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Abstract

Economic forecasting is always difficult and in turbulent periods becomes
nearly impossible: Time-series are short and nonstationary while theoretical
underpinning is limited. The brain, however, has mechanisms to deal with that
kind of challenges, and neuroscience has uncovered some of them. Here we show
how a neural circuit model for emotion generation is adapted to successfully
predict fluctuating macroeconomic indicators with only a handful of observa-
tions. A fractality principle, stating that brain cognitive processes project and
repeat themselves on the time scale of socioeconomic processes, suggests why
economic cycles resemble emotional neurodynamics.
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Introduction. The brain has evolved to make decisions about the future
in a changing environment, and neuroscience models have shown some success
in emulating that property. The progress achieved so far could be transferable
to other areas, for example economic and business forecasting. Economists cali-
brate predictive models based on assumptions about the underlying fundamentals.
They face, however, a number of problems: their models lay on shaky theoretical
ground, time-series are generally short, and unexpected events impact processes
nonstationary anyway. Economies fall in and out of high volatility periods, un-
dergo booms and busts, yet the onset and magnitude of a slump are largely unpre-
dictable [1,2]. High-impact shocks like those triggering the recession of 2007–2009
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or the 2020 pandemic introduce regime shifts in businesses and entire economies,
rendering historical data essentially useless. Lack of records is also the norm
in a start-up or an established company launching a completely new product or
service. All these issues make the conventional forecasting techniques inefficient
when most needed, and novel approaches must step in.

Materials and methods. Here we show how a neural circuit model has the
potential to substantially improve prediction in cases like the above. The main
idea is based on a concept known as social or socioeconomic fractality, which con-
nects mechanisms in neural and social networks [3]. It posits that brain cognitive
processes in the sub-second range project and repeat themselves on the scale of
months and years in the lives of groups, societies, and countries. Previous research
suggested that as the brain evolved for hunting and social cohesion, elements of
its structure projected over to social networks [4–6], while some neural interactions
were found to resemble competitive markets [7,8].

Figure 1 illustrates our main point. In general, having a nonstationary process
and only two observations, the usual statistical means may go wrong. To come
closer to the truth, a model capturing a deeper insight about the system is needed
and its prediction can go in an unusual direction. Its accuracy would depend
on how adequate the adopted theory for the problem at hand is. In this paper,

Fig. 1. Forecasting a variable based on only two observations: The
mean, median, last value, or a line between the two points can go
wrong with a nonstationary process. A deeper theory may suggest
an entirely different prediction. The example “Theory Forecast”
is a neurocomputational prediction of the macroeconomic variable
investment (GFCF) in Montenegro in 2009 based on two previous

years’ data. (See text)
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we emulate economic fluctuations with a neural circuit for affect generation and
processing known as gated dipole [9]. It accounts for the loosely cyclic dynamics
of positive and negative emotions an organism needs to respond to environmental
opportunities and threats. We postulate that the mechanism of mood change
projects over to macroeconomic dynamics. Our adaptation of the gated dipole is
composed of the following equations:

ẋi = −xi + Ib + I∆i,(1)
ẏi = bi(1− yi)− cixiyi,(2)
xi+2 = −xi+2 + xiyi,(3)
ẋ5 = −x5 + (1− x5)x3 − (x5 + 1)x4.(4)

In Eqs. (1)–(3), i = 1, 2 is a subscript. All x variables are neuron activations
described with a unitless version of the Hodgkin–Huxley equation. For x1, . . . , x4

its special cases are used, while the general form is evident in x5, a neuron receiving
activating signals from x3 and suppressing ones from x4. Constants bi and ci are
real positive numbers, Ib is ‘tonic’ signal putting the system in optimal working
condition, and I∆1, I∆2 are external inputs. This is the most parsimonious gated
dipole to account for economic growth and slump.

We illustrate our approach with three examples. First is Montenegro, a small
country in Southeast Europe, which declared independence in 2006 and has a short
data history. In addition, the next years its economy was hit by the global reces-
sion, further complicating any potential prediction effort. Two other examples,
Germany and France, show that our modelling technique successfully competes
with the conventional forecasting tools, proving that large economies can also
exhibit ‘emotion-type’ fluctuations.

We work with annual Eurostat data for the following nine macroeconomic
aggregates: gross domestic product (GDP), and its components: gross fixed cap-
ital formation (GFCF, or ‘investment’ for short), household final consumption
expenditure (HFCE, or simply ‘household consumption’), individual government
consumption, collective government consumption, export of goods, export of ser-
vices, import of goods, and import of services. The data’s annual first differences
are used, which is a conventional trend-removing technique. Examples with fore-
casting the GDP, investment, and household consumption are shown here, and
predictions of the other six are similar. The model receives as independent vari-
ables combinations of the GDP components for year t. The predicted variable is
taken in year t + 1. In short, we plug in the model one year’s data to make it
learn (in calibration mode) a following year’s datum. In testing mode, this year’s
data is the input to produce next year’s forecast.

For each model’s subset of independent variables, two sums for the positive
and negative annual changes are formed. We postulate that these are analogous

C. R. Acad. Bulg. Sci., 74, No 10, 2021 1513



to the positive and negative emotions in the brain neural circuit. These sums are:

S+(t) =
n∑

j=1

[uj(t)]
+,(5)

S−(t) =
n∑

j=1

[uj(t)]
−,(6)

where uj are the first-difference data of each economic indicator, while n is the
number of predictors in the concrete model, whereby n = 1, . . . , 8. The operators
with brackets are defined as [ξ]+ = max(ξ, 0), and [ξ]− = min(ξ, 0). As all
quantities in Eqs. (5)–(6) are in millions of euros, they are rescaled with coefficient
α1 = 1/10000 to fit in the range of neural signals, and are used in forming the
model inputs:

I∆1(t) =

{
α1(S

+(t) + S−(t)), S+(t) + S−(t) ≥ 0

0, S+(t) + S−(t) < 0
,(7)

I∆2(t) =

{
α1(S

+(t) + S−(t)), S+(t) + S−(t) < 0

0, S+(t) + S−(t) ≥ 0
.(8)

The value of α1 is determined by the size of each country’s economy. Signals
I∆1(t) and I∆2(t) are I∆i in Eq. (1).

The system of Eqs. (1)–(4) can be solved with sufficient precision by intro-
ducing some simplifying assumptions [10] that allow computing the fast neural ac-
tivations xi at equilibrium as per Eqs. (9)–(11) below. The slow yi(t) transmitters
have been solved with a numerical method, or more recently, with a special-case
analytical solution [11] shown in Eq. (12). The neurocomputational model then
becomes:

xi(t) = Ib + I∆i(t),(9)
xi+2(t) = xi(t)yi(t)(10)
x5(t) = (x3(t)− x4(t))/(1 + x3(t) + x4(t)),(11)

yi(t) = yi(t− 1) exp[−cixi(t)− bi] +
bi

bi + cixi(t)
{1− exp[−cixi(t)− bi]} .(12)

Here t is discrete time, set to 1/10 of a year for convenience in computation.
The model forecast, originally a ‘neural signal’, is calculated as ζt = α−1

1 /x5(10t)
with α1 scaling it back into economic variable measured in millions of euros.
The actual prediction is every 10th value of x5 because time enough is given to
transmitters y1 and y2 to adapt. The idea is that GDP data are announced at
low frequencies but meanwhile the economic processes slowly carry on, an effect
captured in the model by the slowness of its neurotransmitter elements.
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Constants b1, b2, c1, and c2 are found in a simulated annealing procedure
minimizing the following objective function:

(13) J = min

[
m−1∑
t=1

∣∣∣∣ut+1 − ζt
ut+1

∣∣∣∣
]
.

Alternative versions of J with only |ut+1 − ζt| or (ut+1 − ζt)2 in the sum of
Eq. (13) produce almost the same forecasting accuracy. Here, m is the number of
points used for calibration, a concept whose explanation follows.

With no previous data for Montenegro, the model can start with as little as
one point in time to learn, before producing a first forecast. That amounts to
taking a vector of predictor values for 2007 and making the model connect it with
a dependent variable’s value in 2008. Therefore, to test a calibrated model would
mean to submit the 2008 predictor vector and have a prediction for 2009. That
is a one-point forecast (1 p.f.), the extreme case. Similarly, when two consecutive
points are utilised for training, in 2010 one has a 2 p.f. For the latter year, linear
fit models are already possible. They are run here for the sake of comparison,
being the most conventional tool in econometrics. While such tiny samples do
not allow for significance assessment of regression coefficients or overall model
adequacy, another kind of estimate is available. With a set of n = 8 independent
variables, the number of combinations they can enter as singles, couples, triples,
etc. is

∑n
i=1

(
n
k

)
, or 255 in total. These are the linear-fit models whose empirical

distribution of relative errors’ absolute values for Montenegro is shown in the top
row of Fig. 2, left semi-violin plots, starting in 2010. With the error staying mostly
within 20% for GDP and within 25% for household consumption, this linear-fit
forecasting looks less desperate than expected given the scarcity of data.

Results. The neural models’ performance with the same 255 input combi-
nations is shown in the right semi-violin plots. To begin with, this technique is
capable of a single-point forecast in which it is similar – at least in spirit – to
the Cauchy method for solving differential equations with an initial condition.
Second, most of the time their error distribution beats the linear fit both in terms
of smaller magnitude and in terms of lower variance. We conducted Wilcoxon
Matched-Pairs Tests over the distributions’ medians for 2010–2013 and found sta-
tistically significant differences in 34 of all 36 comparisons in Fig. 2. The neural
model was better in 27 cases, the linear fit in 7, and in two the difference was not
significant. This is a preliminary result as it involves only three macroeconomic
variables for only three countries. A further study must identify the realistic ca-
pabilities of the proposed neural circuit modelling, yet its prospects look positive.

As the investment forecasts show (Fig. 2, top row, middle), the neural mod-
els can rapidly improve their accuracy over a few years. What they cannot do
eventually, is anticipate external shocks such as those that caused the recession
and its aftereffects, accounting for the error biases in 2010.
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Fig. 2. Forecasting macroeconomic variables for three European countries. Each plot
presents error distributions of 255 linear-fit models (left semi-violins) and 255 dipole neural
models (right semi-violins). Dotted lines show medians and quartiles. Notations 1 p.f.,
2 p.f., etc., stand for forecast, based on a single previous point, two previous points, etc.,
as explained in the text. Linear-fit outliers, typically 1–5% of all data, are not shown. A,
B, C: Montenegro; D, E, F: Germany; G, H, I: France

Observing the forecasts for Germany and France (Fig. 2, middle and bottom
rows) yields further insights. The best conventional forecasts are based on a lot
more observations and achieve error around 5–6% in years of turmoil [1,2]. The
fact that a neurocomputational model is generally equal to and at times better
than that suggests that macroeconomic dynamics might indeed be composed of a
mixture of processes, similar to the neural dynamics of emotions.

Discussion. Overall, the error variance of the set of 255 neural models is
a great deal smaller than that of the linear-fit models. This achievement can be
explained by a classical tenet of machine learning, the bias-variance dilemma [12].
It is known that for a given task, the sum of the error bias and the error vari-
ance is constant for any modelling or approximating function, and reducing one
is at the expense of the other. The problem can be solved only by “designing the
right biases”, in the formulation of the authors of [12]. The same concept is some-
times called “inductive bias” or “speculative bias”, and identical meaning is put by
the natural sciences in the term “mechanistic model”, i.e., a theoretical construct
capturing the mechanism of a phenomenon. In our case, the guiding theory is
the fractal-type analogy, underpinning the knowledge transfer from a neural cir-
cuit for emotions to macroeconomic ups and downs. Its overall success shown in
Fig. 2 suggests that it has indeed added another facet to the understanding of
macroeconomic dynamics.

All the same, neurocomputation is less convincing for 2009 and 2010 as com-
pared to the other years, possibly due to the recession. However, its effect is
absorbed already in the three-point forecasts, except for Montenegro’s invest-
ment. An explanation of the latter could be lower data quality and/or the larger
investment volatility typical for small economies. The model shows impressive
performance in the case of France, suggesting that this country’s economic cycle
resembles emotional neurodynamics a lot. Interestingly, while the German GDP is
finely captured, less so are its investment and household consumption. The reason
for that is unknown, yet a hypothesis points to the country’s internal economic
dynamics after the absorption of East Germany.

Conclusion. Because emotions influence short-run economic dynamics, a
neural circuit model for affect helps clarify how businesses form their expecta-
tions that give rise to aggregate outcomes. This is especially valuable in times
of turbulence when clarity is scarce and high-quality forecasts are most needed.
Methodologically, this transfer of knowledge from neuroscience to economics may
be viewed as a semi-empirical theory, implementing the socioeconomic fractality
principle.
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