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Abstract: This paper brings as novelty for the Romanian literature the construction of 

Bayesian forecast intervals for inflation and unemployment rate in the period 2004-2017. 

Only few intervals included the registered values on the variables, but in the last stage when 

all the prior information has been used, the forecast intervals are very short. On the other 

hand, a novelty for the international literature is brought in this research by proposing a 

Bayesian technique for assessing prediction intervals in a better way than in the traditional 

approach that uses statistic tests. 
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1. Introduction 

 

The main aim of this paper is to build forecast intervals for inflation and 

unemployment rate by using the Bayesian method. Moreover, an alternative method 

to Christoffersen (1998, p. 842) tests to assess the forecast intervals is proposed by 

using a Bayesian approach. In Romania, few papers were dedicated to prediction 

intervals, even if this is a priority for National Bank of Romania in the context of 

inflation targeting and uncertainty evaluation. 

The Bayesian forecast intervals consider different degrees of uncertainty. A lower 

degree of uncertainty is associated with a shorter interval, but there are high chances 

for the registered value to be out of the prediction interval. 

Forecast intervals help policy-makers in selecting the future macroeconomic policy, 

but taking into consideration that inflation or unemployment is located in a certain 

interval. For National Bank of Romania some uncertainty intervals are built for the 

inflation rate in the context of this indicator targeting, but the intervals are based on 

the extrapolation of the mean errors corresponding to past projections. On the other 

hand, it would be useful for National Bank of Romania to use a fan chart in 

reporting the degree of uncertainty corresponding to their predictions. This fan chart 

is based on the calculation of some objective probabilities. 

The paper continues as follows. After the methodological background of the 

literature realizations, Bayesian forecast intervals are built and the results from a 

sample are processed in order to evaluate the intervals. The last section brings 

conclusions. 

 

2. Assessing forecast intervals  

 

Information about predictions’ accuracy is not reflected by point predictions 

(Clements, 2014, p. 208). Therefore, it is useful to use forecast intervals that permit 

the quantification of future uncertainty. Moreover, other advantages of forecast 

intervals are: prediction methods comparisons and establishment of desired 

strategies to get a certain target. 
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For Romania, Bratu (2012, p. 146) and Simionescu (2015, p. 90) built some forecast 

intervals for unemployment and inflation rate. The historical errors method was 

applied by keeping constant a certain error measure. On the other hand, another 

method for constructing prediction intervals is bootstrap method. It is used when the 

sample’ distribution is not known. 

An alternative to bootstrap method is the grid bootstrap employed by Gospodinov 

(2002, p. 87) for calculating the median without any bias. In this case, there should 

be a high persistence of the modeled variable. However, this methods has as 

disadvantage the intensive computation (Guan, 2003, p. 79). Consistent estimators 

for the conditional distribution are considered in the intervals based on sieve 

bootstrap. It is a non-parametric method used by Alonso, Pena and Romo (2003, p. 

185). 

Surprisingly, in literature there are only few studies that were interested in building 

Bayesian prediction intervals. Hamada et al. (2004, p. 454) proposed Bayesian 

forecast intervals that include a part from a finite number of values with a specified 

probability. A comparison of these intervals with tolerance intervals is made. Smith 

et al. (2009, p. 215) proposed an algorithm for estimating forecast intervals based on 

Bayesian predictions model. Wallis (2003, p. 26) assessed forecast intervals by 

making inferences on p-values. Christoffersen (1998, p. 34) described various 

coverage tests used in assessing the forecast intervals (conditional, unconditional 

and independent coverage tests).                     

 

I. Likelihood ratio (LR) tests 

Let us consider a chronological series for the prediction intervals. Let us establish a 

probability of π that the value be inside that interval. Time series for registered and 

predicted values are considered and the aim is to check if the ex-ante probability that 

registered value be in the prediction interval is correct. A number of  values are in 

the forecast intervals and a number of intervals are outside. The coverage 

probability represents a ratio: p= /n. we have a binomial distribution. Under the 

null hypothesis, the likelihood is computed as: . Under the 
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alternative hypothesis likelihood becomes: . Likelihood ratio 

statistic is:  

This is the unconditional coverage test, which is rather unsuitable for chronologic 

series. Therefore, another test was proposed by Christoffersen (1998, p. 845) by 

combining the unconditional coverage test with the independence test. 

The independence test uses the matrix of transition frequencies  that represents 

the number of values in state i at time (t-1) and in stat j at time t. Maximal likelihood 

estimations are considered for transition probabilities. It is a ratio between 

frequencies in a cell and total frequencies of a line. Two situations are taken into 

consideration: the value is inside or it is outside the interval, which corresponds to 1 

and 0. The transition matrix for these estimated probabilities is: 

 

The likelihood associated to P is: . 

The null hypothesis for the independence test states that the (t-1) and t states are 

independent, which means that  

The maximal likelihood estimator for joint probability is:  The likelihood 

under the null hypothesis evaluated for the value of p is: 

The LR test statistic will be:  Christoffersen (1998, p. 

850) combined the unconditional coverage test with independence test resulting: 

 

In the case that the first observation is eliminated, we have : = + . 
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II. Chi-square ( ) tests  

Likelihood ratio tests are equivalent, in statistic terms, with Pearson’s goodness-of-

fit tests. Wallis (2008, p. 20) utilized them for assessing forecast intervals. 

The Chi-square test for unconditional coverage is based on:  .  

Let the matrix of observed frequencies be . In this case, the test statistic is: 

�� =
�(���	
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The conditional coverage test linked with the independence test is based on 

contingency table for observed frequencies and expected frequencies. The null 

hypothesis states independent lines and the coverage probability is . The expected 

frequencies matrix is: . The test has 2 degrees of 

freedom. The statistic is a sum of square normal standard statistics for samples 

proportions. For each table’s row, a proportion is given.  For small samples, the sum 

of LR statistics cannot be transposed in chi-square test terms. In the proposed 

method for forecast interval assessment I will use the Bayesian approach and I will 

compute a probability for each prediction interval. 

 

3. Assessing forecast intervals for inflation and unemployment rate in 

Romania 

 

The forecast intervals might be constructed using the Bayesian approach that allows 

for different degrees of uncertainty that are caused by the quantity of available data. 

We start from the data for inflation and unemployment rate that were provided by 4 

experts in forecasting. The forecasts’ averages, the selection variances and the 

intervals for each year are computed. A level of significance of 5% is considered.  

According to Bayesian approach, prior information should increase the estimations’ 

accuracy. In the case of intervals’ construction, the Bayesian approach supposes 
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getting shorter intervals. In the first stage, the case of total uncertainty is considered. 

Then, we take into consideration the predictions of first two forecasters for which 

mean, variance and intervals are calculated. In the next stages, the predictions of the 

third and the fourth provider are taken into consideration. 

The revised probability density is calculated using the information about average. A 

weighted average is computed using as weights the inverse of variances. That 

information with lower dispersion is more accurate and it will receive a larger 

weight. The last interval includes all the information regarding predictions for the 

considered variables. 

 

 

Table 1. Bayesian forecast intervals for inflation rate in Romania 

(horizon: 2004-2017) 

 
Year Selection 

mean 

Selection 

dispersion 

Bayesian forecast interval 

Stage 1  

2004 12.75 4.315 8.67 16.82 

2005 9.29 0.384692 8.08 10.51 

2006 7.08 0.411225 5.82 8.33 

2007 5.13 2.718892 1.90 8.36 

2008 4.53 2.773267 1.26 7.79 

2009 3.56 2.282025 0.60 6.52 

2010 3.88 4.743267 -0.38 8.14 

2011 4.55 0.376667 3.34 5.75 

2012 5.27 4.229167 1.24 9.30 

2013 3.77 1.595833 1.29 6.25 

2014 1.13 1.266233 -1.07 3.34 

2015 1.02 1.225853 -0.58 3.15 

2016 0.92 1.027453 -0.76 2.29 

2017 1.23 1.936237 0.92 1.87 
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Year Selection 

mean 

Selection 

dispersion 

Bayesian forecast interval 

Stage 2  

2004 14.05 5.78 9.33 18.76 

2005 9.09 0.49005 7.72 10.46 

2006 6.66 0.03645 6.29 7.03 

2007 4.01 0.03645 3.64 4.38 

2008 5.16 6.5522 0.14 10.17 

2009 2.37 1.08045 0.33 4.41 

2010 2.06 0.4802 0.70 3.41 

2011 5.05 0.005 4.91 5.18 

2012 4.55 0.005 4.41 4.68 

2013 4.75 0.005 4.61 4.88 

2014 0.22 0.2048 -0.66 1.10 

2015 0.78 0.0186 -0.22 2.56 

2016 0.55 0.2925 0.16 2.46 

2017 1.01 0.3438 1.03 1.57 

Stage 3  

2004 13.33 4.430833 9.20 17.45 

2005 9.06 0.248033 8.08 10.03 

2006 6.77 0.055633 6.31 7.23 

2007 4.34 0.341633 3.19 5.48 

2008 4.64 4.0873 0.67 8.60 

2009 3.08 2.045433 0.28 5.88 

2010 3.44 5.9533 -1.34 8.22 

2011 4.63 0.523333 3.21 6.05 

2012 4.26 0.243333 3.29 5.23 

2013 4.33 0.523333 2.91 5.75 

2014 0.71 0.832533 -1.07 2.50 

2015 1.02 0.342856 -0.10 2.04 

2016 0.75 0.337697 0.29 1.04 

2017 1.13 0.337524 0.97 1.14 

Stage 4  

2004 13.69 0.063458 13.19 14.18 

2005 9.07 0.065753 8.57 9.58 

2006 6.72 0.067797 6.21 7.23 

2007 4.17 0.070093 3.66 4.69 

2008 4.90 0.071301 4.37 5.42 

2009 2.72 0.071514 2.20 3.25 

2010 2.75 0.07486 2.21 3.28 

2011 4.84 0.069767 4.32 5.35 

2012 4.40 0.070755 3.88 4.92 

2013 4.54 0.085227 3.96 5.11 

2014 0.46 0.070012 -0.05 0.98 

2015 0.67 0.056390 0.05 0.87 

2016 0.48 0.447939 0.38 0.76 

2017 0.67 0.227845 0.44 0.87 
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For computing the intervals in the last stage, some weights are used (w1 and w2). 

These weights are computed as inverse of variances from the previous two stages. 

The mean is computed as arithmetic average of the means in the previous two 

stages, while variance is the inverse of the sum of weights. 

The results indicated that the intervals from the last stage are shorther than those 

based on prior information or on experts’ opinions. However, only one interval (that 

for 2008) included the registered one. 

 

Table 2. Bayesian forecast intervals for unemployment rate in Romania 

(horizon: 2004-2017) 

Year Selection 

mean 

Selection 

dispersion 

Bayesian forecast interval 

Stage 1  

2004 7.97 0.054692 7.51 8.43 

2005 7.74 0.096358 7.13 8.35 

2006 7.49 0.130967 6.78 8.20 

2007 7.34 0.2271 6.41 8.27 

2008 7.19 0.318225 6.08 8.29 

2009 7.43 1.032133 5.43 9.42 

2010 7.11 0.923225 5.23 9.00 

2011 7.25 0.043333 6.84 7.65 

2012 7.1 0.046667 6.67 7.52 

2013 6.32 1.0425 4.32 8.32 

2014 7.03 0.039033 6.64 7.42 

2015 6.9 0.036577 6.75 7.25 

2016 6.56 0.046578 6.45 7.20 

2017 6.04 0.559754 5.98 6.34 

Stage 2  

2004 7.85 0.08405 7.28 8.01 

2005 7.54 0.12005 6.86 7.78 

2006 7.29 0.2048 6.40 7.69 

2007 7.04 0.3042 5.95 7.63 

2008 6.93 0.68445 5.31 8.27 

2009 6.71 0.8978 4.85 8.46 

2010 6.53 1.23245 4.35 8.95 

2011 7.1 0.02 6.82 7.13 

2012 7 0.02 6.72 7.03 

2013 5.6 0.98 3.65 7.52 

2014 7.17 0.0242 6.86 7.21 

2015 7.01 0.2294 6.87 7.13 

2016 6.87 0.3673 6.67 7.12 

2017 6.45 0.4386 6.05 6.28 
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Year Selection 

mean 

Selection 

dispersion 

Bayesian forecast interval 

Stage 3  

2004 7.90 0.049033 7.46 8.33 

2005 7.66 0.102033 7.03 8.28 

2006 7.46 0.1891 6.60 8.31 

2007 7.22 0.256633 6.23 8.21 

2008 7.09 0.4143 5.82 8.35 

2009 7.27 1.400933 4.95 9.59 

2010 6.82 0.865633 4.99 8.64 

2011 7.23 0.063333 6.74 7.72 

2012 7.13 0.063333 6.64 7.62 

2013 6.13 1.343333 3.86 8.40 

2014 7.11 0.021733 6.82 7.40 

2015 6.98 1.0384656 6.97 7.11 

2016 6.56 0.6573854 6.50 6.78 

2017 6.34 1.0364655 6.24 6.40 

Stage 4  

2004 5.10 7.514089 0.26 10.47 

2005 0.36 4.502814 3.79 4.52 

2006 0.04 2.538715 3.07 3.16 

2007 0.18 1.783061 2.42 2.80 

2008 5.31 0.910125 3.44 7.18 

2009 1.56 0.435022 0.27 2.85 

2010 3.21 0.476625 1.86 4.56 

2011 0.26 12 6.52 7.05 

2012 0.12 12 6.66 6.91 

2013 0.26 0.430416 1.02 1.55 

2014 0.51 21.77068 8.62 9.66 

2015 3.23 10.39444 3.15 3.25 

2016 2.06 5.485639 2.01 2.11 

2017 1.04 4.346553 1.00 1.15 

 

Even if the intervals’ length in the last stage is lower, only several intervals included 

the registered unemployment rate (forecasts’ intervals in 2008, 2011 and 2012). 20 

forecasters were randomly selected. They provided forecast intervals for inflation 

rate in 2016. After the end of 2016, when the registered value of inflation was 

obtained, five experts were randomly selected. We checked if they provided a 

forecast intervals that included the registered inflation rate. Three out of the five 

selected experts provided prediction intervals that included the registered inflation 

rate in 2016. The aim is to estimate the number of experts that offered good forecast 

intervals in the entire population of 20 forecasters. 

The estimator is seen as a confidence distribution of the possible values. Before 

selecting the 5 forecasters, no information was available about the total number of 



10 

 

experts that provided correct prediction intervals. For having a certain prior 

information, we make the assumption that half of the experts provided intervals that 

included inflation rate. In this particular case, we have a Binomial distribution: 

Binomial (50%, 20). For computing it, we will use the Excel function, if q is the 

number of people that provided the correct interval in the entire population: p(q) 

=BINOMDIST(q,20,0.5,0). 

The likelihood function is related to the sample of 5 experts from population follow 

hypergeometric distribution, where we know: total population volum (M = 20), 

sample volum (n = 5), number of experts that fulfill the required condition (x = 3). 

We do not know the number of experts in the total population of 20 people that 

offert correct intervals (q). The parameter that should be estimated is denoted by q.  

Hypgeomdist function from Excel is used to compute the likelihood function. 

I(X|q) =HYPGEOMDIST(3,5,q,20). 

Tabel 3. Estimation of q 

q Prior  

Likelihood 

function Posterior  

Normalized 

posterior 

0 9.5E-07 0 0.0E+00 0.0E+00 

1 1.9E-05 0 0 0 

2 1.8E-04 0 0 0 

3 1.1E-03 8.8E-03 9.5E-06 3.1E-05 

4 4.6E-03 3.1E-02 1.4E-04 4.6E-04 

5 1.5E-02 6.8E-02 1.0E-03 3.2E-03 

6 3.7E-02 1.2E-01 4.3E-03 1.4E-02 

7 7.4E-02 1.8E-01 1.3E-02 4.2E-02 

8 1.2E-01 2.4E-01 2.9E-02 9.2E-02 

9 1.6E-01 3.0E-01 4.8E-02 1.5E-01 

10 1.8E-01 3.5E-01 6.1E-02 2.0E-01 

11 1.6E-01 3.8E-01 6.1E-02 2.0E-01 

12 1.2E-01 4.0E-01 4.8E-02 1.5E-01 

13 7.4E-02 3.9E-01 2.9E-02 9.2E-02 

14 3.7E-02 3.5E-01 1.3E-02 4.2E-02 

15 1.5E-02 2.9E-01 4.3E-03 1.4E-02 

16 4.6E-03 2.2E-01 1.0E-03 3.2E-03 

17 1.1E-03 1.3E-01 1.4E-04 4.6E-04 

18 1.8E-04 5.3E-02 9.5E-06 3.1E-05 

19 1.9E-05 0 0 0 

20 9.5E-07 0 0 0 
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For computing the likelihood function, we will consider that the estimation q cannot 

be 0,1, or 2, because we identified in the sample a number of 3 experts that provided 

correct forecast intervals. On the other hand, q cannot be 19 or 20, because 2 experts 

were identified that they do not provide a suitable interval.   

Posterior value is computed by multiplying prior with likelihood function. The 

normalized posterior value is computed by dividing each posterior value to sum of 

posterior values.   

The peak of posterior is under the peak of prior distribution and likelihood function. 

The impact of the likelihood function was quite low, but the prior had a higher effect 

of posterior. The effect of likelihood function is low, because the selected sample 

was the low volume. The prior has a maximum value when q is 10.  

 

Fig. 1. Prior distribution, posterior distribution and likelihood for q 
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4. Conclusions 

 

In this paper, some Bayesian forecast intervals are proposed for inflation and 

unemployment rate of Romania. Compared to previous studies on prediction 

intervals, we can state that this research is the first proposal of this type of intervals 

for Romanian literature. On the other hand, we also proposed an alternative way of 

assessing forecast intervals by taking into consideration the Bayesian approach that 

links prior information to sample information. This method is very useful for 

evaluating intervals when we have only few experts that provided prediction 

intervals and we are interested in making generalizations for the entire population of 

forecasters in that country. 

The results indicated that the successive incorporation of prior information 

diminishes the forecast intervals length, but the major disadvantage is that only few 

intervals included the registered value for inflation, respectively unemployment rate. 

We considered that the Bayesian approach for assessing some forecast intervals is 

better than the traditional approach, because a precise probability is computed for 

each interval that might include the registered value. 

In a future research it is important to propose other forecast intervals based on other 

methods. A comparison between those forecast intervals with the Bayesian approach 

using the proposed method in this paper would be very useful in order to detect the 

best prediction intervals. These suitable intervals based on a certain method would 

be necessary for decision making process at macroeconomic level.  
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