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A bounded domain D ⊂ CN is symmetric if for any point z ∈ D there is a holomorphic
involution σz : D → D with unique fixed point z. Any bounded symmetric domain D =
G/K is a homogeneous space of a reductive Lie group G. A bounded symmetric domain
D is irreducible if it cannot be decomposed into a direct product of bounded symmetric
domains of smaller dimension. The complex 2-ball B = {z = (z1, z2) ∈ C2 | |z1|2+|z2|2 < 1}
is the only irreducible bounded symmetric domain of complex dimension 2. Due to its
homogeneity under the unitary group

U(1, 2) =
{
g ∈ GL(3,C) |H1,2(gz, gz′) = H1,2(z, z′), ∀z, z′ ∈ B

}
of a Hermitian form H1,2 : C3 → C3 of signature (1, 2), the ball B admits a lot of quotients
B/Γ by discrete subgroups Γ < U(1, 2). Most interesting are the quotients B/Γ of finite
U(1, 2)-invariant volume, whose associated groups Γ are called lattices of U(1, 2). A lattice
Γ < U(1, 2) is arithmetic if there exists a number field Q ⊆ k ⊂ C with integers ring Ok,
such that Γ ∩GL(3,Ok) is of finite index in Γ and in GL(3,Ok).

The real rank of a bounded symmetric domain D = G/K is the maximal dimension of
an abelian subgroup A < G < GL(N,C), whose entries are simultaneously diagonalizable
over R. Margulis has shown in [34] that all lattices Γ in the holomorphic isometry group
G of an irreducible bounded symmetric domain D = G/K of real rank ≥ 2 are arith-
metic. The complex 2-ball is an irreduicble bounded symmetric domain of real rank 1 and
its holomorphic isometry group U(1, 2) is known to admit non-arithmetic lattices. The
first examples of non-arithmetic lattices Γ < U(1, 2) appear in Mostow’s [38] from 1980.
Further constructions are due to Deligne-Mostow’s [9], [10], Deraux’s [11], [12], Deraux,
Parker and Paupert’s [13], [14] and etc. Last year, Baldi and Ullmo showed in [4] that if
a quotient B/Γ by a lattice Γ < U(1, 2) contains infinitely many maximal complex totally
geodesic submanifolds, then Γ is an arithmetic lattice. Our study of the non-compact ball
quotients B/Γ with smooth toroidal compactifications (B/Γ)′ applies simultaneously to
arithmetic and non-arithmetic lattices Γ < U(1, 2).

The smoth compact ball quotients B/Γ are characterized topologically by an equality of
their Chern numbers. Recall that for an arbitrary complex projective surface X ⊂ PN (C),
the Chern number c2(X) ∈ Z is the Euler number of X and c2

1(X) = K2
X ∈ Z is the

self-intersection number of the canonical divisor KX of X. Van de Ven’s [48] from 1966
shows that the minimal complex projective surfaces of general type satisfy the inequality
c2

1(X) ≤ 8c2(X). Later, Bogomolov’s [5] improves this bound to c2
1(X) ≤ 4c2(X). As a

consequence of the solvability of the Monge-Ampère equation, Yau’s [49] establishes that a
smooth minimal surface X ⊂ PN (C) of general type is a ball quotient X = B/Γ if and only
if c2

1(X) = 3c2(X). The same result is proved independently by Miyaoka in [35]. Many
authors refer to c2

1(X) = 3c2(X) as to the Bogomolov-Miyaoka-Yau equality.

By the means of the algebraic number theory, Prasad and Yeung have established
the existence of finitely many arithmetic lattices Γ < SU(1, 2) with smooth compact ball
quotient B/Γ. They show that any such Γ is associated with a totally real number field
k, a simple algebraic group G(k) over k, a totally imaginary quadratic extension l ⊃ k
and a division algebra D with center l. There is a unique real place νo of k, such that
the group G(kνo) ' SU(1, 2) over the completion kνo ' R is non-compact. For any other
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archimedean place ν 6= νo of k, the group G(kν) ' SU(3) is compact. After classifying
k, l and D, Prasad and Yeung describe the arithmetic lattices Γ < SU(1, 2) with smooth
compact quotient B/Γ. Making use of a computer implementation, Cartwright and Steger
obtain in [8] presentations of all the arithmetic lattices Γ < SU(1, 2) with smooth compact
quotient B/Γ.

The majority of the lattices Γ < U(1, 2) have non-compact quotient B/Γ. There arises
the necessity of constructions of compactifications of such B/Γ. A boundary point z ∈ ∂B ={
z = (z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1

}
is Γ-rational if the lattice Γ < U(1, 2) intersects the

stabilizer StabU(1,2)(z) in a lattice Γ ∩ StabU(1,2)(z) of StabU(1,2)(z). The set ∂ΓB of the
Γ-rational boundary points of B is acted by Γ with finitely many orbits, called the Γ-cusps.
The results of Baily and Borel from [3] imply that adjoining the Γ-cusps ∂ΓB/Γ to B/Γ,
one obtains a complex projective variety

B̂/Γ = (B/Γ)
∐

(∂ΓB/Γ) .

Even if B/Γ is smooth, the Baily-Borel compactification B̂/Γ has singularities at the Γ-

cusps ∂ΓB/Γ. The resolution of the cuspidal singular points of B̂/Γ results in the toroidal
compactification (B/Γ)′ of B/Γ. For an arbitrary bounded symmetric domain D = G/K
and an arbitrary lattice Γ < G of holomorphic isometries of D with non-compact quotient
D/Γ, the toroidal compactifications of D/Γ are constructed by Ash, Mumford, Rapoport
and Tai in [1].

In [39] Mumford modifies the Bogomolov-Miyaoka-Yau equality c2
1(B/Γ) = 3c2(B/Γ)

for smooth compact ball quotients B/Γ to the ones with smooth toroidal compactification
(B/Γ)′. Let D := (B/Γ)′ \(B/Γ) be the toroidal compactifying divisor of a smooth toroidal
compactification X = (B/Γ)′, c2(X,D) := e(X \D) = e (B/Γ) be the Euler number of B/Γ
and c1

2(X,D) := (KX +D)2 be the self-intersection number of the logarithmic canonical
divisor KX + D of (X,D). Mumford shows that if (X,D) is of logarithmic general type,
i.e., if a sufficiently large tensor power of the line bundle, asociated with KX +D provides
a projective morphism of X onto a surface, then c1

2(X,D) ≤ 3c2(X,D) with equality
c1

2(X,D) = 3c2(X,D) if and only if X = (B/Γ)′ is a smooth toroidal compactification
with toroidal compactifying divisor D. From now on, we refer to c1

2(X,D), c2(X,D) as to
the logarithmic Chern numbers of (X,D) and call c1

2(X,D) = 3c2(X,D) the logarithmic
Bogomolov-Miyaoka-Yau equality.

The present thesis studies the smooth toroidal compactifications (B/Γ)′ of non-compact
quotients B/Γ of the complex 2-ball B by a lattice Γ < U(1, 2). More precisely, it focuses on
the finite unramified coverings f : (B/Γ2)′ → (B/Γ1)′ of smooth toroidal compactifications,
which restrict to finite unramified coverings f : B/Γ2 → B/Γ1 of the corresponding ball
quotients and on some numerical invariants of the smooth toroidal compactifications X =
(B/Γ)′, which are birational to a ruled surface r : Y → B with an elliptic base B. The
aforementioned original results of the thesis constitute the third and the fourth chapters.
Let L1 ' P1(C) be a smooth irreducible rational curve on a surface X, whose contraction
does not create a singularity. Then the self-intersection number of L1 is L2

1 = −1 and
L1 is called briefly a (−1)-curve on X. Any unramified covering f : X2 → X1 of degree
d ∈ N of smooth surfaces restricts to an unramified covering f : L′′ → L′ of degree
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d of the union L′ of the rational (−1)-curves on X1 by the union L′′ of the smooth
rational (−1)-curves on X2. Let D(j) := (B/Γj)′ \ (B/Γj) be the toroidal compactifying
divisors of B/Γj and ρj : (B/Γj)′ → Yj be finite sequences of blow downs to minimal
surfaces Yj . The thesis constructs a bijective correspondence between the finite unramified
coverings f : (B/Γ2)′ → (B/Γ1)′ of smooth toroidal compactifications, which restrict to
finite unramified coverings f : B/Γ2 → B/Γ1 of the same degree and the finite unramified
coverings ϕ : Y2 → Y1 of the corresponding minimal models, which restrict to finite
unramified coverings ϕ : ρ2

(
D(2)

)
→ ρ1

(
D(1)

)
of the same degree. The aforementioned

type of unramified coverings endow the set Σ of the smooth toroidal compactifications
(B/Γ)′ with a partial order � . The minimal entries (B/Γo)′ ∈ Σ with respect to � are
called primitive, while the maximal ones (B/Γ1)′ ∈ Σ are designated as saturated. Chapter
3 of the thesis establishes that any (B/Γ)′ ∈ Σ dominates some primitive (B/Γ0)′ ∈ Σ.
A necessary and sufficient condition for the presence of a saturated (B/Γ1)′ ∈ Σ with
(B/Γ1)′ � (B/Γ)′ is the finiteness of the fundamental group π1(Y ) of a minimal model
Y of (B/Γ)′. The third chapter characterizes the saturated and primitive (B/Γ)′ ∈ Σ of
non-positive Kodaira dimension κ(B/Γ)′ ∈ {−∞, 0}. If β : X = (B/Γ)′ → Y blows down
disjoint smooth rational curves and D := X \ (B/Γ) is the toroidal compactifying divisor
of X, the relative biholomorphism group Aut(X,D) is shown to be finite and isomorphic
to Aut(Y, β(D)).

Besides, the covering relations among smooth toroidal compactifications (B/Γ)′, the
thesis discusses the number of the cusps and the number of the non totally geodesic
punctured spheres Li \ D ⊂ B/Γ for smooth (B/Γ)′, whose minimal model Y admits a
ruling r : Y → B with an elliptic base B. The main tool for studying the aforementioned
numerical invariants is the logarithmic Bogomolov-Miyaoka-Yau equality for a pair (X,D),
consisting of a smooth toroidal compactification X = (B/Γ)′ and its toroidal compactifying
divisor

D := X \ (B/Γ) =
k∑
j=1

Dj

with smooth elliptic irreducible components Dj . If β : X → Y is the blow down of the
smooth irreducible rational (−1)-curves Li ' P1(C) ' S2, 1 ≤ i ≤ s on X = (B/Γ)′ to
a minimal ruled surface r : Y → B with elliptic base B then Cj := β(Dj) are shown to
be smooth elliptic curves, on which the ruling r : Y → B restricts to finite unramified
coverings r|Cj : Cj → B of degree dj ∈ N. If dj = 1 for all 1 ≤ j ≤ k and all Cj are
sections of r : Y → B, the logarithmic Bogomolov-Miyaoka-Yau equality for (X,D) is
expressed by the intersection numbers Li.D for 1 ≤ i ≤ s. When there is at least one
dj > 1, the logarithmic Bogomolov-Miyaoka-Yau equality for (X,D) is expressed by Li.D
for 1 ≤ i ≤ s and by the self-intersection numbers C2

j for 1 ≤ j ≤ k. That allows to
derive an inequality on Li.D for 1 ≤ i ≤ s. In either case is established the existence of
a punctured sphere Li \D ⊂ B/Γ, which is not totally geodesically embedded in B/Γ. As
another consequence of the logarithmic Bogomolov-Miyaoka-Yau equality are derived lower
bounds on the number k of the cusps of B/Γ, depending on the existence, respectively, the
non existence of dj > 1. For comparatively small k are obtained lower bounds µk ≥ 2 on
the number of the non totally geodesic Li \D ⊂ B/Γ in either case.
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Let us consider briefly few works of other authors, related to the original results of the
thesis. The covering relations between quotients of B by lattices Γ < U(1, 2) are studied by
Uludağ, Stover, Di Cerbo and Stover, etc. Uludağ constructs an infinite series of ramified
coverings of singular ball quotients, which are birational to the projective plane P2(C). In
[45] Stover shows that there are exactly two singular non-compact ball quotients B/Γ1,
B/Γ2 of minimal invariant volume and any smooth non-compact B/Γ of minimal volume
or, equivalent, of minimal Euler number 1, is a covering of B/Γ1 or B/Γ2 of degree 72.
Di Cerbo and Stover’s [18] establishes that there are five ball quotients B/Γj , 1 ≤ j ≤ 5
with smooth toroidal compactifications (B/Γj)′ and Euler number e(B/Γj) = 1. One of
them, B/Γ1 = B/ΓHir is Hirzebruch’s example from [25] with an abelian minimal model
AHir. The remaining ones - B/Γ2, . . . ,B/Γ5 are birational to bi-elliptic surfaces. In [16] Di
Cerbo and Stover show that any Galois covering ζG : A→ AHir = A/G with a finite fixed
point free group G is associated with an unramified G-Galois covering

ζ ′G : B/ΓG −→ B/ΓHir = (B/ΓG)/G

of ball quotients. The considerations of Chapter 3 generalize the aforementioned result.
As an application of the correspondence between the unramified finite Galois coverings of
AHir and the unramified finite Galois coverings of B/ΓHir, [16] shows that for any n ∈ N
there exist non biholomorphic ball quotients B/Γ1, . . . ,B/Γn with one and a same toroidal
compactification (B/Γ1)′ = (B/Γ2)′ = . . . = (B/Γn)′. In [17] Di Cerbo and Stover construct
a series (B/Γn)′ of smooth toroidal compactifications with Euler numbers e(B/Γn) =
n and bi-elliptic minimal models. Finite unramified coverings of Hirzebruch’s example
(B/ΓHir)

′ are used in Stover’s [46], towards a construction of infinite series (B/Γn,1)′,
(B/Γn,2)′ of smooth toroidal compactifications. The Euler numbers e(B/Γn,1) and the
numbers ν(B/Γn,1) of the cusps of B/Γn,1 tend to ∞ as n→∞. The second series B/Γn,2
has lim

n→∞
e(B/Γn,2) = ∞ and bounded ν(B/Γn,2). Making use of Deligne-Mowtow’s non-

arithmetic examples from [9], Stover obtains a series B/Γn,3 with linear growth of e(B/Γn,3)
and ν(B/Γn,3) with respect to n.

All smooth compact ball quotients B/Γ are known to be of general type. Hirzebruch’s
[25] and Holzapfels’s [28], [29] provide examples of smooth toroidal compactifications
(B/Γ)′ with abelian minimal model. Momot’s [37] constructs smooth toroidal compactifi-
cations (B/Γ)′ of Kodaira dimension κ(B/Γ)′ = 1. Di Cerbo and Stover’s [17] establishes
the existence of smooth toroidal compactifications (B/Γ)′ with a bi-elliptic minimal model.
The majority of the smooth toroidal compactifications are of general type. In [29] Holzapfel
shows that any smooth toroidal compactification (B/Γ0)′ with abelian minimal model has
a smooth finite ramified cover (B/Γ)′ of general type. The existence of smooth toroidal
compactifications (B/Γ)′ of Kodaira dimension κ(B/Γ)′ = −∞ is an open problem. Non-
toroidal rational compactifications of ball quotients are studied by Holzapfel, Pineiro and
Vladov in [27] and by Uludağ in [47]. Part of these compactifications have isolated cyclic
quotient singularities. Kasparian and Kotzev’s [30] provides a ball quotient compactifi-
cation with isolated cyclic quotient singularities, which is birational to a minimal ruled
surface with an elliptic base. Chapter 4 of the thesis establishes various numerical restric-
tions on the smooth toroidal compactifications X = (B/Γ)′, whose minimal model Y is a
ruled surface r : Y → B with an elliptic base B. That questions the existence of such B/Γ.



5

The ball quotient surfaces B/Γ and their compactifications generalize naturally the
Riemann surfaces of genus ≥ 2, which are smooth compact quotients of the unit disc
∆ = {t ∈ C | |t| < 1}. Another motivation for studying B/Γ is the presence of moduli spaces
of complex projective varieties, which are ball quotients. Let N be a complex manifold.
Fixing the structure of a real analytic manifold on N and varying the complex structure
on N, one obtains a family π : N→M over a complex analytic variety M, parameterizing
the isomorphism classes of the complex structures on N. Under some additional technical
restrictions, M is called a moduli space of N. Let

V := {a = (a1, . . . , a4) ∈ C4 | a1 + . . .+ a4 = 0} ' C3

and
Vo := {a ∈ V | ai 6= aj , ∀1 ≤ i 6= j ≤ 4}.

Any point a ∈ Vo is associated with a smooth Picard curve

C3(a1, . . . , a4) :=

{
x = [x0 : x1 : x2] ∈ P2(C)

∣∣∣x0x
3
2 =

4∏
i=1

(x1 − aix0)

}
,

which is of genus 3. For any permutation σ ∈ S4, C3(a1, . . . , a4) and C3(aσ(1), . . . , aσ(4))
coincide. If a′ = (a′1, . . . , a

′
4) = λa = (λa1, . . . , λa4) for some λ ∈ C∗ then C3(a′1, . . . , a

′
4) is

isomorphic to C3(a1, . . . , a4). Thus, the open subset

Mo := (Vo/S4)/C∗ = (Vo/C∗)/S4 ⊂ (V/C∗)/S4 = P(V )/S4 = P2(C)/S4

of the singular projective variety P2(C)/S4 parameterizes the isomorphism classes of the
smooth Picard curves. In [26] Holzapfel shows that Mo = B/Γo is a quotient of the
complex 2-ball B by a lattice Γo < U(1, 2). The closure Cl(Mo) = P2(C)/S4 is a singular
rational variety. The points of Cl(Mo) \Mo parameterize degenerate, singular complex
plane projective curves. Another example of a moduli space, covered by B, is provided by
Dolgachev and Kondo’s [20]. Let pi := [ai : 1] ∈ P1(C), 1 ≤ i ≤ 5 be five different points
on the projective line and

C(p1, . . . , p5) :=

{
x = [x0 : x1 : x2] ∈ P2(C)

∣∣∣x6
0 = x0

5∏
i=1

(x1 − aix2)

}
.

The cyclic group C5 = 〈e
2πi
5 〉 =

{
e

2πis
5

∣∣∣ 0 ≤ s ≤ 4
}

of order 5 acts on P2(C) by the rule

C5 × P2(C) −→ P2(C),
(
e

2πis
5 , [x0 : x1 : x2]

)
7→
[
e

2πis
5 x0 : x1 : x2

]
and leaves invariant C(p1, . . . , p5) for all p1, . . . , p5 ∈ P1(C). The double cover

Ŝ(p1, . . . , p5) −→ P2(C),

ramified over C(p1, . . . , p5) ⊂ P2(C) has a K3 resolution of the singularities S(p1, . . . , p5),
endowed with an action of C5. The moduli space M of such S(p1, . . . , p5) is isomorphic
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to the moduli space M1 of the subsets {p1, . . . , p5 | pi 6= pj , ∀1 ≤ i 6= j ≤ 5} ⊂ P1(C) and
M1 = B/Γ1 is shown to be a ball quotient.

The thesis consists of an introduction, four chapters and a bibliography of 50 titles.
The Chapters 1 and 2 collect some preliminaries on Chern numbers of algebraic surfaces,
the logarithmic Bogomolov-Miyaoka-Yau equality, characterizing the smooth toroidal com-
pactifications (B/Γ)′ of ball quotients B/Γ and the construction of (B/Γ)′. The last two
chapters cover the original results of the author from [6], respectively, [7]. More precisely,
Chapter 1 starts by recalling the notions of a holomorphic vector bundle E over a com-
plex manifold M and the transition functions of E . It explains why the holomorphic line
bundles on M are classified by the cohomology group H1 (M,O∗) . The next topic under
consideration is the bijective correspondence between the divisors and the line bundles
on M. Chapter 1 recalls the notions of a Hermitian metric h on a holomorphic vector
bundle π : E → M and a connection D on E . Making use of Cartan’s method of moving
frames (cf.[21]), it focuses on the unique connection on π : E → M, which is compati-
ble with the Hermitian metric h and the complex structure on E . The curvature matrix
Θ of this connection with respect to an orthonormal frame of E is described in detail.
The Enriques-Kodaira classification of the minimal smooth complex projective surfaces is
briefly recalled. The Chern classes of holomorphic vector bundles are introduced as the co-
homology classes of the elementary symmetric polynomials of the entries of the curvature
matrix Θ. That allows to define the Chern numbers of a smooth complex projective sur-
face and to formulate the Bogomolov-Miyaoka-Yau equality, characterizing the compact
smooth ball quotients B/Γ, as well as the logarithmic Bogomolov-Miyaoka-Yau equality,
describing the smooth toroidal compactifications (B/Γ)′ and their toroidal compactifying
divisors D := (B/Γ)′ \ (B/Γ).

The second chapter is devoted to the construction of the toroidal compactification
(B/Γ)′ of a quotient B/Γ of the complex 2-ball B by a lattice Γ < U(1, 2). Starting from
a scratch, it describes the transitive action of U(1, 2) on B, ∂B and P2(C) \ (B ∪ ∂B),
identifying the corresponding stabilizers with U1 × U2, a maximal parabolic subgroup P
of U(1, 2) and, respectively, with U(1, 1) × U1. Further, P is shown to be a maximal
proper subgroup of U(1, 2). The group P is solvable and, therefore, a minimal parabolic
subgroup of U(1, 2). The second chapter describes the refined Langlands decomposition
of the standard maximal parabolic subgroup Po := StabU(1,2)(1, 0) < U(1, 2), stabilizing
(1, 0) ∈ ∂B = {z = (z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}. That allows to discuss the horospher-
ical decomposition of B, associated with Po, as well as the corresponding Siegel domain
realization of B. A maximal parabolic subgroup P of U(1, 2) is Γ-rational if Γ ∩ P is a
lattice of P. Let us denote by MPar(Γ) the set of the Γ-rational maximal parabolic sub-
groups of U(1, 2) and consider the centre Z(NP ) of the unipotent radical NP of some
P ∈ MPar(Γ). Then Γ∩Z(NP ) is a lattice of the real 1-dimensional Lie group Z(NP ) and
the quotient B/[Γ∩Z(NP )] is a family of punctured discs of variable radii, parameterized
by the complex line NP /Z(NP ) ' C. Adjoining the origins of these discs, one obtains the
partial compactification (B/[Γ ∩ Z(NP )])′ at P ∈ MPar(Γ). Note that the complex ana-
lytic space (B/[Γ ∩ Z(NP )])′ is not compact, regardless of its name. The lattice Γ acts by
conjugation on MPar(Γ) with finitely many orbits, corresponding to the Γ-cusps ∂ΓB/Γ.
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For any γ ∈ Γ the conjugation

ψγ : B/[Γ ∩ Z(NP )] −→ B/[Γ ∩ Z(NγPγ−1)]

by γ extends to a biholomorphism

ψγ : (B/[Γ ∩ Z(NP )])′ −→
(
B/[Γ ∩ Z(NγPγ−1)]

)′
and provides a Γ-action on the disjoint union∐

P∈MPar(Γ)

(B/[Γ ∩ Z(NP )])′ (0.1)

of the partial compactifications at the Γ-rational maximal parabolic subgroups P <
U(1, 2). The toroidal compactification (B/Γ)′ is defined as the Γ-quotient of (0.1). Let
β : X = (B/Γ)′ → Y be a blow down of the smooth rational (−1)-curves Li ' P1(C) ' S2,
1 ≤ i ≤ s on a smooth toroidal compactification X = (B/Γ)′ and D := X \ (B/Γ) be the
toroidal compactifying divisor of B/Γ. Chapter 2 explains briefly why the intersection
numbers Li.D ≥ 4 for all 1 ≤ i ≤ s with equality Li.D = 4 if and only if the punctured
sphere Li \D is totally geodesically embedded in B/Γ.

The third chapter reflects the results of the article [6]. More precisely, it discusses the
bijective correspondence between the unramified coverings f : X2 = (B/Γ2)′ → (B/Γ1)′ =
X1 of degree d of smooth toroidal compactifications and the unramified coverings ϕ :
Y2 → Y1 of degree d of their minimal models, which are compatible with a finite sequence
ρ2 : X2 → Y2 of blow downs. Let f : M → f(M) be a surjective holomorphic map of
complex manifolds, N be a complex analytic subspace of M or an open subset of M and
f(N) ∩ f(M \N) = ∅. As a preparation, it suffices two of the maps

f : N −→ f(N), f : M \N −→ f(M \N), f : M −→ f(M)

to be unramified coverings of degree d ∈ N, in order the third one to be an unramified
covering of the same degree d. Let f : X → X ′ be an unramified covering of degree d

of smooth projective surfaces and D =
k∐
j=1

Dj be a divisor on X with disjoint smooth

irreducible components Dj , such that f : D → f(D) is an unramified covering of degree
d. Then f : Dj → f(Dj) are shown to be unramified coverings of degree dj of smooth
curves f(Dj) and f(Dj) intersect each other if and only if they coincide. For an arbitrary

smooth irreducible rational curve C ′ ⊂ X ′, the complete pre-image f−1(C ′) =
d∐
i=1

Ci turns

to consist of d disjoint smooth irreducible rational curves Ci ⊂ X, on which f restricts
to biholomorphisms f : Ci → C ′, ∀1 ≤ i ≤ d. Let ρ1 : X1 → Y1 be a finite composition
of blow downs and ϕ : Y2 → Y1 be an unramified covering of degree d. Then the fibered
product commutative diagram

X2 = X1 ×Y1 Y2 Y2

X1 Y1

?

f

-ρ2

?

ϕ

-ρ1

(0.2)
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provides a surface X2 with an unramified covering f : X2 → X1 of degree d and a
finite composition of blow downs ρ2 : X2 → Y2, such that f and ϕ are compatible with
ρ2. Moreover, for any (possibly reducible) divisors D(i) ⊂ Xi, which do not contain an
irreducible component of the exceptional divisor of ρi : Xi → Yi, f : D(2) → D(1) is an
unramified covering of degree d if and only if the restriction ϕ : ρ2

(
D(2)

)
→ ρ1

(
D(1)

)
is

an unramified covering of degree d. In particular, if ρ1 : X1 = (B/Γ1)′ → Y1 is the blow
down of the smooth irreducible rational (−1)-curves on a smooth toroidal compactification
X1 = (B/Γ1)′ then any unramified covering ϕ : Y2 → Y1 of degree d pulls back X1 to a
smooth toroidal compactification X2 = (B/Γ2)′ with unramified coverings f : X2 → X1,
f : B/Γ2 → B/Γ1 of degree d. Conversely, suppose that ρ1 : X1 → Y1 is a finite composition
of blow downs and f : X2 → X1 is an unramified covering of degree d. Then the Stein
factorization of ρ1f : X2 → Y1 provides a fibered product commutative diagram (0.2),
where ρ2 is a finite sequence of blow downs, ϕ is an unramified covering of degree d and
f, ϕ are compatible with ρ2. As a result, any unramified covering f : X2 → X1 = (B/Γ1)′

of degree d of a smooth toroidal compactification X1 = (B/Γ1)′ and any finite composition
of blow downs ρ1 : X1 → Y1 onto a minimal surface Y1 induce a commutative diagram
(0.2), where X2 = (B/Γ2)′ is a smooth toroidal compactification, ρ2 : X2 → Y2 is a finite
sequence of blow downs onto a minimal surface Y2 and the morphisms ϕ : Y2 → Y1,
ϕ : ρ2(X2 \ (B/Γ2))→ ρ1(X1 \ (B/Γ1)) are unramified coverings of degree d. In such a way,
the first section of Chapter 3 establishes that an arbitrary finite unramified covering of the
source or of the target of ρ1 : X1 = (B/Γ1)′ → Y1 induces a fibered product commutative
diagram (0.2). The second section of the third chapter shows that the compatible finite
unramified coverings by the source or by the target of ρ2 : X2 = (B/Γ2)′ → Y2 give rise to a
fibered product commutative diagram (0.2). More precisely, let ρ2 : X2 = (B/Γ2)′ → Y2 be
a finite composition of blow downs from a smooth toroidal compactification X2 = (B/Γ2)′

to a minimal surface Y2 and f : X2 → f(X2) = X1 be an unramified covering of degree d,
which is compatible with ρ2 and restricts to an unramified covering f : B/Γ2 → f(B/Γ2)
of degree d. The thesis shows that the aforementioned assumptions suffice for the existence
of a fibered product commutative diagram (0.2). Conversely, if X2 = (B/Γ2)′ is a smooth
toroidal compactification with toroidal compactifying divisor D(2) := X2 \ (B/Γ2), ρ2 :
X2 = (B/Γ2)′ → Y2 is a finite sequence of blow downs to a minimal surface Y2 and
ϕ : Y2 → ϕ(Y2) is an unramified covering of degree d, which is compatible with ρ2 and
restricts to an unramified covering ϕ : ρ2

(
D(2)

)
→ ϕρ2

(
D(2)

)
of degree d, then there is a

fibered product commutative diagram (0.2). The final, third section of the third chapter
interprets the non-trivial finite unramified coverings f : X2 = (B/Γ2)′ → (B/Γ1)′ = X1 of
smooth toroidal compactifications, subject to (0.2) as a partial order X2 � X1 on the set S
of the smooth toroidal compactifications of non-compact ball quotients B/Γ. The maximal
elements of S with respect to � are called saturated, while the minimal ones are referred
to as primitive. Any smooth toroidal compactification X = (B/Γ)′ is shown to dominate
a primitive one X0 = (B/Γ0)′. In a vast distinction, a smooth toroidal compactification
X = (B/Γ)′ is dominated by a saturated X1 = (B/Γ1)′ ∈ S if and only if X has finite
fundamental group π1(X). The last section of Chapter 3 discusses the saturation and the
primitiveness of the smooth toroidal compactifications X = (B/Γ)′ of Kodaira dimension
κ(X) ∈ {−∞, 0}. It establishes that such X = (B/Γ)′ is saturated if and only if X is a
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rational surface or X has a K3 minimal model. If X = (B/Γ)′ is a rational surface or has
an Enriques minimal model Y, then X is primitive. Let ρ : X = (B/Γ)′ → Y be a finite
composition of blow downs, which transforms a smooth toroidal compactification onto an
abelian or a K3 minimal surface Y, and D := X \ (B/Γ) be the toroidal compactifying
divisor of B/Γ. Then X is non-primitive if and only if Y admits a non-identical fixed
point free automorphism g : Y → Y, which leaves invariant ρ(D). Moreover, in the case
of a K3 surface Y, g is to be of order 2. After observing that in some cases the non
primitiveness of X = (B/Γ)′ concerns the presence of a fixed point free element of the
relative biholomorphism group Aut(Y, ρ(D)), the last section of Chapter 3 establishes

that if the exceptional divisor E(ρ) =
s∐
i=1

Li of ρ : X = (B/Γ)′ → Y is a disjoint union

of smooth irreducible rational (−1)-curves Li, then the relative biholomorphism groups
Aut(X,D) = Aut(X,D,E(ρ)) and Aut(Y, ρ(D)) = Aut(Y, ρ(D), ρ(D)sing) admit a natural
isomorphism, transforming the fixed point free entries of Aut(X,D) onto the fixed point
free elements of Aut(Y, ρ(D)). Moreover, Aut(X,D) is shown to be a finite group.

The final, fourth chapter of the thesis presents the results of the article [7]. Let us
suppose that β : X = (B/Γ)′ → Y is a blow down of the smooth irreducible rational (−1)-
curves Li, 1 ≤ i ≤ s on a smooth toroidal compactification X = (B/Γ)′ to a minimal ruled

surface r : Y → B with an elliptic base B and D := X \ (B/Γ) =
k∑
j=1

Dj be the toroidal

compactifying divisor of B/Γ. Then Cj := β(Dj) are shown to be such smooth irreducible
elliptic curves on Y that the restrictions r : Cj → B are finite unramified coverings of
degree dj ∈ N. Let B0 ⊂ Y be a section of r : Y → B with minimal self-intersection
number δ = B2

0 . By a theorem of Nagata from [40], δ ≤ g(B) = 1 does not exceeed the
genus g(B) = 1 of B. For δ < 0 any smooth irreducible elliptic curve Cj ⊂ Y is shown in
[7] to be a section of r : Y → B. In the case of δ = B2

0 ∈ {0, 1}, there could exist smooth
irreducible elliptic curves Cj ⊂ Y with deg

[
r|Cj : Cj → B

]
= dj > 1 and C2

j = 0. Chapter
4 reduces the logarithmic Bogomolov-Miyaoka-Yau equality for (X,D) to

s∑
i=1

(Li.D − 4) =
k∑
j=1

C2
j .

If all Cj are sections of r : Y → B, this is proved to be equivalent to

(k − 1)

[
s∑
i=1

(Li.D − 4)

]
=

s∑
i=1

Li.D(Li.D − 1).

When deg
[
r|Cj : Cj → B

]
= dj > 1 for at least one 1 ≤ j ≤ k, there follows the inequality

(k − 2)

[
s∑
i=1

(Li.D − 4)

]
≥

s∑
i=1

(Li.D − 1)(Li.D − 2).

As a result, at least one of the punctured spheres Li \ D, arising from a (−1)-curve
Li ' P1(C) ' S2 on X = (B/Γ)′, is to be non totally geodesically embedded in B/Γ. If all
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Cj are sections of r : Y → B then the number k of the cusps of B/Γ is shown to be k ≥ 15.
The Euler number of B/Γ turns to be e(B/Γ) = s ≥ 14. For any 15 ≤ k ≤ 62 is computed
an explicit lower bound µk ≥ 2 on the number of the non totally geodesic Li \D ⊂ B/Γ.
In a similar vein, if there exists 1 ≤ j ≤ k with deg

[
r|Cj : Cj → B

]
= dj > 1 and C2

j = 0
then B/Γ is proved to have k ≥ 12 cusps and Euler number e(B/Γ) = s ≥ 11. For any
12 ≤ k ≤ 44 are obtained explicit lower bounds µk ≥ 2 on the number of the non totally
geodesic Li \D ⊂ B/Γ.
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Scientific Contributions

According to the suthor’s opinion, the scientific contributions of the thesis are as
follows:

1. Explicit construction of a bijective correspondence between the finite unramified
coverings X1 = (B/Γ1)′ → X = (B/Γ)′ of a smooth toroidal compactification X =
(B/Γ)′ and the finite unramified coverings Y1 → Y of a minimal model Y of X.

2. Explicit construction of a bijective correspondence between the finite unramified
coverings X = (B/Γ)′ → X1 = (B/Γ1)′ by a smooth toroidal compactification X =
(B/Γ)′, which are compatible with a sequence ρ : X → Y of blow downs to a minimal
surface Y and the finite unramified coverings Y → Y1, compatible with ρ.

3. The finite unramified coverings X2 = (B/Γ2)′ → X1 = (B/Γ1)′ of smooth toroidal
compactifications, which are compatible with a sequence ρ2 : X2 → Y2 of blow
downs to a minimal surface Y2 and induce finite unramified coverings Y2 → Y1 of
the minimal model Y1 of X1 provide a partial order in the set S of the smooth
toroidal compactifications (B/Γ)′ of the quotients B/Γ of the complex 2-ball B by
a lattice Γ < U(1, 2). The minimal elements of S are called primitive, while the
maximal ones are saturated. Any X = (B/Γ)′ ∈ S dominates some primitive X0 =
(B/Γ0)′ ∈ S. A smooth toroidal compactification X = (B/Γ)′ is dominated by a
saturated X1 = (B/Γ1)′ if and only if X finite fundamental group π1(X). Making
use of the properties of the minimal projective surfaces Y of non-positive Kodaira
dimension, the thesis characterizes the saturated and the primitive X = (B/Γ)′ ∈ S
with minimal model Y.

4. Let X = (B/Γ)′ be a smooth toroidal compactification with toroidal compactifying
divisor D := X \ (B/Γ) and β : X → Y be a finite sequence of blow downs to a

minimal surface Y, whose exceptional divisor E(β) =
s∐
i=1

Li has disjoint irreducible

components Li. The group Aut(X,D) = Aut(X,D,E(β)) is shown to be finite and
isomorphic to Aut(Y, β(D)) = Aut(Y, β(D), β(D)sing).

5. Let β : X = (B/Γ)′ → Y be a blow down of smooth irreducible rational (−1)-curves
Li, 1 ≤ i ≤ s on a smooth toroidal compactification X = (B/Γ)′ to a minimal ruled

surface r : Y → B with an elliptic base B and D := X \ (B/Γ) =
k∑
j=1

Dj be the

toroidal compactifying divisor of B/Γ with smooth elliptic irreducible components
Dj . Chapter 4 obtains explicitly the logarithmic Bogomolov-Miyaoka-Yau equality
for (X,D) in terms of the intersection numbers Li.D and the self-intersection num-
bers β(Dj)

2 of the smooth elliptic curves β(Dj) ⊂ Y. If all β(Dj) are sections of
r : Y → B, then the logarithmic Bogomolov-Miyaoka-Yau equality for (X,D) is
expressed only by Li.D, 1 ≤ i ≤ s. When r|β(Dj) : β(Dj)→ B is of degree dj > 1 for
at least one 1 ≤ j ≤ k, the logarithmic Bogomolov-Miyaoka-Yau equality for (X,D)
implies an inequality on Li.D for 1 ≤ i ≤ s.
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6. By the means of the equality, respectively, the inequality on Li.D, 1 ≤ i ≤ s,
described in 5. are obtained lower bounds on the number k of the cusps of B/Γ,
which coincides with the number of the smooth elliptic irreducible components Dj

of the toroidal compactifying divisor D = X \ (B/Γ).

7. Any ball quotient B/Γ with smooth toroidal compactification (B/Γ)′, whose minimal
model is a ruled surface r : Y → B with an elliptic base B is shown to contain a non
totally geodesic punctured sphere Li \D ⊂ B/Γ, arising from a smooth irreducible
rational (−1)-curve Li ' P1(C) ' S2 on (B/Γ)′.

8. Let β : X = (B/Γ)′ → Y be a blow down of smooth irreducible rational (−1)-curves
Li, 1 ≤ i ≤ s on a smooth toroidal compactification X = (B/Γ)′ to a minimal ruled

surface r : Y → B with an elliptic base B and D = X \ (B/Γ) =
k∑
j=1

Dj be the

toroidal compactifying divisor of B/Γ. If r|β(Dj) : β(Dj) → B are biholomorphisms
for all 1 ≤ j ≤ k, let us assume that k ≤ 62. If there exists 1 ≤ j ≤ k with

deg
[
f |β(Dj) : β(Dj)→ B

]
> 1, suppose that k ≤ 44. Chapter 4 of the thesis provides

explicit lower bounds µk ≥ 2 on the number of the non totally geodesic Li\D ⊂ B/Γ,
depending on deg

(
r|β(Dj)

)
= 1, ∀1 ≤ j ≤ k or on the existence of deg

(
r|β(Dj)

)
> 1

for some 1 ≤ j ≤ k.
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Approbation of the results

The results of the thesis are published in the following two articles:

� Beshkov P., Kasparian A., Sankaran G.: Saturated and primitive smooth compact-
ifications of ball quotients, Ann. Sofia Univ., Fac. Math. and Inf., 106, 2019,
53–77.

� Beshkov P., Kasparian A.: Lower bounds on the number of cusps of a toroidal
compactification with a ruled minimal model, C. R. Acad. Bulg. Sci., 74(8), 2021,
1120–1127.

The scientific contributions of the thesis are reported at:

1. National Coding Seminar ”Professor Stefan Dodunekov”, 2018.

2. National Coding Seminar ”Professor Stefan Dodunekov”, 2019.

3. Spring Scientific Session of Faculty of Mathematics and Informatics at Sofia Univer-
sity ”St. Kliment Ohridski”, 2019.

4. Spring Scientific Session of Faculty of Mathematics and Informatics at Sofia Univer-
sity ”St. Kliment Ohridski”, 2021.
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Declaration of the authenticity of the presented results

I declare that the presented Ph.D. thesis contains original results, obtained from re-
search conducted by myself (with the help and guidance of my scientific advisor and
co-authors). The results obtained by other scientists have been thoroughly and clearly
cited in the bibliography.

Signature:

(Pancho Georgiev Beshkov)
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