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Abstract

To understand how the brain gives rise to emotional human behaviour,
modern neuroscience extensively uses computer modelling. The differential
equation for long-term memory (LTM) is an important element of a variety of
cognitive-emotional models, including the Grossberg–Schmajuk recurrent gated
dipole. Usually, such models are composed of coupled ordinary nonlinear differ-
ential equations with no analytical solution in the general case. Here we solve
analytically a special case of the LTM equation as used in the gated dipole.
In this version, the equation contains three Boolean variables, accounting for
internally generated and externally induced emotions. We develop a software
application showing the solution’s usefulness.

Key words: Recurrent gated dipole, long-term memory differential equa-
tion, emotional memory

Introduction. Human emotional memory can be created by one’s own ex-
periences and by accounts of other people’s experiences. A mathematical model
of emotional memory should be able to accommodate both sources. Such a need
arises when, for example, consumer behaviour must be understood and possibly
predicted. A consumer might feel satisfaction with a good or service when dealing
with it on their own, yet may also be influenced by other people’s opinions about
it. Putting these separate influences in one equation is a challenge, which can be
addressed step-by-step by starting with controlled laboratory studies. Recently,
such research was conducted in Sofia University’s Faculty (School) of Economics
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and Business Administration. Participants in an experiment were given the task
to accumulate a fictitious good omnium bonum, exchanged for real money after
the game. In each round they had to choose one among four suppliers (A, B, C,
and D) of the good behaving differently. For additional orientation, the partici-
pants received a Twitter-like stream of posts by other people who shared opinions
about the suppliers. This situation involves an internal and an external source of
consumer emotions, and can be modelled by the Grossberg–Schmajuk recurrent
gated dipole [1]. The latter is composed of ordinary nonlinear differential equa-
tions for neural activations, neurotransmitters, and long-term memory. However,
that model was initially designed to deal with a single source of emotion. In this
paper we modify it to receive updates from two streams. To this end we de-
velop a version of the LTM equation containing three Boolean variables, switched
on and off in unison with the source of emotional signal. Modifying the dipole
LTM equation to do multitasking and finding its analytical solution is the main
contribution of this paper.

Technical issues in neurocomputational modelling. Mathematical
models of cognition such as the gated dipole are usually composed of stiff differ-
ential equations whose solving is problematic. Often, finding suitable simplified
equations and solving them analytically is a preferred option. This approach is
especially useful with complex models where time scales span over two or three
orders of magnitude. In the past, gated dipoles and related neural networks have
been solved by combinations of numerical methods [2–5], various simplifications
[6], or combinations of simplifications and analytical solutions for special cases
[7, 8]. Of particular interest is the long-term memory equation [9] describing the
emotional memory in the recurrent gated dipole, used as the main model in the
omnium bonum experiment [10]. In the next sections we give a derivation of the
solution and show a numerical example.

Emotional memory equation. This is the equation as used to model the
experimental data:

(1)
dzik(t)

dt
= xk(t) [−h1zik(t) + uk(t)h2oi(t) + ūk(t)h2õik(t)] .

Here, zik(t) is long-term memory, storing in two synapses the individual’s
positive and negative emotions. Index k = A,B,C,D denotes the source of the
signal. Index i = 1, 2 denotes satisfaction or disappointment, respectively. This
human reaction may be a response to an event with the participant, in which
case it is denoted by oi(t), or it may be communicated by other people in the
experiment, in which case it is denoted as õik(t). Variable xk(t) is Boolean with
value 1 when a particular zik(t) is active and zero otherwise. Similarly, uk(t) is a
Boolean variable equal to 1 whenever the k-th source of activity is associated with
internal emotion õik(t), and is zero when the emotion comes from other people.
Variable ūk(t) is the negation of uk(t). Quantities h1, h2 are constants.
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Due to its nonlinearities, Eq. (1) does not admit analytical solution in the
general case. Simplifications must be introduced to solve it in a meaningful special
case. Eq. (1) is an extension of Eq. (2) below, accounting only for internally
generated emotions:

(2)
dzik(t)

dt
= xk(t) [−h1zik(t) + h2oi(t)] .

A solution to Eq. (2) can be directly extended to a solution of Eq. (1).
While the entire recurrent gated dipole is composed of three kinds of differential
equations, a substantial number of them are of the Eq. (1) kind. Here we deal
with the latter only.

Every two seconds a new message from other participants arrives through
the Twitter-like network and is suitably highlighted for 400 ms. That timing is
designed to ensure adequate attention from the participant. While there is no
guarantee that each message is attended, this is a simple way to reconcile reality
with modelling constrains. Term ūk(t)h2õik(t) in Eq. (1) accounts for the 400 ms
window of attention to the stream of messages.

First we solve Eq. (2) under certain simplifying assumptions. Then we solve
Eq. (1). Under the assumption oi =const, Eq. (2) has this solution:

(3) zik(t) =
h2
h1

oi + C1 exp[−th1xk(t)].

When t → ∞ the value of zik(t) asymptotically approaches oih2/h1, which
depends only on the constant signal oi. Let at t = t0 signal oi jump and remain
constant. The solution Eq. (3) can be rewritten as

(4) zik(t) =
h2
h1

onewi + C1 exp[−(t− t0)h1xk(t)].

By oold
i

we denote the signal value before the jump, and by onew
i

its value
after the jump. Consider a very small time interval τ , which is split in half by
the jump. Here, 0 < τ ≪ 1. Just before the change, memory zik(t) was

(5) zik(t0 − τ/2) =
h2
h1

ooldi .

From Eq. (4), at moment t = t0 + τ/2, memory zik(t) becomes

(6) zik(t0 + τ/2) =
h2
h1

onewi + C1 exp[−(t0 + τ/2− to)h1xk(t)] ≈
h2
h1

onewi + C1.

To find C1, we recall that changing zik(t) is a slow process and

(7) zik(t0 − τ/2) = zik(t0 + τ/2).

In Eq. (7) we substitute both sides for the rhs-s of Eq. (5) and Eq. (6) to
obtain

(8)
h2
h1

ooldi =
h2
h1

onewi + C1.
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The integration constant, therefore, is

(9) C1 =
h2
h1

(ooldi − onewi ).

Substituting the rhs of (9) in (4) gives

(10) zik(t) =
h2
h1

onewi +
h2
h1

(ooldi − onewi ) exp[−(t− t0)h1xk(t)],

which can be rewritten as

(11) zik(t) =
h2
h1

ooldi exp[−(t− t0)h1xk(t)] +
h2
h1

onewi {1− exp[−(t− t0)h1xk(t)]}.

Eq. (11) has an intuitive interpretation. As t → ∞, there is a grad-
ual shift from memory equilibrium around the old emotion oold

i
, given by term

(h2/h1)o
old
i

exp[−(t − t0)h1xk(t)], towards a new equilibrium around onew
i

, given
by the second term (h2/h1)o

new
i

{1− exp[−(t− t0)h1xk(t)]}.
Eq. (11) was derived assuming oold

i
=const, which is inaccurate in the general

case because oi changes two or three orders of magnitude faster than zik(t). We
now show how Eq. (11) can be modified to resolve the issue.

For convenience, discrete time notation is introduced. We substitute onew
i

=
oi(t) and set t0 = 0 as well as t = 1, 2, . . . to account for the discrete time. Now,
Eq. (11) cannot take oold

i
for moment t− 1 because zik had not had enough time

to adapt. To deal with this fact, we introduce ôold
i

. This is a hypothetical signal
which, had it been maintained for sufficiently long time, would have put zik in
its current value zik(t − 1). Formally assuming that this current value was an
equilibrium, we can write:

(12) zik(t− 1) =
h2
h1

ôoldi ,

which gives

(13) ôoldi = zik(t− 1)
h1
h2

.

Substituting oold
i

for ôold
i

in Eq. (11) obtains

(14) zik(t) = zik(t− 1) exp[−h1xk(t)] +
h2
h1

oi(t){1− exp[−h1xk(t)]}.

In the case of two sources of emotion – internal oi, and external õik, as in the
experiment, the solution to Eq. (1) becomes:

(15) zik(t)=zik(t−1) exp[−h1xk(t)]+
h2
h1

{1−exp[−h1xk(t)]}[uk(t)oi(t)+ūk(t)õik(t)].

Eq. (15) states that emotional memory zik(t) can be updated by the par-
ticipant’s own experience with stimulus k (when uk = 1), or by someone else’s
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experience with the same stimulus (when ūk = 1), but not by both events at the
same time.

Implementation and validation. The obtained solution is used to model
data from the omnium bonum economic experiment. The latter was conducted in
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Fig. 1. Numerical simulation of the model. A. Model-generated internal satisfaction of a par-
ticipant throughout the experiment. The emotion is caused by eye-balling of the four omnium
bonum offers or by a successful deal with a supplier. B. Disappointment is caused by suppli-
ers’ underperformance. C. The participant receives posts by other players communicating their
emotions, in this case satisfaction, in the form of high-powered 400 ms pulses. D. The other
players are sometimes sending signals of disappointment. E. All experienced satisfactions with,
e.g., Supplier A, are stored in emotional memory z1A. F. Similarly, memory z2A stores all the
negative emotional experiences with that supplier. Memories for Suppliers B, C, and D are sim-
ilar and are not shown here. Memories z1A, z2A are influenced by two kinds of satisfaction and
disappointment – internal and external. All abscissas are time in centiseconds. All ordinates

are unitless
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a local computer network, releasing the Twitter-like posts among all participants
about the satisfactions and disappointments that everyone experienced with each
deal. A low level transmission control protocol (TCP) socket server written in
Java was implemented to carry out high speed transmission of the messages. For
the purposes of the economic experiment, communication happened essentially
instantaneously.

Figure 1 shows a numerical simulation example with a real participant data.
The top two plots present computed satisfaction and disappointment. In the
middle are sequences of pulses appearing at the moments when messages from
other people are flashed out on the screen. At the bottom, two plots show how
the person’s local emotional memories evolve when interacting with one of its
game partners, Supplier A. Those memories are formed by internally generated
satisfaction and disappointment, as well as by externally communicated ones.

A version of this experiment without social network [8, 10] already validated
the use of Eq. (14). The entire model including that recurrent solution was
shown to adequately describe and even predict the economic choices of those
participants who made decisions emotionally. Figure 1 gives another kind of
validation, now for Eq. (15) – the emotional memories z1A, and z2A are changing
at the right moments and in the correct way due to both internal and external
sources of emotion. We have every reason to expect that this solution, known to
be mathematically correct, will make the entire computational model adequate
for the complex behaviour in the social network.

Conclusion. In science it is natural that when addressing more daunting
tasks, we face more difficult technical problems. In this paper we dealt with an
element of a successful cognitive-emotional model, used as a guiding theory for a
lab economic experiment. That element – a differential equation about emotional
memory – had to be modified to be used in a more complex experiment. As
the discussed equation had no solution in the general case it was analytically
solved in a meaningful special case. The new solution was tested and shown to be
adequate. Essentially, our achievement here is that we successfully circumvented
the need for sophisticated numerical integration of stiff equations.
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