the role of the source and the detector, as well
as of the input polarizer (P) and the output analyzer (A).

This sequence acts as a HWP in the forward direction and a QWP in the backward
direction for the ideal set of angles θ1 = 22.5 deg and θ2 = 22.5deg. For the first
demonstration, we choose an input light filtered at the wavelength of 650 nm, for which
the measured θ2 = 72 deg. The rotation angle of the RR was set to θ1 = 26 deg, this
combination leads to a phase shift φf = 1.09×π in forward direction and φb = 1.03×
π/2 in backward direction. The input light is horizontally polarized, thus at an angle of
45 deg to the main axes of the resulting effective wave retarder. In order to characterize
the function of the sequence we have measured the light extinction characteristics
through an analyzer (element A in Fig. 6.1(b), Glan-Thompson polarizer) placed
at its output. The normalized transmission through this element for the forward
direction is shown in Fig. 6.2(a) together with the predicted theoretical transmission.
The latter is obtained by projecting into the analyzer the expected output polarization
(obtained by applying the Jones matrix Jseq in (6.4) to the input polarization) and
taking the square modulus of the result. If the effective retarder would act exactly
as a HWP the sequence would rotate the input polarization by 90 deg and lead to a
vertically linearly polarized output with perfect extinction when the analyzer is in the
horizontal position (angle β = 0 deg). Here the extinction is not fully complete owing
to the 9% excess in phase shift as compared to a HWP resulting from the choice of the
angles θ1 and θ2. This leads to a slight elliptical component of the output polarization.
The normalized transmission for the reversed (backward) direction is shown in Fig.
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Figure 6.2: Normalized transmission through the arrangement of
Fig. 6.1(b) as a function of the analyzer orientation angle β for cases
where the effective wave plate is close to a HWP in forward direction
and close to a QWP in the backward one. Panels (a) and (c) are
for the forward direction, (b) and (d) for the backward one. The
red curves underlying the measured blue points give the theoretically
expected transmission. In (a) and (b) the wavelength λ is 650 nm
and the rotators angles are θ1 = 26 deg and θ2 = 72 deg, leading to
phase shifts of φf = 1.09 π and of φb = 1.03 π/2. In (c) and (d),
λ = 632.8 nm, θ1 = 30.9 deg and θ2 = 77.3 deg, so that φf = 1.20 π
and φb = 1.03 π/2. The angle β is given with respect to the polarizer
orientation which defines the input polarization, for β = 0 polarizer

and analyzer are parallel.

6.2(b). Also here the measured and theoretical transmission agree well and a value
close to the β-independent 50% level expected for the circular polarized output of an
ideal effective QWP is verified.

If the above experiment is repeated with the 632.8 nm He-Ne laser wavelength the
results are very similar. In this case the non-reciprocal rotation angle is θ2 = 77.3

deg. The corresponding experimental and theoretical normalized transmitted powers
obtained upon choosing an angle θ1 = 30.9 deg for the RR are shown in Fig. 6.2(c) and
6.2(d) for the forward and backward directions, respectively. In this case the forward
phase shift is φf = 2θf = 1.20×π and the backward phase shift is still φb = 1.03×π/2
close to a QWP. The comparison of Fig. 6.2(a) with Fig. 6.2(c) confirms that at 632.8
nm the structure in forward direction departs more from an effective HWP, what
results in a stronger elliptical component of the output polarization and a smaller
modulation of the transmission upon rotation of the analyzer. Indeed, the degree of
linear polarization ξ corresponds to the fringe contrast of such a measurement [117]
and decreases in forward direction from 96% to 80% going from the case of Fig. 6.2(a)
to the one of Fig. 6.2(c).
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6.4 Discussion and conclusions

We have presented a universal design of a non-reciprocal wave retarder based on a
combination of a reciprocal and a non-reciprocal polarization rotator with two quarter-
wave plates. The proof-of-concept was successfully verified experimentally for a few
useful cases. The phase shifts in forward and backward directions can be adjusted by
varying the reciprocal and non-reciprocal rotation angles θ1 and θ2. In our tests the
reciprocal rotator was implemented by using a pair of half-wave plates. It is worth
noting that this pair of elements may be replaced by a plate of an optically active
crystal such as quartz, at the expense of a loss of tunability of the angle θ1. The
presently proposed design can find applications whenever a different manipulation
of the light polarization state in two opposite directions is of interest. For instance,
polarimetric analysis can take advantage of injecting the same input polarization state
on both opposite ports, permitting to duplicate polarization manipulation and analysis
in a single device. Novel types of optical isolators or circulators can also be envisaged.
Furthermore, since for polarization encoded q-bits wave plates can take the role of
various quantum gates [114], the present approach may be used also to realize different
quantum optical gates in a single device, for instance an X gate in one direction and
a Hadamard gate in the other. Finally, by exploiting the dispersion of the underlying
reciprocal and non-reciprocal elements, new types of coarse wavelength sensors based
on the differential response in the two directions may be conceived.
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Polarization Independent Optical
Isolator in Sagnac-Type
Configuration

7.1 Introduction

An optical isolator is a device that allows the light to pass in one direction but blocks
it in the other. The first optical isolator (OI) was suggested by Rayleigh [118] and
consists of a Faraday rotator sandwiched between two polarizers. Using this main
principle, simple schema were realized by using different type of polarizers optimized
for specific spectral regions, optical power levels, or for the pulsed rather than the
continuous wave regime.

The major drawback of Rayleigh’s optical isolators is to work in an optimum way
only for one specific input light polarization that should be known in advance. The
same is true also for most recent magneto-optics-based isolators developed in inte-
grated photonics, where either the TM or the TE polarization is generally being ad-
dressed (see [119–123] and references therein). Disposing of optical isolators operating
independently of the state of the incoming light polarization is an attractive feature
for both bulk optics and integrated implementations. Different strategies have been
developed to this aim, such as using birefringent plates [124–127] or Mach-Zehnder
interferometers in waveguide configurations [128–130]. Finally, various types of po-
larization independent circulators were developed either on a bulk optics [131–140] or
an integrated platform [121, 141–143].

Here we propose an alternative way to realize a polarization independent optical
isolator (PIOI) based on a common path interferometer and verify its proof of principle
in a bulk optics arrangement. The optical design is based on a Sagnac-type interfer-
ometer, with the ring containing two nonreciprocal polarization switches (NRPS) put
in series and intercalated by a polarizer. The NRPSs are composed of a Faraday
rotator and a half-wave plate and leave the polarization unchanged for propagation
in one direction but switches it between horizontal and vertical (rotation by 90 deg)
in the opposite direction. Importantly, in our PIOI the two orthogonal polarizations
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Figure 7.1: (Color online) Principle of the nonreciprocal polarization
switch (NRPS). FR is a Faraday rotator with 45 deg rotation angle

and HWP is a half-wave plate oriented at 67.5 deg.

are treated simultaneously. They follow the same path within the ring but in counter
propagating directions.

7.2 Concept

The principles underlying the NRPS and the PIOI are illustrated in Fig. 7.1 and
Fig. 7.2, respectively. The NRPS is composed of a Faraday rotator (FR) and a half-
wave plate (HWP). The FR, as a non-reciprocal element, rotates the light polarization
by 45 deg in the same direction for both light propagation directions and for all
polarizations. In contrast, the HWP with one of its main axes oriented at 67.5 deg,
rotates the polarization by +45 deg in the forward direction and by -45 deg in the
backward one, provided that the input polarization is either horizontal or vertical.
The overall effect of the NRPS is therefore to impose a 90 deg polarization rotation
in forward direction (switch between the horizontal and vertical polarizations) and to
leave the polarization unchanged in the backward one (see Fig. 7.1).

The PIOI working principle is illustrated for the specific cases of a vertical and
horizontal input polarization in Fig. 7.2(a) and Fig. 7.2(b), respectively. Any light
beam (red arrows) entering through the port 1 will exit the PIOI at port 2 with the
same polarization as the input light. On the other hand, if the light (blue arrows)
re-enters the PIOI through port 2 in backward direction, due to the effect of the
NRPSs the polarization is rotated in such a way that the whole wave is blocked by
the horizontal polarizer (P) in the ring, so that no light can exit from port 1 in
backward direction.

In summary, a forward input wave with arbitrary polarization is splitted by the
PBS in its vertical polarization component (traveling clockwise through the ring)
and its horizontal components (traveling counter-clockwise). Both will exit through
port 2 after propagation through an equal path length in opposite directions. A
backward wave from port 2 is also splitted by the PBS. However, in this case the
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Figure 7.2: (Color online) Polarization-independent optical isolator
design (PIOI). In forward direction (red-solid arrows), the light trav-
els from port-1 to port-2. In backward direction (blue-dashed arrows),
the light traveling from port-2 towards port-1 is blocked at the hor-
izontal polarizer (P). Frames (a) and (b) correspond to vertical and
horizontal input polarizations, respectively. PBS is a polarizing beam
splitter, NRPS1 and NRPS2 are nonreciprocal polarization switches

as of Fig. 7.1, and M1-M3 are mirrors.

vertical component travels counter-clockwise and the horizontal travels clockwise until
reaching the polarizer and being blocked.

7.3 Experiments

Experimental proof of the proposed concept is realized by means of a bulk optics
set-up corresponding to the design of Fig. 7.2. All experiments were performed with a
cw Ti:Sapphire laser adjusted to the wavelength λ = 798 nm. Both Faraday rotators
(IO-3-780-HP, Optics for Research) in the NRPSs were also tuned to have 45 deg ro-
tation at this wavelength. Two electrically tunable liquid crystals retarders (Thorlabs
LCC1413- A) were calibrated to have the role of two HWP at this wavelength and
their fast axes were rotated by 67.5 deg with respect to the vertical direction as shown
in Fig. 7.1.

In order to prove that the PIOI conserves the input polarization, we quantify
the transmitted intensities by an analyzer followed by a silicon photodetector. In
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Figure 7.3: (Color online) Normalized transmission power through
an analyzer for four different input polarization states: (a) horizontal,
(b) vertical, (c) linear at nearly 45 deg and (d) elliptical. Measurement
are for the forward direction through the PIOI. The black circles are
measured at the input (before Port-1) and the blue stars at the output
(after Port-2). The curves overlap confirms the conservation of the

polarization state.

forward direction, these were inserted alternatively before Port-1 and after Port-2.
The normalized transmitted power upon rotation of the analyzer were taken in both
cases. The results are shown in Fig. 7.3 for four different states of input polarization:
horizontal, vertical, linear at nearly (but not exactly) 45 deg and elliptical. The good
overlap between the curves for the input and the output confirms the conservation
of the polarization. For the four states of polarization used for Fig. 7.3 we also
evaluated the back-reflection losses η from the PIOI. The latter are defined as η(dB) =

10 log10 [Pinput/Pback], where Pinput and Pback are the input and back-reflected power,
respectively. For the four situations we obtained similar values, i.e. ηh = 41.9 dB,
ηv = 41.3 dB, η45 = 41.9 dB and ηe = 40.6 dB for horizontal, vertical, 45 deg and
elliptical polarized inputs, respectively.

For evaluating the isolation capability of the PIOI we have to compare the forward
power transmission T1→2 from port 1 to port 2 with the reverse power transmission
T2→1 in backward direction. The isolation level is then defined as

ζ(dB) = 10 log10 [T1→2/T2→1] . (7.1)
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Figure 7.4: (Color online) Measured PIOI isolation ζ (dB) for various
states of input polarization. In (a) all polarizations are linear and span
the equator of the shown Poincaré sphere. In (b) they span a meridian
line on the Poincaré sphere as obtained by varying the retardation
of the input optical compensator. The labels H, V, +45◦, −45◦, E,
R and L correspond to the horizontal, vertical, +45◦,−45◦, elliptical,

right circular and left circular polarizations, respectively.

Figure 7.4 gives the measured isolation for different states of polarization. In
Fig. 7.4(a) the polarization is linear and varies around the equator of the Poincaré
sphere, as obtained by adjusting the compensator retardation to π (HWP) and rotat-
ing this element around the beam propagation axis. For Fig. 7.4(b), in contrast, the
compensator has a fixed orientation at 45 deg but its retardation is varied between 0
and 2π at the used wavelength. This leads to a polarization variation along a merid-
ian line on the Poincaré sphere, from horizontal (H) to various elliptical states (E),
to right circular (R) and back to horizontal passing by the vertical (V) and the left
circular state (L). As can be seen in Fig. 7.4 for all cases the isolation exceeds 43 dB
and is larger than 50 dB for the horizontal polarization.

7.4 Conclusion

We have presented and verified experimentally an alternative concept for a polariza-
tion independent optical isolator. The fact that our scheme is based on a Sagnac-type
ring interferometer brings about several advantages proper to common path interfer-
ometers. The most important one is the fact that there is no difference between the
optical path of the two orthogonal polarizations, which allows to keep the polariza-
tion state between input and output. Also, such an arrangement features an increased
robustness against length changes with respect to, for instance, Mach-Zehnder type
isolators. Furthermore, the simple construction leads to easy tuning/adjustment. The
implemented prototype was shown to conserve the input polarization state in forward
direction and to provide an isolation exceeding 43 dB for all polarizations. We would
like to mention that the use of two separated nonreciprocal polarization switches (and
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Figure 7.5: (Color online) Folded configuration using a double pass
in a single NRPS, corresponding to the case of Fig. 7.2(a) (vertical

input polarization). M: mirrors, all other symbols as in Fig. 7.2.

two Faraday rotators) is not strictly necessary. It is obviously possible to fold the
optical path in such a way as to use the same NRPS twice as depicted in Fig. 7.5.
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Chapter 8

Conclusions

Several aspects of the quantum-classical analogies between coherent quantum control
strategies and specific classical systems were explored in this thesis. The primary goal
of these analogies is to transmit concepts and techniques for successfully manipulating
classical systems, making them robust and broadband, and demonstrating the pro-
found relationship between these two seemingly contradictory worlds.

Coherent quantum control techniques, in general, are those that are used to ef-
ficiently and robustly manipulate multi-state quantum systems. In Chapter 2, we
discussed the notion of Composite pulses (CPs) technique which is widely used to
robustly manipulate two-state quantum systems. In addition, we discussed the ma-
nipulation of three-state quantum with a decaying intermediate state. In Chapter 3,
we addressed the analogy between Composite pulses technique and the polarization
manipulation in order to design robust and Broadband polarization rotator composed
by three wave-plates. Another analogy based on using CPs in nonlinear optics is
discussed in Chapter 4. In this chapter, a QPM-based nonlinear crystal is segmented
by introducing defects in specific locations. This analogy aims to make the optical
parametric amplification (OPA) robust and broadband. Chapter 5 presents the anal-
ogy between the population transfer in a three-state quantum system via a decaying
state and the cascaded nonlinear frequency generation in a dissipative medium. This
analogy allows rendering the absorption into advantage by stabilizing spatial powers
along the nonlinear crystal.

Furthermore, for the first time, we designed a nonreciprocal wave retarder whose
retardation depends on the light propagation direction. This device, discussed in
Chapter 6, comprises a nonreciprocal polarization switch (NRPS) sandwiched be-
tween two crossed quarter-wave plates. Finally, in Chapter 7, we have discussed a
polarization independent optical isolator composed by two NRPS in a Sagnac-type
configuration. Such an isolator presented high isolation levels levels ranging from 43
dB to 50 dB.
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