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Abstract 

This article investigates the performance of 136 different classification algorithms for economic 

problems of binary choice. They are applied to model five different choice situations – consumer 

acceptance during a direct marketing campaign, predicting default on credit card debt, credit 

scoring, forecasting firm insolvency, and modeling online consumer purchases. Algorithms are 

trained to generate class predictions of a given binary target variable, which are then used to 

measure their forecast accuracy using the area under a ROC curve. Results show that algorithms 

of the Random Forest family consistently outperform alternative methods and may be thus suitable 

for modeling a wide range of discrete choice situations. 
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I. Introduction 

 

Problems of binary choice and classification are prevalent in all fields of economics and business. 

Predicting consumer choice, credit risk scoring, investigating online and offline behavior, and 

business decision-making are merely a few examples in the long list of possible applications 

(Hensher & Johnson, 2018). Early attempts to statistically model binary choice have given us 

instruments like the logistic regression but recent advances in statistics and machine learning have 

produced a large and diverse set of classification methods. While their uptake as standard 

econometric instruments has not kept pace with the rapid speed of advancements in machine 

learning, their potential utility is already being demonstrated in recent research (e.g. Gerunov, 

2019). However, the benefits of using such methods are partly offset by their large number, 

complexity and limited application to economic problems. In short, there is insufficient research 

on which of those novel methods can be fruitfully applied to economic problems and how their 

classification accuracy stacks against other alternatives.  

 

This article sets out to close this gap by investigating 136 different machine learning methods by 

applying them to five common economic problems. Those problems range from predicting 

consumer choice during direct marketing, through credit risk scoring, estimating credit card  and 

company default rates, to predicting online purchasing behavior. We probe what families of 

algorithms produce highest accuracy and give insight into their application to the fields of 

economics and business. The article is structured as follows: the second section provides an 

overview of relevant literature, the third section defines criteria for classification accuracy, the 

fourth section briefly presents the methodology and data used. The fifth section contains the 

results, while the sixth discusses and compares them. The seventh section concludes. 

 

II. Literature Review 

 

Using rigorous statistical methods for modeling binary choice can be traced back at least to Cox’s 

(1958) pioneering work and probably even before that. Cox (1958) introduced the logistic 

regression, which was refined over the next decades (Manski and McFadden, 1981) and even today 

is a preferred tool for classification in relatively well-understood problems using small to medium-



sized samples (Hyman and Yang, 2001; Akinci et al., 2007; Jie et al., 2019). The premise of the 

choice problem is clear. A given observations needs to be classified as belonging to one of two 

classes (e.g. positive and negative), using its known features.  

 

In this sense, it is useful to have labeled data where observations are divided into two groups, the 

first of which constitutes the first class, while the second consists of the other one. In terms of the 

information structure of each observation, we emphasize that it is appropriate to store it together 

with the associated circumstances (variables, characteristics) and, if possible, indicate to which of 

the two groups it belongs. An example of this could be a series of financial transactions with their 

specific characteristics that are designated as legitimate or fraudulent. The utility of discrete 

classification methods is even larger than it seems since a lot of continuous problems can be 

collapsed into problems of discrete choice by grouping a continuous variable. For instance, in the 

case of analysis of continuous variables (eg temperature, hours of operation, costs), anomalous 

observations can be detected by defining a criterion and corresponding value over which we label 

them as different from the default class. 

 

Later work introduced the linear discriminant analysis (LDA) as another approach to distinguish 

between classes in economic and business problems (Ripley & Hjort, 1996). This method has been 

extensively and fruitfully used to model situations of consumer choice (Tregear and Ness, 2005; 

Hansen, 2005). While both the logistic regression and the LDA has led to many insightful results, 

their utility has been put to the test in an era of rapidly expanding data availability and more 

complex research problems. Most notably, classical methods are intrinsically linear in nature, 

while complex economic phenomena often tend to exhibit non-linear relationships. Second, those 

methods stem from a rich statistical tradition but often impose stringent assumption on the data 

structure. Finally, traditional methods often do not scale well to large or extremely large sample 

sizes (so-called “big data”). This is particularly notable in the estimation of p-values are they are 

biased towards significance in such a setting (Greenland, 2019). 

 

In partial remedy of those concerns, one can peruse novel classification methods from the field of 

machine learning and suitably apply them to forecast group association (Zhao et al., 2014). Since 

this classification problem calls for labeled data, the group of supervised methods are used most 



often. Supervised machine learning algorithms are characterized in that they need labeled data with 

clearly delineated classes (or values) of the target variable. This most often involves human or 

machine data processing to determine whether the target variable belongs to a normal class 

(negative) or belongs to an anomalous class (positive). Although the simplest markup is a binary 

(dummy) variable with class 0 (normal, legitimate), 1 (risk, fraud, problem, deviation), there is no 

reason why labels do not have more meaning to account for the nuances of conversions. For 

example, Gerunov (2016) looks at modeling large data sets to evaluate the risk of unemployment. 

Individuals may be marked as employed (class 0) or unemployed (class 1), but in order to achieve 

greater detail and a clearer understanding of the processes, the two classes are divided into different 

subclasses (employed, self-employed, partially employed, unemployed, pensioners, etc.) A 

random forest classification model is trained on this data, and it is able to successfully identify the 

drivers of unemployment.  

 

Machine learning algorithms are used for a wide range of different economic and business 

problems. Algorithms such as the Naïve Bayes classification have been used for modeling 

consumption choice and user sentiment (Ye et al., 2009; Cheung et al., 2003; Huang et al., 2012). 

The rise in application of the support vector machine (SVM) algorithms is also notable. SVMs 

have been applied to numerous tasks such as consumer preference elicitation (Huang & Luo, 2016) 

and sentiment analysis (Hariguna & Romadon, 2019). Decision trees and random forests have also 

been extensively applied to problems of economic choice. This application ranges from deriving 

consumer preferences (Bi, 2012) and modeling decisions (Kruppa et al., 2013) to credit risk 

management (Meng et al., 2019). Finally, the recent upsurge in interest in neural networks has also 

produced a large number of applications to economic problems – e.g. in predicting consumer 

decision-making (Reunolds & Philips, 2019), credit scoring (Fu et al. 2016), consumer loyalty 

(Deliana & Rum, 2017), and many others. 

 

Currently, the most commonly used algorithms for supervised classification in the research 

literature and practice are neural networks, k-closest neighbors, base networks, trees and decision 

trees, support vector machines, but also traditional statistical approaches. such as logistic 

regression and discriminant analysis (Chandola et al., 2009; Phua et al., 2010; Omar et al., 2013; 

Qiu et al., 2016; Rousseeuw & Hubert, 2018). We emphasize that there are many new algorithms 



that can be potentially useful, and also that many of them have variations of those already listed. 

Chandola et al. (2009) note that, as a general rule, supervised learning algorithms are more accurate 

than non-supervised learning algorithms.  

 

Choosing the optimal classification algorithm in terms of classification accuracy is often a 

challenging task. On the one hand, it is important for the algorithm to have good predictive power 

by correctly classifying a significant portion of the observations. On the other hand, classification 

errors sometimes have different costs - for example, a borrower who is misclassified as unreliable 

leads to foregone profit, while one that is incorrectly classified as a trustworthy is a loss. Thus, it 

is important to pay attention not only to the overall accuracy of the classification, but also to more 

detailed indicators of the algorithm's qualities. Additionally, non-technical requirements such as 

comprehensibility, ease of interpretation, or compliance with established practices or regulatory 

requirements may also be imposed when selecting such a criterion. 

 

All those considerations leave the academic and the practitioner with a large amount of potential 

algorithm choices for a given classification problem and little guidance on how to proceed. This 

has led some researchers such as Fernandez-Delgado et al. (2014) to ask whether we indeed need 

hundreds of algorithms to solve problems of choice. Fernandez-Delgado et al. (2014) investigate 

a large number of classification algorithms and ranks them according to their probabilities of 

achieving maximum accuracy (PAMA).  

 

The authors (ibid.) show that Random Forest implementations and SVMs achieve highest PAMA, 

followed by neural networks and boosted ensembles. These results are enlightening and an 

excellent initial foundation for further work but it would be useful to see more detailed algorithm 

performance in concrete decision problems. This includes not merely accuracy but also resource-

intensiveness of the method. Even more importantly, classification accuracy may need to be more 

carefully estimated by fully taking into account correctly classified and misclassified observations. 

To this end we propose to use the Receiver Operating Characteristic (ROC) curve that is described 

in more detail in the following section.  

 

 



III. Defining Measures of classification accuracy 

 

Problems of binary choice are often connected to high-stakes decisions with potentially large 

impact, which is why achieving high accuracy is of significant importance. The overall 

classification accuracy shows what proportion of the model's predictions are correct and what 

proportion is not (Mateev, 2016). Apart from overall classification accuracy, we are often 

interested in accuracy per each of the given classes. This is summarized the classification matrix, 

presented in Table 1 (Kabakchieva, 2012; Semerdjieva et al., 2013).  

 

Table 1: Classification Matrix 

 True Class 

Predicted 

class 

 1 0 

1 
True positive, 

TP 

False positive, 

FP 

0 
False negative, 

FN 

True negative, 

TN 

 Total Positive, P Negative, N 

 

Based on these ratios, we can define a series of indicators for the predictive accuracy of a 

classification model (Fawcet, 2004). First of all, we take into account the overall balanced 

accuracy: 
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The precision Pr is an indicator that allows us to evaluate the ability of the classification algorithm 

to correctly identify the positive classes. Precision is defined as follows: 
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 (2) 

 

Similarly, the sensitivity Ss allows us to estimate what percentage of all positive-class observations 

are correctly identified, or: 
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Sensitivity is sometimes referred to as the proportion of real positive observations. Specificity, Sp, 

indicates how well the algorithm can correctly identify negative observations by measuring what 

percentage of all negative observations are successfully predicted as such. Specificity is also 

known as the proportion of actual negative class observations. The definition of specificity is as 

follows:  
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The metrics shown so far show different measures of predictive accuracy, i.e. to what extent the 

model does well with the classification task. Alternatively, we can deduce a measure of mistakes. 

The total percentage of erroneously predicted observations (error), E, is defined as follows: 

 =
	� + 	�

� +�
 

 (5) 

 

The F-measure is sometimes used to evaluate the predictive accuracy of a classification algorithm: 
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Among the quality indicators of a forecast model, it is worth mentioning the kappa statistics 

(Carletta, 1996). The availability of a wide range of different indicators for evaluating 

classification models implies some freedom for researchers to make the final call.  

 

As an alternative measure of the quality of a classifier, we can use the area under the Receiver 

Operating Characteristic (ROC) curve (Walter, 2005). The ROC space is a two-dimensional space 

that shows how a classifier is represented by the proportion of true positive observations 

(sensitivity, Ss) and the proportion of false positive observations FP / N. The first is a measure of 

the benefit of a given classifier, and the second a measure of its cost. The point classification 

resulting from the application of an algorithm can be used to calculate the sensitivity and the 

proportion of misclassified observations. These two indicators set the coordinates of the point of 

the algorithm in the ROC space (see Figure 1). 

 



 

Figure 1: ROC Space with Three Alternative Classifiers 

 

It is worth noting three main points in the ROC space: 

 Origin point with coordinates (0; 0) – corresponds to cases where the algorithm never 

defines a class as positive; 

 Point with coordinates (1; 1) – corresponds to cases where the algorithm always defines a 

class as negative; 

 Point with coordinates (0; 1) – corresponds to the best possible classifier, which always 

determines the correct class. 

 

The 45-degrees lines starting at (0; 0) and ending at (1; 1), corresponds to a completely random 

classification - algorithms that select a class solely because of chance fall into it. Therefore, any 

realistic and useful classifier should fall above this line, i.e. be better than classification by chance 

(e.g. algorithms A and B). Classifiers below the line perform worse than chance and should not be 

used (e.g. algorithm C). Many classification algorithms derive a probability distribution for class 

belonging or calculate some sort of similar test statistics. This allows the ROC space to show not 

just the point representation of the algorithm, but an entire curve reporting the results of the 

algorithm at different parameter values or test statistics. This curve is precisely the ROC curve 

(see Figure 2: Performance curve (ROC curve), and the area below it is a measure of how accurate 

the classification is (Fawcet, 2004). 

 

 



 

Figure 2: Receiver Operating Characteristic (ROC) Curve 

 

The area under the curve (AUC) takes into account the tradeoff between the generated benefits of 

the classifier and the errors made, thus providing a single indicator that can be used for comparison 

between alternative classification models (Walter, 2005; Tanwani et al, 2009). The value of this 

area varies between 0 and 1. It should be borne in mind that the diagonal in space has AUC = 0.5, 

so we expect useful classifiers to have AUC >  0.5. Hand & Till (2001) also show the relationship 

between the AUC and another important indicator of the quality of the classification - Gini 

coefficient, G (see Breiman, 1984): 

� + 1 = 2 ∗ ���  (7) 

 

The area under the ROC (AUROC) curve is widely regarded as a prime candidate for a single 

comparison metric that can be applied to a wide variety of alternative classification algorithms 

(Fawcet, 2004; Tanwani et al, 2009; Semerdjieva et al., 2013). This article also takes this approach 

and considers the AUROC as the leading classification accuracy metric since is adequately 

balances the tradeoff between instances of right and wrong classification. It also gives a unified 

metric that can be applied not merely to alternative methods in a given classification situations but 

also to compare accuracy across types of problems. 

 

 

 

 



IV. Datasets and Methods under Investigation 

 

The considerable number of current studies in statistical methods and machine learning also imply 

the rapid development of methods, approaches and algorithms that are available for research 

purposes. For the sake of comprehensive review that will ensure robust identification of optimal 

algorithms, we use five distinct datasets (see Table 2) to evaluate and test 136 of the most popular 

methods. The full list of methods is included in an appendix.  

 

Table 2: Datasets and Sources 

# Testing Data Set Binary Classification: 

Target Variable 

Observations, N Data Source 

1 Direct Marketing 

Campaign 

Customer Accept or Reject 

Offer 

41,181 Moro et al., 2014 

2 Taiwan Credit Card 

Operations 

Service Credit Card Debt or 

Not 

30,000 Yeh & Lien, 2009 

3 German Bank Credits Default or Non-default on 

Credit 

1,000 Eggermont et al., 

2004; Hofmann, 1994 

4 Estimating Default 

Status 

Firm Default or Not 5,910 Zieba et al., 2016 

5 Online Customer 

Purchases 

Customer Purchase or Not 12,330 Sakar et al., 2018 

 

More specifically we focus on the following types of problems: 

 Predicting customer acceptance during a direct marketing campaign – the stems from 

a Portuguese bank and consists of known features of customers that can be used to glean 

insight whether customer will accept promotional offer. 

 Predicting default rates on credit cards – the data from Taiwan given information about 

credit card accounts and customer and is focused on identifying which customer is likely 

to default on its debt. 

 Risk scoring for credits – this task is focused on classifying which lenders are likely to 

service their loans and which are not. To this end we leverage Hofmann’s (1994) data and 

use all the customer features to make the class prediction. 



 Estimating default status and probability – this dataset gives detailed financial 

information for a large sample of Polish companies that can be used to classify them as 

likely to default or solvent. 

 Online Customer Purchases – the dataset provides information for users of an online shop 

and their actions on a given website. These features can then be leveraged to identify which 

customers will purchase something, and which will not. 

While this article investigates five main problems of binary choice but the conclusions obtained 

can easily be generalized and extended to other classification situations in economics, business, 

and possibly, beyond. The datasets, classification problems, observations, and original references 

are summarized in Table 2. The reader is directed to the original papers for further details on the 

data and its structure. The first three problems are also described and modeled in Gerunov (2020), 

where the author applies a total of seven algorithms and compares their performance.  

 

Using the five datasets under investigation we select 136 classification algorithms and use all the 

features of the original data to train a model on them. In order to minimize the risk of overfitting 

and produce reliable results, we divide data into two subsets – one for training (the train set that 

consists of 80% of the sample), and one for testing (the test set that is the remaining 20% of the 

sample). We only use the test set to obtain out-of-sample classifications. In this testing, we 

calculate the area under the ROC curve of each algorithm, and also measure its complexity. As an 

approximation to the measure of complexity, we use the time required to calculate a given 

algorithm, standardizing the longest required time at 100% and presenting the remaining times as 

fraction of it. Therefore, the measure of complexity varies between 0% and 100%.  

 

The computation time of an algorithm is highly dependent on the infrastructure used and the 

implementation method, and it is of particular importance whether the computation is distributed 

or not. It is misleading to report "raw" time as it will depend on the machines or clusters of 

machines used. The complexity measure partially solves this problem by resorting to relative 

numbers rather than absolute values. While there are some outstanding issues such as that 

computation time varies by processor type, architecture, load management, and other platform and 

infrastructure specific, the complexity measure is still a satisfactory approximation to how 

resource-intensive a given algorithm is. 



 

V. Results 

 

1. Direct Marketing Campaign Data 

One of the main activities of a modern organization is attracting new customers or expanding 

relationships with existing ones. An example of the latter is conducting direct marketing initiatives 

to current customers, offering them a new product or service or an upgraded version of the one 

they are currently using. In these cases of direct marketing, the organization often has sufficient 

data before contacting customers so that their behavior can be modeled using statistical algorithms. 

The main problem with such campaigns is the realization of the risk of a client refusing the offered 

offers, so that the resources directed to that specific user are unproductive. While it is virtually 

impossible to achieve complete certainty as to whether a contact will lead to a successful sale, it 

is quite possible to model each potential contact and predict the probability of success. In this way, 

organizational resources can be directed to contacting customers with a high probability of success, 

thus minimizing the risk of unnecessary time and money spent. We thus use the algorithms under 

study to fit classification models with the offer acceptance as a target dependent variable. 

 

The predictive accuracy of the methods considered is summarized in the histogram in Figure 3. 

First, the significant variation in accuracy between the different algorithms used is striking. Even 

if we ignore the extreme values (positive and negative), the bulk of the distribution changes from 

0.5 to 0.78. This suggests that some algorithms are significantly better suited to a particular type 

of task than others. In this sense, choosing the right classification algorithm can lead to a very 

significant difference in the results generated and hence in the business value created. Secondly, 

we note that the distribution shown is close to normal, with a peak around AUROC = 0.7. This 

would be the expected predictive accuracy of the "average" algorithm that accomplishes this task. 

Third, we take into account the relatively high number of algorithms that do not add value (area 

below the curve of 0.5), emphasizing that they should be avoided. 

 



 

Figure 3: Histogram of Classifier Accuracy in Portuguese Marketing Campaign Data 

 

The top ten classification methods with the best results are presented in Table 3. It is noteworthy 

that various models of discriminant analysis perform extremely well in this task, with the robust 

regularized linear discriminant analysis (rrlda) having an area under the operating characteristic 

curve of 0.82.  

 

Table 3: Top 10 Most Accurate Classifiers for Direct Marketing Campaign Data 

Algorithm Type Implementation 

Method 

Area under 

ROC Curve 

Complexity 

Measure 

Robust Regularized Linear Discriminant Analysis rrlda 0.824 1.8% 

Soft Independent Modeling of Class Analogies, 

SIMCA 
CSimca 0.773 0.3% 

Rule-Based Classifier JRip 0.767 7.8% 

Mixture Discriminant Analysis mda 0.764 0.1% 

Conditional Inference Tree ctree 0.762 0.3% 

C4.5-like Trees J48 0.754 3.0% 

Model Averaged Neural Network avNNet 0.740 3.9% 

ROC-Based Classifier rocc 0.738 0.7% 

Bagged AdaBoost AdaBag 0.734 2.3% 

Tree-Based Ensembles nodeHarvest 0.734 56.7% 

 



Decision trees and different types of ensemble algorithms also rank among the top ten classifiers, 

with the area under the ROC curve for algorithms in places 2 to 10 varying from 0.73 to 0.77. We 

also emphasize that the most accurate classification is not achieved by the most resource-intensive 

algorithms, and the top 10 include optimized and relatively fast algorithms. 

 

2. Credit Card Debt Data 

Credit card debt service is a key problem in the financial sector, as failure to do so and potential 

fraud can have a significant effect on the financial flows and solvency of their dependent 

organizations. In this context, it is particularly important to choose the optimal algorithm, and even 

small improvements in predictive accuracy can lead to unlocking significant value for lenders. For 

this purpose, we perform a comprehensive testing of 136 basic algorithms in the field of machine 

learning and analyze their accuracy in classification. 

 

 

Figure 4: Histogram of Classifier Accuracy in the Taiwan Credit Card Debt Data 

 

Figure 4 summarizes the predictive accuracy data of the alternative algorithms, measured as the 

area under the performance curve (ROC curve). A large number of the considered algorithms have 

an AUROC of about 0.50, which is a result equal to the chance - therefore this first peak of the 



distribution shows the unfavorable algorithms for this task. In the histogram, we also observe a 

second peak with values around 0.65, with the vast majority of the algorithms considered 

concentrated precisely in the range of 0.62 to 0.68. The best algorithms tend to reach an area of 

0.7, but in reality none exceeds this limit. We regard the classification task on credit card data as 

relatively difficult, which also explains the results obtained. 

 

The top ten classification methods are presented in Table 2. It is noteworthy that the group is 

dominated by two main types of models – that of support vector machines and classification and 

regression trees (CART). The highest score is the polynomial kernel support vector machine, 

calculated using the least squares method with AUROC = 0.684, followed by the C5.0 type 

decision trees and three other variations of the support vector machines (all with AUROC - 0.682). 

The top ten list two more tree-based methods, one ROC-based classifier and an ensemble adaptive 

gain model. 

 

Table 4: Top 10 Most Accurate Classifiers for Credit Card Debt Data 

Algorithm Type Implementation 

Method 

Area under 

ROC Curve 

Complexity 

Measure 

Least Squares Support Vector Machine with 

Polynomial Kernel 
svmPoly 0.684 1.1% 

Single C5.0 Ruleset C5.0Rules 0.682 0.1% 

SVM Linear Weighted svmLinearWeights 0.682 0.6% 

SVM Linear svmLinear 0.682 0.2% 

SVM Linear2 svmLinear2 0.682 0.2% 

ROC-Based Classifier rocc 0.680 0.2% 

CART rpart1SE 0.679 0.1% 

Bagged AdaBoost AdaBag 0.677 37.4% 

Boosted Tree bstTree 0.677 1.9% 

Boosted Classification Trees ada 0.673 3.2% 

 

We note that the accuracy of all these algorithms is very similar, and in practice relatively small 

differences will be observed, which would only be relevant when processing large data sets. As 

long as it takes time to calculate, the best algorithms are again not the most resource intensive. The 

optimal method is nearly one hundred times faster than the slowest one, the second best one is a 

thousand times faster and the third one is 167 times faster. This shows that in this task again we 

see an opportunity for balancing between the computational load and the accuracy of the results 

obtained. 



 

3. German Credit Data 

Credit risk modeling is a classic classification task and standard machine learning algorithms can 

be applied to it. We apply all the algorithms under study to this problem and present the summary 

results in Figure 5. The distribution observed in this case differs significantly from the normal one. 

We observe a peak of algorithms with predictive accuracy around chance (AUROC = 0.5), 

followed by a relatively uniform distribution of algorithms with predictive accuracy in the range 

0.52 to 0.64. Many of the algorithms discussed have an accuracy in the range of 0.68 to 0.70, 

which can be said to be our expectation of an "average" algorithm suitable for this particular task. 

There are a small number of algorithms with AUROC> 0.70, which are the best performing 

classifiers for the target variable (loan repayment). 

 

 

Figure 5: Histogram of Classifier Accuracy in the German Credit Data 

 

The top ten classifiers with the highest predictive accuracy are presented in Table 4. All of them 

have an area below the ROC curve of at least 0.7, with the best being the regularized random forest 

(AUROC = 0.73). It is noteworthy that this group is dominated by implementation of the Random 

Forest algorithm that account for half of the top ten algorithms. Additionally, gradient boosting 



methods, one specific type of neural network (multilayer perceptron), and a version of discriminant 

analysis (localized linear discriminant analysis) also perform very well. Again, the most 

computationally demanding algorithms do not produce the best results. The most accurate 

classifier is 2.6 times faster than the most resource-intensive one, and the second most accurate is 

13.5 times faster. 

 

Table 5: Top 10 Most Accurate Classifiers for German Credit Data  

Algorithm Type Implementation 

Method 

Area under 

ROC Curve 

Complexity 

Measure 

Regularized Random Forest RRF 0.730 38.5% 

eXtreme Gradient Boosting xgbLinear 0.718 7.4% 

Regularized Random Forest RRFglobal 0.712 5.2% 

eXtreme Gradient Boosting xgbDART 0.707 26.3% 

Multi-Step Adaptive MCP-Net msaenet 0.702 5.1% 

Random Ferns rFerns 0.701 2.0% 

Localized Linear Discriminant Analysis loclda 0.701 0.8% 

Random Forest rf 0.700 1.7% 

Random Forest ranger 0.698 1.6% 

Gradient Boosting Machine gbm 0.698 0.2% 

 

4. Polish Companies Default Data 

Determining whether a given company will default or not is a significant challenge. Using rich 

financial data on Polish companies, we are able to investigate the performance of different 

approaches to solving this classification problem. All the investigated models are calculated on a 

training sample and their predictions are tested on a test sample. The distribution of their accuracy, 

measured by the area under the performance curve, is summarized in the histogram Figure 6. A 

huge number (over 40) of the estimated algorithms have a predictive accuracy of about AUROC 

= 0.5, which is exactly equal to classification by chance. The difficulty of the task is also 

emphasized by the fact that there are some algorithms with an area under the ROC curve of less 

than 0.5, which is worse than a randomly generated forecast. We observe a slight peak in predictive 

accuracy at AUROC values of 0.6, with the best classification algorithms reaching AUROC 

predictive accuracy above 0.7. We note significant differences between the results of the different 

methods with only a minority of approaches displaying fairly high predictive accuracy. 



 

Figure 6: Histogram of Classifier Accuracy for Polish Company Defaults Data 

 

The ten most accurate algorithms are presented in Table 5. The best performer among them is the 

robust soft independent modeling of class analogies, RSIMCA. This method is relatively obscure 

in the field of economics and business, but essentially involves supervised analysis that separates 

data into major components and constructs subspaces based on those components that are 

subsequently used for classification. For more details, we direct the reader to the original 

development of Brandon & Hubert (2005), as well as to the study of Fauziyah et al. (2018). 

 

Table 6: Top 10 Most Accurate Classifiers for Polish Companies Default Data 

Algorithm Type Implementation 

Method 

Area under 

ROC Curve 

Complexity 

Measure 

Robust SIMCA RSimca 0.733 0.3% 

Patient Rule Induction Method PRIM 0.721 100.0% 

Random Ferns rFerns 0.714 1.7% 

CART rpart1SE 0.693 0.1% 

CART rpart2 0.693 0.0% 

Single C5.0 Ruleset C5.0Rules 0.693 0.2% 

Rule-Based Classifier PART 0.679 0.3% 

Regularized Random Forest RRF 0.676 35.6% 

Shrinkage Discriminant Analysis sda 0.676 0.2% 

Bagged AdaBoost AdaBag 0.674 0.9% 



 

The RSIMCA model has an area under the ROC curve of 0.733 and is more than three hundred 

times faster than the slowest algorithm - the Patient Rule Induction Method, which is second in 

predictive accuracy with 0.721. Third, with very close predictive accuracy (AUROC - 0.714), 

ranks random trees, followed by six other methods in the decision tree or random forest family. 

They are all relatively fast and require relatively less computational resources. Tenth place is held 

by a specific method for discriminant analysis, which registers a relatively high accuracy – 

AUROC = 0.676.  

 

5. Online Purchases Data 

The final task is to find the optimal classification algorithm for online user behavior research. our 

goal here is to predict whether a customer in e-commerce setting will make a purchase or not. The 

summary results for algorithm predictive accuracy are shown in the histogram in Figure 7.  

 

 

Figure 7: Histogram of Classifier Accuracy for Online Purchases Data 

 

The average predictive accuracy in the classification of online behavior is significantly higher than 

the other situations considered. It is noteworthy that the AUROC distribution is characterized by 



two peaks – one around AUROC = 0.70-0.75 and the other – around 0.85-0.90. The best 

classification algorithm scores even above 0.90. We also consider the significant variance in the 

results of the calculated methods. Very few of them have results close to chance, and a significant 

minority also report very high predictive accuracy. The ten most accurate algorithms are presented 

in Table 6. The rotation forest has the best performance with AUROC = 0.902, followed by the 

random forest with weighted spaces (0.889), the PRIM method (0.886), a boosted decision tree 

(0.885), and a series of methods from the classification and regression family (all with 0.880). We 

consider the family of classification and regression trees (CART), as the most optimal approach 

for solving this particular problem. 

 

Table 7: Top 10 Most Accurate Classifiers for Online Purchases Data 

Тип алгоритъм Метод Площ под 

ROC-крива 

Мярка за 

комплексност 

Rotation Forest rotationForestCp 0.902 1.0% 

Weighted Subspace Random Forest wsrf 0.889 4.4% 

Patient Rule Induction Method PRIM 0.886 14.3% 

Boosted Tree bstTree 0.885 1.4% 

CART rpart 0.880 0.0% 

CART or Ordinal Responses rpartScore 0.880 1.4% 

Conditional Inference Tree ctree2 0.880 0.1% 

C5.0 C5.0 0.879 0.3% 

Cost-Sensitive C5.0 C5.0Cost 0.879 0.7% 

DeepBoost deepboost 0.876  4.9% 

 

In terms of the time and resources required to calculate these methods, we emphasize that again 

the most resource-intensive methods do not produce the most accurate forecast. On the contrary, 

the optimal algorithm needs 100 times less time for computation than the slowest algorithm, and 

we observe similar and better ratios in the other methods as well. This underlines the possibility to 

simultaneously optimize both the accuracy and the IT resources and computing infrastructure 

required. 

 

VI. Comparison and Discussion 

 

The results obtained allows us to make a few preliminary observations on the applicability and 

utility of a wide range of machine learning classification methods. First, the best performing 



algorithms are not the same for each of the considered problems – in each of the individual  

classification tasks a different approach performs best. This is probably due to the fact that different 

families of algorithms and their specific implementations are better suited to certain types of data, 

but they do worse with other types. This is a clear manifestation of the well-known no free  lunch 

theorem (Branden & Hubert, 2005) and emphasizes that it is suboptimal to use one and the same 

method for every type of classification problem. 

 

Second, we note that the predictive accuracy between different algorithms can vary significantly. 

Figure 8 summarizes the distribution of the averaged values of the area under the performance 

curve for all algorithms considered. Average predictive accuracy ranges from AUROC = 0.50 to 

0.74. This emphasizes that the importance of choosing the optimal algorithm is not only 

theoretically justified but can have significant practical implications. This result further 

emphasizes the importance of comprehensively seeking out the best performing algorithms for a 

given task, as improvements in predictive accuracy have the potential to generate enormous 

business value given sufficient scale of application. 

 

 

Figure 8: Histogram of Average Classifier Accuracy across All Problems 

 



Third, we note that certain families of algorithms tend to perform better than others. In particular, 

different implementations of the Random Forest (or CART) family are often among the best 

peformers in solving each of the problems considered. In the analysis we noticed a common 

tendency for them to adjust to the particularities of the training data (i.e. to overfit it), but they still 

show excellent results in the test sample. Focusing on the traditional econometric tools, it seems 

that the linear discriminant analysis in its various implementations displays relatively good 

classification accuracy. Since this family of methods is in most cases highly optimized, they could 

be a reasonable compromise in situations where a considerable amount of data needs to be 

analyzed with limited computing resources. 

 

 

Figure 9: Relationship between Classification Accuracy and Estimation Time 

 

Fourth, the most computationally intensive algorithms do not necessarily produce the most 

accurate class predictions. In each of the tasks considered, the best classification method is not the 

one that takes the most resources to calculate it. Figure 9 graphically presents this relationship 

between the mean area under the ROC curve for all methods on all tasks and the log of time 

required to evaluate them. The visual inspection reveals a weak positive relationship between the 

two, but when investigated within a linear regression model, this relationship does not reach 



statistical significance (p = 0.323). Thus, it is possible to identify the optimal tradeoff between 

predictive accuracy and required computational resources in in order to generate as much value as 

possible from solving the classification task. 

 

Results clearly show the potential for introducing novel machine learning algorithms to solve 

salient problems of discrete choice in the realm of business and economics. The research shows 

that we are able to identify novel methods that consistently outperform traditional econometric 

tools for binary classification such as the logistic regression or the linear discriminant analysis. 

Sometimes the differences in performance are large in size and such an improvement may have a 

potentially significant effect for practical applications. This holds particularly true for high-stakes 

decision situations such as credit risk scoring. Across all the reviewed methods and situations, we 

observed a robust trend that the family of Random Forest algorithms show consistently high 

performance, and thus recommend their more complete inclusion into the toolbox of standard 

econometric tools. More exotic methods sometimes do achieve somewhat higher classification 

accuracy, but this is often at the cost of increased computational resources. The linear discriminant 

analysis seems to be the algorithm of choice when solving big data classification problems with 

significant resource constraints. 

 

VII. Conclusion  

 

This short article tackles a basic question in modeling binary choices – what classification 

algorithm is likely to produce best results in terms of classification accuracy, thus enabling the 

researcher to glean more insight from data. Recognizing the wide variety of different and highly 

specific discrete choice problems in economics and business, we focused this exercise on five 

specific decision situations of assigning class: modeling consumer acceptance during direct 

marketing campaigns, predicting credit card debt defaults, credit risk scoring by a bank, predicting 

company defaults, and understanding online purchase decisions. Building upon data from previous 

research we tested a high number of alternative econometric and machine learning algorithms for 

classification and measured their performance. 

 



This allows us to compare 136 of the most popular decision algorithms in terms of both their 

classification accuracy as measured by the area under the ROC curve, as well as in terms of their 

computational resource intensity. It seems that irrespective of the classification tasks, novel 

machine learning algorithms robustly outperform traditional econometric approaches such as the 

logistic regression. The latter more traditional methods are useful in situations of smaller datasets 

and limited computational resources, and even then the linear discriminant analysis should be 

preferred to the logistic regression. Among all the methods tested, implementations of the Random 

Forest (CART) family outperform almost any other method. This leads us to recommend their 

more thorough study as potential tool that can usefully complement the current econometrics 

toolbox. 
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Appendix: Reference List of Algorithms Used 

The statistical part of the paper is conducted in the R language for statistical computing, and the 

algorithm implementations are accessed through the R Caret package. For more information on 

the package we direct the reader to Kuhn (2008) and subsequent papers. 

 

Table A1: A List of Tested Algorithms 

# Algorithm Name Implementation Method 

1 Adjacent Categories Probability Model for Ordinal Data vglmAdjCat 

2 Bagged CART treebag 

3 Bagged Flexible Discriminant Analysis bagFDA 

4 Bagged MARS bagEarth 

5 Bagged MARS using gCV Pruning bagEarthGCV 

6 Bayesian Generalized Linear Model bayesglm 

7 Boosted Generalized Linear Model glmboost 

8 Boosted Tree blackboost 

9 C5.0 C5.0 

10 CART 1 rpart 

11 CART 2 rpart1SE 

12 CART 3 rpart2 

13 CART or Ordinal Responses rpartScore 

14 Conditional Inference Random Forest cforest 

15 Conditional Inference Tree 1 ctree 

16 Conditional Inference Tree 2 ctree2 

17 Continuation Ratio Model for Ordinal Data vglmContRatio 

18 Cost-Sensitive C5.0 C5.0Cost 

19 Cost-Sensitive CART rpartCost 

20 DeepBoost deepboost 

21 eXtreme Gradient Boosting 1 xgbDART 

22 eXtreme Gradient Boosting 2 xgbTree 

23 Flexible Discriminant Analysis fda 

24 Generalized Linear Model glm 

25 Generalized Linear Model with Stepwise Feature Selection glmStepAIC 

26 Model Averaged Neural Network avNNet 

27 Multivariate Adaptive Regression Spline earth 

28 Multivariate Adaptive Regression Splines gcvEarth 

29 Neural Network nnet 

30 Neural Networks with Feature Extraction pcaNNet 

31 Penalized Discriminant Analysis pda 

32 Penalized Discriminant Analysis pda2 

33 Penalized Multinomial Regression multinom 

34 Random Forest ranger 

35 Single C5.0 Ruleset C5.0Rules 

36 Single C5.0 Tree C5.0Tree 

37 Stochastic Gradient Boosting gbm 

38 Tree Models from Genetic Algorithms evtree 

39 Bagged AdaBoost AdaBag 

40 Ensembles of Generalized Linear Models randomGLM 

41 Parallel Random Forest parRF 

42 Random Ferns rFerns 



43 Random Forest rf 

44 Random Forest by Randomization extraTrees 

45 Random Forest Rule-Based Model rfRules 

46 Regularized Random Forest RRF 

47 Regularized Random Forest RRFglobal 

48 Weighted Subspace Random Forest wsrf 

49 Bayesian Additive Regression Trees bartMachine 

50 Naive Bayes naive_bayes 

51 Naive Bayes nb 

52 AdaBoost Classification Trees adaboost 

53 AdaBoost.M1 AdaBoost.M1 

54 Boosted Classification Trees ada 

55 Boosted Linear Model BstLm 

56 Boosted Logistic Regression LogitBoost 

57 Boosted Tree bstTree 

58 eXtreme Gradient Boosting xgbLinear 

59 L2 Regularized Linear Support Vector Machines with Class Weights svmLinearWeights2 

60 Linear Support Vector Machines with Class Weights svmLinearWeights 

61 Support Vector Machines with Class Weights svmRadialWeights 

62 Distance Weighted Discrimination with Polynomial Kernel dwdPoly 

63 Distance Weighted Discrimination with Radial Basis Function Kernel dwdRadial 

64 Factor-Based Linear Discriminant Analysis RFlda 

65 Heteroscedastic Discriminant Analysis hda 

66 High Dimensional Discriminant Analysis hdda 

67 Linear Discriminant Analysis lda 

68 Linear Discriminant Analysis lda2 

69 Linear Discriminant Analysis with Stepwise Feature Selection stepLDA 

70 Linear Distance Weighted Discrimination dwdLinear 

71 Localized Linear Discriminant Analysis loclda 

72 Maximum Uncertainty Linear Discriminant Analysis Mlda 

73 Mixture Discriminant Analysis mda 

74 Quadratic Discriminant Analysis qda 

75 Quadratic Discriminant Analysis with Stepwise Feature Selection stepQDA 

76 Regularized Discriminant Analysis rda 

77 Robust Regularized Linear Discriminant Analysis rrlda 

78 Shrinkage Discriminant Analysis sda 

79 Sparse Linear Discriminant Analysis sparseLDA 

80 Sparse Mixture Discriminant Analysis smda 

81 Stabilized Linear Discriminant Analysis slda 

82 Sparse Distance Weighted Discrimination sdwd 

83 Rotation Forest rotationForest 

84 Rotation Forest rotationForestCp 

85 Tree-Based Ensembles nodeHarvest 

86 Partial Least Squares kernelpls 

87 Partial Least Squares pls 

88 Partial Least Squares simpls 

89 Partial Least Squares widekernelpls 

90 Sparse Partial Least Squares spls 

91 Gaussian Process gaussprLinear 

92 Gaussian Process with Polynomial Kernel gaussprPoly 

93 Gaussian Process with Radial Basis Function Kernel gaussprRadial 

94 Generalized Additive Model using LOESS gamLoess 

95 Generalized Additive Model using Splines bam 



96 Generalized Additive Model using Splines gam 

97 glmnet glmnet 

98 Multi-Step Adaptive MCP-Net msaenet 

99 Penalized Ordinal Regression ordinalNet 

100 C4.5-like Trees J48 

101 Logistic Model Trees LMT 

102 Nearest Shrunken Centroids pam 

103 Rule-Based Classifier JRip 

104 Rule-Based Classifier PART 

105 Single Rule Classification OneR 

106 L2 Regularized Support Vector Machine (dual) with Linear Kernel svmLinear3 

107 
Least Squares Support Vector Machine with Radial Basis Function 

Kernel 
lssvmRadial 

108 Support Vector Machines with Linear Kernel svmLinear 

109 Support Vector Machines with Linear Kernel svmLinear2 

110 Support Vector Machines with Polynomial Kernel svmPoly 

111 Support Vector Machines with Radial Basis Function Kernel svmRadial 

112 Support Vector Machines with Radial Basis Function Kernel svmRadialCost 

113 Support Vector Machines with Radial Basis Function Kernel svmRadialSigma 

114 Regularized Logistic Regression regLogistic 

115 Multi-Layer Perceptron mlpWeightDecay 

116 Multi-Layer Perceptron, multiple layers mlpWeightDecayML 

117 Penalized Logistic Regression plr 

118 Radial Basis Function Network rbfDDA 

119 Robust SIMCA RSimca 

120 Monotone Multi-Layer Perceptron Neural Network monmlp 

121 Multi-Layer Perceptron mlp 

122 Multi-Layer Perceptron, with multiple layers mlpML 

123 Stacked AutoEncoder Deep Neural Network dnn 

124 Partial Least Squares Generalized Linear Models plsRglm 

125 Patient Rule Induction Method PRIM 

126 Greedy Prototype Selection protoclass 

127 k-Nearest Neighbors kknn 

128 k-Nearest Neighbors knn 

129 Learning Vector Quantization lvq 

130 Optimal Weighted Nearest Neighbor Classifier ownn 

131 Stabilized Nearest Neighbor Classifier snn 

132 SIMCA CSimca 

133 ROC-Based Classifier rocc 

134 Fuzzy Rules Using Chi’s Method FRBCS.CHI 

135 Fuzzy Rules with Weight Factor FRBCS.W 

136 Self-Organizing Maps xyf 

 

 




