
Porous Medium Flow Simulations using
Massively Parallel MLMC algorithm

Nikolay Shegunov

Summary

From the faculty of Mathematics and Informatics, Sofia University, a thesis
presented for the degree of Doctor of Philosophy in Informatics.

Supervised by:

assoc. prof. dr. Petar Armyanov, Sofia University.

2021

0. Contents
1 Introduction 2

1.1 Motivation . 2
1.2 Stochastic computations . 3
1.3 Modern high-performance computing systems 4
1.4 Aims and scope of this work . 5

2 Mathematical models 7
2.1 Random sampling algorithms 7
2.2 Finite volume numerical method 8
2.3 Multilevel Monte Carlo algorithm 8
2.4 Porosity and Permeability . 11

3 Multilevel Monte Carlo for porous medium flows 13
3.1 Stochastic Laplace equation . 13

3.1.1 Coarse grain for Multilevel Monte Carlo 14
3.1.2 Simulation results . 14

3.2 Stochastic Convection-Reaction-Diffusion equation 16
3.2.1 Coarse grain for Multilevel Monte Carlo 17
3.2.2 Simulation results . 17

4 Parallel scheduling strategies for MLMC algorithm 19
4.1 MLMC algorithmic procedure 19
4.2 Performance parameters and efficiency measurement 21
4.3 Scheduling strategies . 23

4.3.1 Dynamic strategy . 23
4.3.2 Interrupted Dynamic strategy 25
4.3.3 Job queue Dynamic strategy 26
4.3.4 Experiments . 26

5 Bibliography 31

1

1. Introduction
1.1 Motivation

Uncertainty is a part of many contemporary scientific models. With a grow-
ing demand for more accurate and predictive models, stochastic modeling is
a rapidly growing area in applied mathematics and scientific computing. To
name just a few applications, consider stochastic gradient descent methods -
an approach well adopted in neural networks and machine learning. Another
area, where uncertainty quantification is adopted, is computational finance
- in the pricing of financial derivatives and quantitative risk management.
Uncertainty Quantification (UQ) is also well established in many engineering
and science models. It has led to new SIAM journals and associated annual
conferences [1]. There are even areas of research, that would be impossible
without stochastic modeling. Porous media flow modeling is great example of
such. Those models are of great importance for many societal, environmental,
and industrial problems, such as drug delivery, metal composite materials, ra-
dioactive waste modeling, filtration process and many more. As stochastic
models, simulations of flow in porous medium requires an extreme computa-
tional power to obtain reliable simulations. Hopes are, that with the arrival
of exa-capable computers the research of that praticular area will be boosted.
New numerical simulation algorithms, capable to utilize the computational
power of the coming High-Performance Computing (HPC) systems will be
needed. To answer this demand, several different numerical algorithms have
been developed, each has own pros and cons. A well-established algorithmic
scheme that can utilize the parallel capabilities of the modern HPC systems, is
the well known Monte Carlo (MC) class of algorithms. Those computational
methods rely on repeated random sampling to obtain numerical results. This
simple idea is used in many models, where it is difficult to impose some kind of
physical limitations. It is even applicable to deterministic models, where one
can introduce randomness into the model to solve it. Monte Carlo algorithms
are important in computational physics, physical chemistry, and related ap-
plied fields. Employed in industry, those algorithms are extremely useful for
problems involving simulations of complex systems - such as studies of fluids,
composite materials, strongly coupled solids cellular structures and others.
Unfortunately applying a Monte Carlo algorithm is not very practical for
models involving computational fluid dynamics. In that field, the problems
have extreme dimensions. For such problems faster methods are needed. To

2

overcome this, a generalization of the MCmethod has attracted great scientific
interest in the last two decades. The generalized method, called Multilevel
Monte Carlo (MLMC), can achieve much faster simulation time compared to
the classical MC method. Its first use was for parametric integration for the
expected value of E[f(x, λ)] where x is a finite-dimensional random variable
and λ is a parameter, by Heinrich, in the beginning of the 21-st century [2,
3, 4]. Nowadays it can be found in various applications [1].

The idea of the algorithm is to divide the problem into different sub-problems,
called levels. Each level is characterized with computational cost. Those levels
act as an approximations to the problem, that are much faster to compute
than computing the original problem. Combined appropriately it leads to
significant computational cost reduction. That novel algorithm comes with
a variety of interesting problems. The construction of the algorithm requires
proper arrangement and definition of the levels. Another important aspect is
the parallelization of the algorithm. It turns out that in its most general form
the optimal scheduling of the MLMC is an NP-complete problem [5].

In this work the Multilevel Monte Carlo algorithm is considered for porous
medium flow simulation. For such problems, both proper level arrangement
and the optimal scheduling strategy are considered. The aim is to provide an
efficient parallel variant of that algorithm. As such the algorithm can be used
for realistic simulation with the help of High-Performance Computing (HPC)
systems.

Simulation of a flow in a porous medium requires solving Stochastic Partial
Differential Equations (SPDEs). Those differential equations extend the idea
of partial differential equations, by incorporating uncertainty in the model,
for example, as an input parameter, or as a coefficient parameter. Those
uncertainties are modeled as stochastic processes with a probability distribu-
tion, from witch samples can be drawn. The expected value of some random
variable then can be approximated by taking the empirical mean (the sample
mean) of independent samples of the variable. Quantifying the uncertainty
leads to remarkably large dimensional computational problems.

1.2 Stochastic computations

Many real World problems are subject to uncertainty due to some kind of
limitations such as, but not limited to, physical phenomena, expensive mea-
surements, or inability to obtain data. Uncertainty can be included into
mathematical models and experimental measurements in various contexts:
parameter uncertainty - which comes from the model parameters that are

3

inputs to the computer model; structural uncertainty, or model inade-
quacy - which comes from the lack of knowledge of the underlying physics
describing the problem. An essential matter is to parameterize the input un-
certainty by a set of a finite number of random variables. Extensive efforts
have been devoted in order to model the uncertainty accurately.

The literature presents several ways of making the aforementioned. The pop-
ular choice for parameterization is Karhunen-Loeve expansion [6]. Other pos-
sible means of representation is by employing forward and inverse fast Fourier
transforms over a circulant matrix [7], or to use Cholesky decomposition [8].
In the models considered in this work a circulant embedding approach has
been chosen. It offers fast effective way for sample generation.

1.3 Modern high-performance computing
systems

Modern high-performance computing clusters, utilize a hybrid hardware mem-
ory model (see figure 1.1). Each node consists of a SMP unit. Distributed
memory parallelization is done through the node interconnection. To achieve
very high throughput and very low latency for the node to node communica-
tion an InfiniBand networks are used.

SMP NODE SMP NODE SMP NODE SMP NODE

Node Interconnect

Figure 1.1: Hybrid Architecture

For this hardware model, the main resources, that programs have to utilize,
are the processors and memory. This means a parallel program can distribute
work across different processors and distribute data among different nodes and
also between the host memory (main memory) and device memory (graphical
memory). The program can also communicate locally within a single sym-
metric multi-processing (SMP) node or globally between different SMP nodes.
The established programming framework for such systems is called Message
Passing Interface (MPI). The MPI is a standardized actor-like model, that
uses a message-passing protocol to organize communication between nodes

4

[9]. It is designed to function on a wide variety of parallel computing archi-
tectures. The standard defines the syntax and semantics of library routines.
Notable implementations include Open MPI and Intel implementation of the
standard. As a communication protocol it offers both point-to-point and col-
lective communication. The processes are grouped in communicators. Each
process can communicate with each process within a communicator. Processes
from different communicators can not communicate. Along MPI library im-
plementations, for simulations of different industrial processes, an additional
libraries are necessary. The most important are the libraries that implements
efficient parallel linear algebra solvers. There exist a large number of such spe-
cialized libraries, as it is an important part in many models, not only limited
to HPC, such as: LAPACK, Eigen, Armadillo, SuperLU, etc.. However, few
of them are suitable for massively parallel problems. In the past few years
a rapid development have been done towards such software. Most notably
ones are Deal.ii1 and DUNE2 libraries [10, 11] , OpenFoam (specialized in
Computational Fluid dynamics), Portable, Extensible Toolkit for Scientific
Computation (PETSc)3.

For the models considered, the DUNE library is used, as it offers an easy
way of different PDE discrete scheme implementations and efficient parallel
linear solvers. The library is a modular toolbox for solving partial differential
equations, using grid base methods. The underlying idea of DUNE is the
creation of interfaces, allowing the use of legacy and/or new libraries. It is
written in C++, with heavy use of template meta-programming techniques
and feathers from C++0x standard family. It is also capable of supporting
shared memory, as well as distributed memory computations. The library
consists of core modules and modules build on top of them [12].

1.4 Aims and scope of this work

In this work the Multilevel Monte Carlo algorithm to problems involving
porous medium flows is considered. The aim is to provide an efficient parallel
version of the algorithm, capable of much faster simulations compared to the
classical Monte Carlo approach. As such, the algorithm has to be applicable
for realistic simulation with the help of High-Performance Computing (HPC)
systems. To achieve that goal the following tasks are considered:

• Explore the existing approaches to the problem.
1http://dealii.org/
2https://www.dune-project.org/
3https://www.mcs.anl.gov/petsc/

5

http://dealii.org/
https://www.dune-project.org/
https://www.mcs.anl.gov/petsc/

• Choose effective algorithm for generation of random porous medium
permeability fields.

• Provide an efficient coarsening strategies for the MLMC setting.

• Provide an adequate heuristic algorithm for efficient work scheduling.

• Choose appropriate software for effective implementation in HPC set-
ting.

6

2. Mathematical models
2.1 Random sampling algorithms

An essential problem in uncertainty quantification applications is how to gen-
erate a coordinated random samples by a given covariance matrix from a
multivariate random distribution. A multivariate random distribution is de-
fined completely by the covariance matrix. Most sampling based algorithms,
use this matrix as a basis. Rewind that for two joint distributed random
variables X,Y the covariance is defined as:

cov(X,Y) = E[(X − E[X])(Y − E[Y])] = E[XY]− E[X]E[Y]

The covariance is a measure of the joint variability of two random variables.
Depending on how the random variables are distributed, the covariance may
be positive or negative. The closely related statistical measure correlation is
defined as:

ρX,Y =
cov(X,Y)

σxσy
= E[(X − E[X])(Y − E[Y])]/(σxσy)

The correlation is a measure of how two random variables are related one to
another, i.e. how a change in the value for one of the variables causes a change
in the value of the other.

Let X = (X1, X2, . . . Xn)T is a column vector of random variables, each with
finite variance and expected value. Then the covariance matrix is defined
as a matrix with entries Σi,j = cov(Xi, Xj), and the correlation matrix is
defined as the matrix with entries cov(Xi, Xj)/σxi

σxj
. In order to generate

correlated random variables, the covariance matrix is needed. The idea is to
generate uncorrelated random variables and to find a linear transformation
that correlates them, i.e. find a linear transformation such that the covariance
matrix is diagonalized. An easy way to do this is by Cholesky decomposition
[13, 14, 15, 16]. From a computational standpoint, this method can be
applied to all types of covariance matrices. However, an obscure problem with
covariance matrices is the significant memory requirements. Under certain
assumptions about the random process and sampling at equidistant points an
efficient algorithm can be used over a reduced covariance matrix. It is both

7

faster and memory efficient then the Cholesky decomposition approach. The
idea is to use Fourier transforms to diagonalize the covariance matrix [13,
14].

2.2 Finite volume numerical method

Finite volume method is one of the most versatile methods, frequently used in
computational fluid dynamics. It was developed with the aim to discretize the
equations that describes conservation laws coming from physics. The simplest
example of one dimensional conservation law is the PDE 2.1 [17]:

qt(x, t) + f(q(x, t))x = 0 (2.1)

The conservation laws typically arise most naturally in an integral forms,
stating that for two points x1, x2 for equation 2.1:

d

dt

x2∫
x1

q(x, t)dx = f(q(x2, t))− f(q(x1, t)) (2.2)

each component of q measures the density of some quantity and the above
equation 2.2 states that the total mass of this quantity between any two points
can only change due to the mass flux past the endpoints x1 and x2. If the
total mass is not conserved then the equation 2.2 has to contain source terms.
There are many such conservative systems, unfortunately many of them are
non-linear and they contain contains discontinuities. This discontinuities lead
to computational difficulties. The solution can even become physically incor-
rect because of that [17, 18]. To overcome this, instead of approximating the
derivatives directly, like most of the other methods, finite volume approach
considers the solution within a control volumes called cells. Those volumes
are usually polygons. The unknown solution is approximated by cell average
over the control volume and the flux between the cells is balanced.

2.3 Multilevel Monte Carlo algorithm

In its simple form Monte Carlo algorithm is quite intuitive. Suppose the
expected value of a given quantity needs to be computed. To achieve this,
multiple samples Qi are generated, and the empirical expected value E[Q] is
computed by:

8

E[QM,N] =
1

N

N∑
i=1

Q
(i)
M

where M is characteristic parameter of the underling problem and N denotes
the number of samples. The Root Mean Square error (RMS) is O

(
V [Q]√
N

)
.

Here V [Q] is the variance. This directly means that to achieve accuracy of
ε, requires N = O(ε−2) number of samples to be computed. Here rests the
main weakness of the methods - its computational cost. It may require an
extreme number of costly samples to achieve the desired epsilon precision. One
way to overcome the slow convergence is to use distinct samples, picked very
carefully, to gain a better approximation, namely Quasi-Monte Carlo methods
[1], [19]. A more general strategy to overcome the slow convergence of MC
method is to divide the problem into a combination of cheap fast estimators,
and slow and expensive ones in a proper way for the given problem. Doing
so will improve the convergence of MC. The main point of this idea is to
represent the expected value of interest as a telescopic sum:

Q(ω) = QM0
(ω)︸ ︷︷ ︸

Y0(ω)

+QM1
(ω)−QM0

(ω)︸ ︷︷ ︸
Y1(ω)

+ · · ·+QML
(ω)−QML−1

(ω)︸ ︷︷ ︸
YL(ω)

.

Here each Y (ω) is a standard Monte Carlo estimator and ω is a random vector.
This idea is called Multilevel Monte Carlo and it is particularly useful in the
field of fluid dynamics.

Assume that E[QM] can be made arbitrary close to E[Q] by choosing M
sufficiently large. The goal is to approximate E[Q] by E[QM]. This can be
achieved by computing an estimator Q̂M , and quantifying its accuracy using
the root mean square error.

e(Q̂M) = (E[(Q̂M − E[Q])2])1/2 (2.3)

Then the standard Monte Carlo (MC) estimator is defined as:

Q̂MC
M,N =

1

N

N∑
i=1

QiM (2.4)

where QiM , i = 1, . . . N are independent samples of the unknown quantity
QM . Setting the cost of computing one sample is C(QiM) = O(Mγ), where γ
is positive constant, and expanding the mean square error will yield:

9

e(Q̂MC
M,N)2 = E[(Q̂MC

M,N − E[Q̂MC
M,N] + E[Q̂MC

M,N]− E[Q])2]

= E[(Q̂MC
M,N − E[Q̂MC

M,N])2] + (E[Q̂MC
M,N]− E[Q])2

= V [Q̂MC
M,N] + (E[Q̂MC

M,N]− E[Q])2

(2.5)

Since:

E[Q̂MC
M,N] = E[QM], and V [Q̂MC

M,N] = N−1V [QM]

the error becomes:

e(Q̂MC
M,N)2 = N−1V [QM] + (E[QM]− E[Q])2 (2.6)

In applications involving a PDE, M denotes spatial discretization parameter,
and QM approximates the inaccessible quantity Q. QM is computed by solv-
ing a PDE problem and the second term in equation 2.6 represents the error
of the numerical method used for discretization and has a bias effect on the
estimator.

The extension of the MC to MLMC is quite natural. Let {Ml : l = 0 . . . L} ∈
N be increasing sequence of numbers called levels, with corresponding quan-
tities {QMl

}Ll=0, and s ≥ 2 be coarsening factor, such that Ml = sMl−1, for
l = 0 . . . L. Defining Yl = QMl

− QMl−1
and setting Y0 = QM0 , following

expansion for E[QM] can be formulated

E[QM] = E[QM0
] +

L∑
l=1

E[QMl
−QMl−1

] =

L∑
l=0

E[Yl] (2.7)

The expectation on the finest level is equal to the expectation on the coarsest
level plus the sum of corrections on a difference in expectation on consecu-
tive levels. The terms in equation 2.7 are approximated using standard MC
independent estimators, each with Nl samples:

Ŷl = N−1l

Nl∑
i=1

(Q
(i)
Ml
−Q(i)

Ml−1
) (2.8)

10

To obtain stopping criteria and express the error in terms of samples, a min-
imization of the total computational time is done, under the given error tol-
erance ε [1]. By defining C0, V0 to be the cost and variance of one sample of
Y0 and Cl, Vl be the cost and variance of one sample for estimator Yl. Then
cost and variance of the method becomes:

Ctotal =

L∑
l=0

ClNl (2.9)

V total =

L∑
l=0

N−1l ∗ Vl (2.10)

Then for a fixed variance, the cost is minimized by choosing Nl to minimize:

Ctotal + λ2V total (2.11)

Then the total computational cost takes the form:

Ctotal =
1

ε2

(
L∑
l=0

√
Vl/Cl

)2

(2.12)

A direct consequence is whether the product VlCl increases or decreases with
the estimator on level l, i.e. the cost grows with the level faster than the
variance decreases. This determines the efficiency of the algorithm. For ex-
ample, if the product increases with the level, then the dominant contribution
to the cost comes from the finest estimator (the term VLCL). C becomes
Ctotal ≈ ε−2VLCL. If the dominant contribution comes from coarsest esti-
mator then Ctotal ≈ ε−2V0C0. This contrasts with the standard MC cost of
approximately ε−2V0CL, assuming that the cost of computing QML

is similar
to the cost of computing QML

− QML−1
, and that V [QML

] ≈ V [Q0]. This
shows that in the first case the MLMC cost is reduced by a factor VL/V0,
corresponding to the ratio of the variances V [QML

− QML−1
] and V [QML

],
whereas in the second case it is reduced by a factor C0/CL - the ratio of the
costs of computing QM0 and QML

−QML−1
[1].

2.4 Porosity and Permeability

Two important properties, that characterizes a porous medium, are porosity
and permeability. Those two properties presented in many models in various

11

forms, and are closely related. Both properties are related to the number, size,
and the connected openings in the rock or other porous medium. Porosity
measures the medium ability to hold water or other types of fluid within its
pours. It is defined as the ratio of open space in a medium divided by the
total medium volume (solid and open space). Permeability is a measure of
the ease of flow of a fluid to pass through a porous solid. For example, a
rock may be extremely porous, but if the pores are not connected, it will have
no permeability. Likewise, a rock may have a few continuous cracks which
allow ease of fluid flow, but when porosity is calculated, the rock doesn’t seem
very porous. When the flow within the media is laminar the permeability and
porosity can be connected as Kozeny–Carman equations [20]. In practice
the permeability field is modeled as a log-normal distribution with a given
covariance function and two parameters: σ - the standard deviation and λ -
constant, called correlation length.

(a) Permeability (b) Porosity

Figure 2.1: Single realization of permeability with σ = 2, λ = 0.2 and the
corresponding porosity field computed with Kozeny-Carman formula.

12

3. Multilevel Monte Carlo for
porous medium flows
Stochastic partial differential equations, as mentioned, have attracted great
attention due to their importance in modeling a variety industrial processes.
Thanks to the increased computational power, such solutions can be facili-
tated. For example, imagine a simulation of a subsurface water flow in an
area of hundreds of square km.

In this work two models are considered, however the approach proposed here
is not limited to this problems, and it can be applied to other areas. The first
is the stochastic Laplace equation. This equation itself is a well-established
model in the area and demonstrates the computational challenges in uncer-
tainty quantification for pours medium problems. The second equation is
more practical and it is important in many areas of industry. This equation is
used as a model in a chemical reaction, filtration processes as well as building
block in many other applications from physics, biology, and chemistry.

3.1 Stochastic Laplace equation

Consider steady state single phase flow in random porous media in a unit
cube, with domain D = (0, 1)2 and properly defined random space Ω, and
pressure drop from left boundary to the right boundary.

−∇ · [k(x, ω)∇p(x, ω)] = 0 for x(x1, x2) ∈ D = (0, 1)2, ω ∈ Ω. (3.1)

Subject to boundary conditions:

px1=0 = 1

px1=1 = 0

∂np = 0 on other boundaries.
(3.2)

Both the coefficient k(x, ω) and the solution p(x, ω) are subject to uncertainty.
The coefficient k(x, ω) describes the permeability field within the domain, and
the solution p(x, ω) describes the steady pressure distribution under pressure

13

drop. An object of interest for this model is the mean quantity of the total
flux through the unit cube:

Q(x, ω) :=

∫
x1=1

k(x, ω)∂np(x, ω)dx. (3.3)

3.1.1 Coarse grain for Multilevel Monte Carlo
The loosely defined definition of what a level means in the interpretation of
equation 2.7, gives great flexibility when designing an algorithm that uses
MLMC. One of the key components of MLMC is the selection of the coarser
levels and it is strongly coupled with the simulated problem. To define a level
in our Multilevel MC setting, the natural choice is the problem resolution i.e
the grid size for the PDE. For a given estimator in equation 2.8, the level is
defined as the number of cells along an axis direction used in the discretiza-
tion of the PDE. Assuming that on the fine grid the discrete PDE system has
2M ×2M number of cells, then on coarse level 2M−1×2M−1 number of cells is
used. This selection of levels directly leads to a need for permeability approx-
imation across the levels. An intuitive way is to represent the permeability
on the coarser levels to be arithmetic averaging over 4 cells in the case of two
dimensional problem and 8 in three dimensional case. However this does not
lead to good variance preservation. This is crucial for the efficiency of the
Multilevel Monte Carlo. Good variance preservation means small variance on
the fine estimators and large variance on the coarse levels. For this reason a
technique called simplified renormalizaion is considered. This technique has
been widely used in the past (and is still intensively used by many groups)
for upscaling hydraulic conductivity in heterogeneous media. Details can be
found in [21], [22], [23] and the references therein. In a nutshell, the simpli-
fied renormalization procedure is based on recursive harmonic arithmetic and
geometric averaging. If two cells are in parallel to the flux, the harmonic av-
erage of those two cells is taken, if they are not an arithmetic average is used.
Depending how the procedure starts, two different values are obtained. The
approximation is done by taking the geometric average of those two values.

3.1.2 Simulation results
For testing how MLMC performs the Laplace equation, consider table 3.1.
The table contains the results of testing a two and three-level MLMC method
with simplified renormalization. As an averaging technique, simplified renor-
malization has a smoothing effect. Renormalized approximation field are not

14

far from the variance of the original field. This can be quantitatively con-
firmed by the presented data. The variances presented in the third column
confirms both:

• after renormalization the variance at the coarsest level is close to the
variance on the original fine grid.

• the variances for the corrections in MLMC are decaying very fast fur-
thermore, the second column shows that the difference of the mean flux
computed with MC and MLMC is close, and in the range of ε

The fourth column shows that while MC needs tens of thousands of sample
realizations on the finest grid. For MLMC algorithm almost the same number
of realizations are needed on a 16 times coarser grid while only few realizations
are needed on the finest grid. The renormalization technique leads to very
effective MLMC and significant speedup can be achieved in comparison to the
standard MC algorithm.

|E[QMLMC]− E[QMC]| V [Yl] Grid size Nl

MC - V [Y0] : 1.10483 210 × 210 122761
2L MLMC 0.00115 V [Y0] : 1.17 29 × 29 132229

V [Y1] : 3.36e−5 210 × 210 324
3L MLMC 0.00590 V [Y0]: 1.26 28 × 28 128315

V [Y1]: 8.89e−6 29 × 29 205
V [Y2]: 9.82e−6 210 × 210 107

Table 3.1: Simulation with permeability generation parameters σ = 2, λ = 0.3
and with Monte Carlo method tolerance ε = 3e− 3

To further illustrate the superiority of the MLMC algorithm, compared to a
standard Monte Carlo sampling, the total computational time for achieving
tolerance of ε = 3e−3 with MC and MLMC approaches for different stochastic
generating parameters is considered. Figure 3.1 shows the results.

Experiments show that if the magnitude of the permeability is quite large,
this will yield the need for fine grids, to achieve reasonable expected values
for the total flux. The described MLMC method gives substantial speedup,
compared to the MC method. The usage of the simplified renormalization
provides a cheap way to build coarse levels in the MLMC. The variance at
the coarser levels is very close to the variance at the fine level, which makes
the presented particular MLMC method a very efficient variance reduction
method.

15

0e+00

2e+02

4e+02

6e+02

8e+02

1e+03

1e+03

1e+03

2e+03

2e+03

2e+03

2e+03

 1 1.5 2 2.5

T
im

e
[s

]

σ

MC vs MLMC times

MC
2 Lvl MLMC
3 Lvl MLMC
4 Lvl MLMC

(a) λ = 0.1

0e+00

1e+03

2e+03

3e+03

4e+03

5e+03

6e+03

7e+03

8e+03

 1 1.5 2 2.5

T
im

e
[s

]

σ

MC vs MLMC times

MC
2 Lvl MLMC
3 Lvl MLMC
4 Lvl MLMC

(b) λ = 0.2

0e+00

2e+03

4e+03

6e+03

8e+03

1e+04

1e+04

1e+04

2e+04

2e+04

 1 1.5 2 2.5

T
im

e
[s

]

σ

MC vs MLMC times

MC
2 Lvl MLMC
3 Lvl MLMC
4 Lvl MLMC

(c) λ = 0.3

Figure 3.1: Speedup of MLMC with respect to MC on 196 cores

3.2 Stochastic Convection-Reaction-
Diffusion equation

Consider a domain Ā = (0, L̄)2, and in that domain steady dimensional
convection-diffusion-reaction equation describing reactive transport in ran-
dom porous media. Consider the following dimensionless variables:

x =
x̄

L̄
, v =

v̄

v̄in
, t =

κ̄L̄2

D̄
, C =

C̄

C̄in

Setting v̄in to be the characteristic velocity, C̄in to be the characteristic con-
centration (this is the prescribed concentration at the inlet), D = D̄ to be the
characteristic value of the diffusion, Pe to be the Peclet number and Da to
be Damkohler number, and let κ̄ be characteristic reaction rate, the dimen-
sionless form of the convection-reaction-diffusion equation states as follows:

−∇ · (∇C) + Pe(ω)∇ · (v(x, ω)C) +Da(ω)C = 0, x ∈ (0, 1)2, ω ∈ Ω. (3.4)

Subject to prescribed boundary conditions. The dimensionless Peclet and
Damkohler numbers in equation 3.4 are defined as follows:

Pe(ω) =
P̃ e

φ(ω)
, Da(ω) =

D̃a

φ(ω)
(3.5)

16

Where P̃ e, D̃a are predefined, based on intrisic diffusion at pore scale con-
stants, and φ is the porosity. The considered quantities of interest, computed
via Multilevel Monte Carlo algorithm are the concentration and the flow across
the outflow boundary of the domain.

3.2.1 Coarse grain for Multilevel Monte Carlo
In the model given by equation 3.4 the three sources of uncertainty that need
to be addressed by MLMC are the uncertainty that comes from the Peclet
and Damkohler numbers and the uncertainty that is incorporated into the
velocity field. Similarly to the case of the Laplace equation, MLMC level are
defined as grid resolution. Two ways of coarse graning the velocity field are
considered.

• First Solve then Renormalize: The velocity equation 3.1 is solved
on the fine grid and then it is approximated on the coarse level by simple
arithmetic averaging.

• First Renormalize then solve: The permeability field is generated on
the fine level, and then approximated using simplified renormalization to
obtain a representation for the coarse level. Then the pressure equation
can be solved and the velocity can be computed.

3.2.2 Simulation results
In table 3.2, an investigation of the effectiveness of the MLMC with Solve then
Renormalize coarse-grain approach, compared to the classical MC algorithm,
is performed.

σ : 2 λ : 0.2

Peclet : 1.5 Damkohler : 0.5

N levels Y0 Y1 Y2 Y3 Y4

2 41502 607 - - -
3 43456 1536 536 - -
4 47063 2809 1630 553 -
5 53093 5039 3084 1728 691

Table 3.2: Samples per level, quantity of interest - concentration

The quantity of interest computed is the concentration. For each problem on
each level, the pressure linear system has to be solved on the finest level, which
will lead to smaller gains between cheap estimations (coarser levels), and
expensive ones (finer levels), thus impacting the effectiveness of the algorithm.

17

Doing this type of coarsening, it is expected that the most effective MLMC
will be at a low number of levels. This is exactly the case. Figure 3.2 a),
shows that most gain is achieved at a 3 level MLMC. On figure 3.2 b) an
examination for the other type of coarsening is shown. Test parameters are
σ = 2, λ = 0.2, ε = 3e − 2, P e = 2.5, Da = 0.5. This time the quantity
measured is the flow. Using renormalize then solve the coarse grain approach
gives significantly better overall speed. The two factors contributing are the
overall lesser work a processor must do to compute a single sample and, more
importantly, the variance is preserved better across the different estimators.

 2

 3

 4

 2 3 4 5

 2.1

 3.3

 5.6

 7.3

S
p
e
e
d
 u

p

R
e
la

ti
v
e
 E

rr
o
r

x
 1

0
3

Levels

MLMC vs MC

Speed up
10

3
|EMLMC - EMC| / EMC

(a) SR, Concentration

 4

 10

 14

 2 3 4 5 6

 0.11

 0.3

 0.6

 0.8

 1.2
S

p
e
e
d
 u

p

R
e
la

ti
v
e
 E

rr
o
r

x
 1

0
2

Levels

MLMC vs MC

Speed up
10

2
|EMLMC - EMC| / EMC

(b) RS, Flow

Figure 3.2: MLMC vs MC speedup

18

4. Parallel scheduling strate-
gies for MLMC algorithm
4.1 MLMC algorithmic procedure

Both MC and MLMC, as a sampling base class of algorithms, rely on repeated
sampling. A generation of samples from a properly defined probability space
is done. After a sample is generated, the underlying equation becomes de-
terministic and standard methods can be employed to solve it. Upon solving
it, the observed quantity of interest can be extracted and accumulated to
the statistics. After a given number of samples are computed the statistical
moments are calculated and checked against defined stopping criteria, such
as root mean square error or some other type of error measurement. If the
condition is satisfied, the procedure ends and if the condition is not satisfied,
additional samples must be generated. This process is repeated until the stop-
ping criteria is met. Figure 4.1 ilustrates the idea. Each estimation phase is
followed by a solve phase, and those estimate-solve blocks are repeated, until
the stopping criteria is met.

Estimate Solve Estimate Solve . . .

Figure 4.1: Block diagram of MLMC algorithm

At each estimation phase, the number of samples needed is estimated via
equation 4.1. Where vl is the empirical variance at level l, tl is the expected
time for computation of a single sample on level l and ε is the desired tolerance.

Nl = dλ
√

(vl/tl)e where λ =
1

ε2

L∑
l=0

√
(vl/tl) (4.1)

After the end of estimation phase a computation phase can commence. For
each sample on each level the required stochastic field is generated first. Then
the generated field is fitted into the model to obtain a deterministic partial dif-
ferential equation. Then the equation can be solved. For each solved equation
the quantity of interest is computed and accumulated to the statistics. Upon
completion of the Solve phase the equation 4.1 is checked again. This process

19

is repeated until there are no more samples needed (the stopping criteria is
met).

MLMC algorithmic approach can provide significant convergence speed-up
and better computational cost compared to pure MC, however the simulations
are still quite demanding. One simulation may require millions of samples
to complete. Running MLMC on a single processor is not feasible and an
efficient scheduling strategies for running on multiple CPUs, are a necessity.
An efficient strategy have to consider not only the different layers, where
parallel computation can be done, but also the sample to sample solution
time deviations on a given level. They can be significant, especially for fields
that have large variance. Figure 4.2 illustrates the problem.

 0

 50

 100

 150

 200

 250

 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Time[s]

(a) Eq. 3.1 with σ = 2.0 λ = 0.2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 38 40 42 44 46 48 50 52 54 56

N
u
m

b
e
r

o
f
s
a
m

p
le

s

Time[s]

(b) Eq. 3.4 with σ = 2.0 λ = 0.2 Pe =
2.5 Da = 0.5

Figure 4.2: Histogram of the solution time for samples on gird 210× 210, over
1000 samples

For both problems the sample to sample time deviation is significant and can
impact the parallel performance of the algorithm. In the case of a sample
from convection-reaction-diffusion model, the time between the fastest and
slowest sample computation time is more then 10 seconds. In the case of
sufficiently large domains, where a single problem has to be solved on multiple
processes due to memory restrictions, the strategies also depend strongly on
the performance characteristics of a single sample solved in parallel. The
ultimate goal of the execution strategy is to schedule as many samples as
possible on a given number of processors, for a minimal time. The problem
can be formulated as a constrained optimization problem. In the case of

20

MLMC in its most general form the problem is NP − complete [5]. An
efficient solution requires simplifications and assumptions. MLMC approach
by design defines three distinct parallel layers:

• (i) Parallelizing the solution for each sample (solve deterministic PDE).

• (ii) Parallelizing the solution of all samples on a given MLMC level.

• (iii) Parallelizing the calculation of all or several MLMC levels simulta-
neously.

The most efficient and flexible strategies will be those taking advantage of all
of the three layers of parallelism.

4.2 Performance parameters and efficiency mea-
surement

The design of the scheduling strategy requires different parameters to be taken
into account. The most prominent is the number of the different estimators,
the samples per estimator for a current estimate-solve cycle, and the time to
compute one sample for a given estimator. In the case of a sample solved
by multiple processes, the parallel solver inefficiencies contribute to the over-
all time lost for communication and synchronization. The efficiency and the
predictability of the underlying solver is crucial for the performance of the
scheduler. Modern multi-grid solvers scales very well under reasonable as-
sumptions [5]. Assuming there is no parallel computation overhead and no
inefficiency lost due to load imbalances, the theoretical minimum computa-
tional time is given by:

Tmin =
1

P all

L∑
l=0

NlE[tl] (4.2)

where P all is the total number of the available CPU cores, Nl is the number
of samples on level l and E[tl] is the expected time to compute one sample
on level l. In the case of a single process per sample per level, the minimum
time can be computed directly by recording the time to solve one sample. In
the case of more than one processor per problem, the minimal time can only
be estimated. Assume θ is a measure of how effective the underlying parallel
sample solver algorithm is. Then the time to compute a sample in parallel
can be expressed as:

21

Cl = θlC
l
min (4.3)

where in equation 4.3 Clmin is the time to compute a single sample on level
l on P lmin processors. Rewriting equation 4.2 by substituting tl with Cl, the
equation becomes:

Tmin =
1

P all

L∑
l=0

NlE[Cl] =
1

P all

L∑
l=0

NlE[θlC
l
min] =

1

P all

L∑
l=0

NlθlE[Clmin]

(4.4)

In the case when θl = 1 for all levels the two formulations are identical. In the
case when more than one process is assigned to a sample on level l, to compute
the minimal time the θl needs to be determined. This can be done in a pre-
processing phase, by computing the θl value for a given scalability window
{Pminl , . . . , PMax

l }, where Pmaxl is the maximum number of processors that
achieve the desired threshold efficiency on a level. And Pminl is the minimal
number of processes that are able to solve the problem by fully available
memory. By setting Cpl to be the time to compute one sample on level l by p
processors, θl becomes:

θl = Cpl /C
min
l (4.5)

To define the parallel efficiency of a given level of MLMC, the relative inef-
ficiency is computed by substituting the computational time Ccompl with the
minimal level time Tminl and the resulting value is divided by Tminl . By this
way, it can be estimated what is the percentage of the time lost to synchro-
nization relative to the minimal computational time. If the computed time is
close to the minimum time, the value of this fraction will be close to 1. The
lost time for distribution and synchronization will lead to values grater then
1. To get a decreasing function, the fraction is subtracted from 1:

Effl = 1− (Ccompl − Tminl)/Tminl (4.6)

Expressing 4.6 in terms of θ and Cpl becomes:

Effl(θ, p) = 1−
(Ccompl −NlθlE[Clmin])

(NlθlE[Clmin])
(4.7)

22

Finally the MLMC efficiency is defined as a sum over the levels:

Eff(θ) = 1−
(
∑
l C

comp
l −

∑
lNlθlE[Clmin])∑

l(NlθlE[Clmin])
(4.8)

where l ∈ {0, . . . L}.

4.3 Scheduling strategies

An easy, but, non optimal, way of scheduling the samples on the available
processors is to treat the MLMC as a collection of pure MC estimators. All
of the available processors are put to work on a single MC estimator and the
samples is distributed evenly among them. Although this strategy is easy it
leads to inefficient use of resources. However, combined with other scheduling
strategies it can lead to very efficient parallel algorithms. The focus will be on
dynamic approaches. They try to improve processor distribution by a greedy
scheme.

Regardless of the design, each estimation step (see figure 4.1) needs informa-
tion from all levels, as formula 4.1 suggests. The variance from each level is
required, to estimate the number of samples that needs to be computed. This
is the bottleneck of the algorithm.

4.3.1 Dynamic strategy
This scheme uses greedy approach and adopts during the simulation. It is
very flexible as it can be combined with different strategies for pure MC
estimation. The design uses all of the described parallel layers to schedule a
sample computation.

A prerequisite for the strategy is the availability of solution times and variance
statistics across the levels. This information can be obtained in two ways as:
a precompute step or as a first compute step by computing first Estimate-
Solve cycle with non optimal distribution of processors and collecting the real
times. To simplify the algorithm, and without loss of generality consider three-
level MLMC construction. Let Ni, i = {0, 1, 2}, be the number of required
realizations per Monte Carlo estimator - Ŷl, where N0 is the number on the
coarsest estimator Ŷ0. Let pi be the number of processes allocated per Ŷi,
pgli the respective group size of processes working on a single realization, with
ti be respective time constants, for solving a single problem once on a single
process and finally with P total the total number of available processes. Then

23

the total CPU compute time for the current Estimate-Solve cycle, can be
estimated by:

T totalCPU = N0t0 +N1t1 +N2t2 (4.9)

Then the optimal compute time per processor is:

T pCPU =
T totalCPU

P total
(4.10)

By dividing the CPU time needed for a Ŷi with T
p
CPU , a continuous value for

the number of processes on a given MC estimator is obtained:

pideali :=
Niti
T pCPU

for i = {0, 1, 2} (4.11)

N0, N1, N2

N1N0 N2

nl0
0

. . . nl0
k

. . . nl1
l

. . . nl2
m

p0
p1

p2

pg00 pg00

pg00

pg11

pg11
pg22

pg22p
g2
2

Figure 4.3: Schematic sample distribution of MLMC

Lets further assume that all of the available processors must be distributed on
all of the estimators Ŷi. Then by rounding down to integer the pideali value, a
processors distribution across the levels can be obtained:

pi :=
⌊
pideali

⌋
, for i = {0, 1, 2} (4.12)

Depending on the scheme that will be used for parallel computing on the
estimator Ŷi, additional, restrictions may be imposed for pi. Regardless of
the estimator scheme, the unallocated processors due to rounding can be
left unused for this cycle. To improve the estimation and search for a better

24

approximation, the set of all upper and lower bounds for each of the estimators
is constructed, and an integer solution is searched between

∑2
i=0 pi and p

total.

At this point the only considered case is the distribution of all of the available
processors to work simultaneously on all of the estimators. This may not be
the optimal strategy. It is rarely the case because of the strong imbalance of
work between the estimators. To find a reasonable strategy different combina-
tions of levels computed in parallel have to be considered. This ensures that
cases, when all of the processors are allocated on the coarsest level {Ŷ0} first
and then all of the processors are distributed across {Ŷ1, Ŷ2} levels are consid-
ered. For the parallel strategy on the estimator, depending on the scenario,
allows different schemes to be used.

4.3.2 Interrupted Dynamic strategy
This approach is very similar to the processor interruptions. The algorithm
starts as a standard dynamic strategy. A heuristic assumption is made that
there is no sample to sample computational differences, or if present, they
will balanced out. During the parallel computation, due to load imbalances,
and sample to sample fluctuations, a group of MPI process, among all of the
MPI processes completes, computation before the others. Upon completion
this group sends a signal to a part or all of the other groups, that are still
computing, informing them that it is in an idle state. Upon receiving the
signal, the computing groups interrupts the current computation. When all
those message exchanges completes and all of the groups are in an idle state,
rescheduling is done. For this type of optimization two strategies are consid-
ered. The first type is the local interruption, done within an estimator and
the second type of interruption is the global one - computation on all MPI
processes on all the levels stops. Then a rescheduling is performed. Figure
4.4 illustrates the idea.

In practice, the signals are modeled as a message exchange between the groups
by a master-slave approach. A group sends a message to the designated master
processor and enters in idle state. The master process takes responsibility
to inform the other groups and synchronize the data between them. The
messages carry a small amount of meta-information, and the dominating part
of the time needed for the process to complete will be the latency of the
system.

25

time

co
re

s

R
ed

is
t

(a) Local(Estimator)

time

co
re

s

R
ed

is
tr

ib
ut

e

(b) Global(MLMC)

Figure 4.4: Schematic overview of the interruption process. Different colours
represent different levels.

4.3.3 Job queue Dynamic strategy
This procedure simulates the idea of job dispatching or task-based parallelism
in the multi-thread environment, adopted to MPI message system. First an
optimal distribution of processors per estimator is obtained by equation 4.11.
For each estimator, using the master-slave programming paradigm, one of the
available MPI processes set to be master, and the others are set to be slaves.
The master process acts as a dispatcher that assigns work to the slaves. Each
of the them performs the given tasks and reports back to the master for more
work. This way each process is busy working regardless of the time of a sam-
ple. This is at the expense of a large number of small message exchanges.
In comparison to the interrupt strategy, where the message exchange is per-
formed at a single point in time, the messages for this strategy are exchanged
at different times.

4.3.4 Experiments

Laplace equation parallel experiments

On figure 4.5, an investigation of the efficiency is done for the different
scheduler types. The parallel efficiency is measured under equation 4.8.
For this tests the finest grid of the MLMC algorithm has 210 × 210 num-
ber of cells. This is approximately 106 unknowns. The number of levels
of MLMC is set to 4. On 4.5 a) parallel efficiency for problem with pa-
rameters σ = 2, λ = 0.3 and ε = 1e − 3 is considered. On 4.5 b) a
more computational intensive problem is plotted, with generating parame-
ters σ = 2.25, λ = 0.4, and ε = 1e− 3. For both experiments each sample is
computed by a single processor. The figure 4.5 c) considers the same problem

26

as 4.5 b), but with different processor distribution. Each problem on a given
level is solved by: p0 = 1, p1 = 5, p2 = 9, p3 = 11 processors respectively. For
this processor distribution the efficiency function is Eff(1, 3.6, 7.35, 9.00).

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 168 252 336 420 504

E
ff

ic
ie

n
c
y

Number of cores

Global interrupted
Local interrupted

Queue parallelism
Dynamic

Performance

(a) σ = 2.0 λ = 0.3
single core per problem

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 168 252 336 420 504

E
ff

ic
ie

n
c
y

Number of cores

Performance

Global interrupted
Local interrupted

Queue parallelism
Dynamic

(b) σ = 2.25 λ = 0.4
single core per problem

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 168 252 336 420 504

E
ff

ic
ie

n
c
y

Number of cores

Global interrupted
Local interrupted

Queue parallelism
Dynamic

Performance

(c) σ = 2.25 λ = 0.4
p0=1, p1=5, p2=9, p3=11

Figure 4.5: Efficiency of different schedulers for Laplace equation

Figures 4.5 a) b) shows that local interrupted approach achieves best effi-
ciency for a relatively small number of processors. These efficiency values,
nonetheless, are not kept when the number of processors increases. In the
case of 504 cores the effectiveness drops to about 0.08 units better than the
pure dynamic approach. There are two main reasons for that. First the
increased number of processors leads to larger load imbalances between the
different levels when the number of processors per level is estimated. Even
if the algorithm finds a good processor distribution and that leads to small
waiting time for processor level groups, this time has much more impact on
the effectiveness, compared to the same waiting time on a smaller number
of processors. Simply, there are more idling processors. The other reason is
the large number of messages exchanged at a single point in time. The mes-
sages must be sent through the network, and this leads to message flooding
of the communication channel. This problem becomes apparent when the
queue method is compared to the local one. Although there are much more
messages, that are exchanged between the processors, all of them have small
byte sizes and are spread in time. This leads to better overall efficiency for
the queue scheduler. The best performing algorithm, that is considered for
the case of a single processor per problem, is the global interrupted technique.
It shows small performance degradation when the number of processors is in-
creased. Figure 4.5 c) shows that utilizing the third layer of parallelism and
thus counting all layers of parallel execution, leads to very efficient algorithm.
All of the considered methods achieve more than 0.89 units of efficiency. In

27

this case, the local interrupted technique outperforms the others. The in-
creased effectiveness comes again from the fact that groups of processors are
considered by the dynamic scheduler rather than all the processors. Part of
the imbalances is offloaded to the underlying parallel algorithm used for the
solving of a single sample. Figure 4.6 shows the relative scalability for the
considered algorithms

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
p

e
e

d
u

p
 t

im
e

s

Number of cores

Optimal
Global interrupted
Local interrupted

Queue parallelism
Dynamic

Strong scaling

(a) Experiment 4.5 a)

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
p

e
e

d
u

p
 t

im
e

s

Number of cores

Strong scaling

Optimal
Global interrupted
Local interrupted

Queue parallelism
Dynamic

(b) Experiment 4.5 b)

 1

 1.5

 2

 2.5

 3

 3.5

 168 252 336 420 504

S
p

e
e

d
u

p
 t

im
e

s

Number of cores

Optimal
Global interrupted
Local interrupted

Queue parallelism
Dynamic

Strong scaling

(c) Experiment 4.5 c)

Figure 4.6: Strong scalability for experiments on figure 4.5

Convection-reaction-diffusion parallel experiments

On figure 4.7 the efficiency is measured by equation 4.8 for the three dif-
ferent dynamic optimizations: Local interrupted, Global interrupted, Queue
parallelism. Each sample is solved by a single processes. The testing param-
eters are: σ = 2, λ = 0.2, ε = 1e − 2, P e = 2.5, Da = 0.5. The fine grid is
210 × 210 and the estimator is a 4 level MLMC with renormalize first then
solve approach. The quantity of interest computed is the flow. The results
shows very good efficiency for Local interrupted approach for 168 and 252
cores. It outperforms the other two methods. The efficiency for that strat-
egy significantly drops at higher number of cores, meanwhile both global and
queue approaches retain lower efficiency drop when the number of cores in-
creases. The average number of samples per level for this particular test are
shown in table 4.1

SuperMuc experiments for Laplace equation

The tests in this section are performed on the SuperMuc cluster hosted at
Technical University Munich (TUM). Each node is consisting of 48 cores.
The total node memory is 96GB.1

1https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

28

https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

Level 0 1 2 3
LocDyn + LvlSolSyn 444975 9466 3382 991
GlobalDyn + LvlSolSyn 447649 9571 3359 962
QueueDyn 449734 9398 3289 999

Table 4.1: Performed samples

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 168 252 336 420 504

E
ff

ic
ie

n
c
y

Number of cores

Global interrupted
Local interrupted

Queue parallelism

Performance

(a) Eff(1, 1, 1, 1)

 1

 1.5

 2

 2.5

 3

 168 252 336 420 504

S
tr

o
n

g
 s

c
a

la
b

ili
ty

Number of cores

Optimal
Global interrupted
Local interrupted

Queue parallelism

Performance

(b) Scalability

Figure 4.7: Efficiency and scaling

The test case shown on figure 4.8 is designed to prove the effect of the global
interruption optimization for the dynamic scheduler for a large number of
cores on a relatively small problem, compared to the number of cores used.
In such case, the time lost to synchronization will have more significant impact
on the overall computational time and effectiveness respectively. The test pa-
rameters are summarized in table 4.2. As a coarsening technique an simplified

Max. grid size: 210 × 210 σ = 3 λ=0.3 ε= 1e-3

Cores per problem Lvl. 0 Lvl. 1 Lvl. 2 Lvl. 3
1 1 1 1

Table 4.2: Simulation parameters for figure 4.8

renormalization is used. The experiment shows good processor distribution
among the different levels for the case of 4800 cores and thus efficiency for
the case of dynamic scheduler. The achieved efficiency is close to 70%. Us-
ing the global interrupt optimization leads to significant improvement in the
efficiency - close to 85%. In the case of 7200 cores, the optimization gain is
around 12%. In the case of 9600 the gain is around 7%. This steady decline of
the gains is due to the increased communication time, and the overall smaller
computational time. In the case of 9600 cores the total simulation time is

29

only 621 seconds using the global interrupt strategy. More computationally
expensive simulations lead to even better effectiveness.

 1

 1.5

 2

 4800 7200 9600

S
tr

o
n
g
 s

c
a
lin

g

Number of cores

Solution times

Optimal
Dynamic

Global interrupted

(a) Strong scaling

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 4800 7200 9600
E

ff
ic

ie
n
c
y

Number of cores

Solution times

Dynamic
Global interrupted

(b) Efficiency

Figure 4.8: Large number of cores, single core per problem

30

5. Bibliography
[1] M.B. Giles. “Multilevel Monte Carlo Methods”. In:Acta Numerica (2018).

doi: 10.1017/S09624929.
[2] S. Heinrich. “Monte Carlo complexity of global solution of integral equa-

tions.” In: Journal of Complexity 14 (1998), pp. 151–175. doi: 10.1006/
jcom.1998.0471.

[3] S. Heinrich and E. Sindambiwe. “Monte Carlo complexity of parametric
integration.” In: Journal of Complexity 15 (1999), pp. 317–341. doi:
10.1006/jcom.1999.0508.

[4] S. Heinrich. “The multilevel method of dependent tests.” In: Advances
in Stochastic Simulation Methods (2000), pp. 47–61. doi: 10.1007/978-
1-4612-1318-5_4.

[5] D. Drziga et al. “SCHEDULING MASSIVELY PARALLEL MULTI-
GRID FOR MULTILEVEL MONTE CARLO METHODS”. In: SIAM
J. SCI. COMPUT 39.5 (2017), S873–S897. doi: 10.1137/16M1083591.

[6] Wolfgang Betz, Iason Papaioannou, and Daniel Straub. “Numerical meth-
ods for the discretization of random fields by means of the Karhunen-
Loève expansion”. In: Computer Methods in Applied Mechanics and En-
gineering 271 (2014), pp. 109–129. doi: doi:10.1016/j.cma.2013.12.010.

[7] I. G. Graham et al. “Analysis of circulant embedding methods for sam-
pling stationary random fields”. In: SIAM Journal on Numerical Anal-
ysis 56 (2018). doi: https://doi.org/10.1137/17M1149730.

[8] Francisco Cuevas, Emilio Porcu, and Denis Allard. Fast and exact sim-
ulation of isotropic Gaussian random fields on S2 and S2 × R. 2018.
eprint: arXiv:1807.04145.

[9] Walker DW. Standards for message-passing in a distributed memory
environment. 1992. url: https://www.osti.gov/biblio/7104668 (visited
on 05/01/2021).

[10] Bungartz Hans-Joachim, Neumann Philipp, and Nagel Wolfgang. “Soft-
ware for Exascale Computing - SPPEXA 2013-2015”. In: (2016). doi:
10.1007/978-3-319-40528-5.

[11] Bastian P et al. “A Generic Grid Interface for Parallel and Adaptive Sci-
entific Computing. Part I: Abstract Framework.” In: Computing 103–119
(2008). doi: 10.1007/s00607-008-0003-x.

[12] Dune Numerics. url: https://dune-project.org (visited on 05/01/2021).

31

https://doi.org/10.1017/S09624929
https://doi.org/10.1006/jcom.1998.0471
https://doi.org/10.1006/jcom.1998.0471
https://doi.org/10.1006/jcom.1999.0508
https://doi.org/10.1007/978-1-4612-1318-5_4
https://doi.org/10.1007/978-1-4612-1318-5_4
https://doi.org/10.1137/16M1083591
https://doi.org/doi:10.1016/j.cma.2013.12.010
https://doi.org/https://doi.org/10.1137/17M1149730
arXiv:1807.04145
https://www.osti.gov/biblio/7104668
https://doi.org/10.1007/978-3-319-40528-5
https://doi.org/10.1007/s00607-008-0003-x
https://dune-project.org

[13] E.Powell. Numerical Methods for Generating Realisations of Gaussian
Random Fields. url: www.maths.manchester.ac.uk/~cp (visited on
05/01/2021).

[14] Gabriel Lord, E.Powell, and Tony Shardow. An introduction to Com-
putational Stochastic PDEs. Cambridge University Press, 2014. isbn:
978-0521728522. doi: 10.1017/CBO9781139017329.

[15] Robert Gould and Colleen Ryan. Introductory Statistics. Pearson, 2016.
isbn: 978-0321978271.

[16] Joseph F. Hair. Multivariate Data Analysis – A Global Perspective, 7th
Edition. Pearson Education, 2010. isbn: 9780135153093.

[17] Randall LeVeque.Numerical Methods for Conservation Laws. Birkhauser-
Verlag, 1990. isbn: 978-3-0348-8629-1.

[18] Randall LeVeque. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, 2002. doi: 10.1017/CBO9780511791253.

[19] J. Dick, F. Kuo, and I. Sloan. “High-dimensional integration: The quasi-
Monte Carlo way.” In: Acta Numerica (2013). doi: 10.1017/s09624929
13000044.

[20] Jack Dvorkin. Kozeny-Carman equation revisited. 2009. url: https://
pangea.stanford.edu/~jack/KC_2009_JD.pdf (visited on 05/01/2021).

[21] Renard P. and De Marsily G. “Calculating equivalent permeability: a
review.” In: Adv. Water Resour. 20 (1997), pp. 253–278. doi: 10.1016/
S0309-1708(96)00050-4.

[22] Wen X.H. and Gomez-Hern ández J.J. “Upscaling hydraulic conductivi-
ties in heterogeneous media: an overview.” In: Journal of Hydrology 183
(1996), pp. ix–xxxii. doi: 10.1016/S0022-1694(96)80030-8.

[23] Ivan Lunati et al. “A numerical comparison between two upscaling tech-
niques: non-local inverse based scaling and simplified renormalization.”
In: Advances in Watter Resources 24 (2001), pp. 913–929. doi: 10.1016/
S0309-1708(01)00008-2.

32

www.maths.manchester.ac.uk/~cp
https://doi.org/10.1017/CBO9781139017329
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1017/s0962492913000044
https://doi.org/10.1017/s0962492913000044
https://pangea.stanford.edu/~jack/KC_2009_JD.pdf
https://pangea.stanford.edu/~jack/KC_2009_JD.pdf
https://doi.org/10.1016/S0309-1708(96)00050-4
https://doi.org/10.1016/S0309-1708(96)00050-4
https://doi.org/10.1016/S0022-1694(96)80030-8
https://doi.org/10.1016/S0309-1708(01)00008-2
https://doi.org/10.1016/S0309-1708(01)00008-2

Author contributions

By the opinion of the author, the main contributions of this work are:

• Scientific contributions:

– A review and analysis of the existing solutions to the considered
problems are made. The advantages and disadvantages of the ex-
isting solutions for generating stochastic fields and corresponding
sampling algorithms are evaluated;

– Different approaches for approximation of the stochastic field for
the Laplace problem are analyzed and compared;

– An effective method for renormalization of the stochastic field for
the purposes of the Multilevel Monte Carlo has been developed;

– An adaptive algorithm for resource allocation between the different
levels of the Multilevel Monte Carlo algorithm has been developed;

– The Multilevel Monte Carlo method is applied successfully for the
first time to solve the convection-reaction-diffusion equation.

• Scientific and applied contributions

– An approach for determining the levels for the Multilevel Monte
Carlo for the two considered problems is defined;

– Analysis and comparison of two considered approaches for coarse
grain, for the Multilevel Monte Carlo versus the classical Monte
Carlo for the convection-reaction-diffusion problem are performed;

– Analysis and comparison between the rate of convergence and the
time for calculation of the Multilevel Monte Carlo method with
simplified renormalization and the classical Monte Carlo are made;

– An overview, analysis and comparison of six parallelization strate-
gies are made.

• Applied contributions

– A strategy for generating random fields on graphic accelerators has
been developed and implemented;

– Four advanced parallel algorithms were proposed, implemented and
compared;

33

– The applicability of the considered approaches for large scale sim-
ulations of realistic problems was confirmed with tests on a large
number of cores.

List of publications

• [1] Iliev, O., Mohring, J., Shegunov, N., Renormalization Based MLMC
Method for Scalar Elliptic SPDE, International Conference on Large-
Scale Scientific Computing, pp.295-303, 2017, Springer, ISSN: 0302-
9743, SJR (2017) - 0.295

• [2] Shegunov, N., Armianov, P., Semerdjiev, A., Iliev, O., GPU accel-
erated Monte Carlo sampling for SPDEs, 2019, Conf. Proc. of the 12th
ISGT 2018, ISSN:1613-0073, SJR (2019) - 0.177

• [3] Zakharov, P., Iliev, O., Mohring, J., Shegunov, N., Parallel Mul-
tilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coef-
ficients, International Conference on Large-Scale Scientific Computing,
pp.463-472, 2019, Springer, ISSN: 0302-9743, SJR (2019) - 0.427

• [4] Bastian, P., Altenbernd, M., Dreier, N., Engwer, Ch., Fahlke, J.,
Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J.,
Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., Turek, S.,
Exa-Dune: Flexible PDE Solvers, Numerical Methods and Applications,
Software for Exascale Computing-SPPEXA, 2016-2019, pp. 225-269,
2020, https://doi.org/10.1007/978-3-030-47956-5_9, Springer

• [5] Shegunov, N., Iliev, O., On Dynamic Parallelization of Multilevel
Monte Carlo Algorithm, Cybernetics and Information Technologies, Vol-
ume 20, No 6, pp. 116-125, 2020, Journal Sciendo Print ISSN: 1311-
9702, Online ISSN: 1314-4081, SJR (2020) - 0.310

Acknowledgements

I would like to thank my supervisor assoc. prof Petar Armyanov and my
scientific advisor profesor Oleg Iliev for their support during the entire time of
my Ph.D. Furthermore, I would like to thank Fraunhofer ITWM and Technical
University Munich for the access to their high performance computational
systems - Beehive and SuperMuc.

34

https://doi.org/10.1007/978-3-030-47956-5_9

Declaration of Originality

I declare that the present dissertation contains original results obtained from
my research (with the support of and the assistance of my supervisor and
all my co-authors). The results obtained, described and published by other
scientists, are duly and in detail cited in the bibliography. This work has not
been applied for the acquisition of a scientific degree in another higher school,
university or scientific institute.

Signiture:

35

	Introduction
	Motivation
	Stochastic computations
	Modern high-performance computing systems
	Aims and scope of this work

	Mathematical models
	Random sampling algorithms
	Finite volume numerical method
	Multilevel Monte Carlo algorithm
	Porosity and Permeability

	Multilevel Monte Carlo for porous medium flows
	Stochastic Laplace equation
	Coarse grain for Multilevel Monte Carlo
	Simulation results

	Stochastic Convection-Reaction-Diffusion equation
	Coarse grain for Multilevel Monte Carlo
	Simulation results

	Parallel scheduling strategies for MLMC algorithm
	MLMC algorithmic procedure
	Performance parameters and efficiency measurement
	Scheduling strategies
	Dynamic strategy
	Interrupted Dynamic strategy
	Job queue Dynamic strategy
	Experiments

	Bibliography

		2021-06-07T10:39:57+0300
	Nikolay Shegunov

