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A B S T R A C T   

Forecasting economic choice is hard because today we still do not know enough about human motivation. A 
fundamental problem is the lack of knowledge about how the neural networks in the brain give rise to thinking 
and decision making. One way to address the issue has been to develop simplified economic experiments, in 
which participants need skills of little complexity and their minds employ cognitive mechanisms, already well 
understood by mathematical psychology and neuroscience. Here we take a neural model for rudimentary 
emotion generation and memorizing and use it as a guiding theory to understand decision making in an 
experimental oligopoly market. For the first time in that line of research, participants are put in a lab virtual 
social network serving to exchange opinions about deals with companies. On average, choices become signifi
cantly more predictable when people participate in the network, in contrast to working alone with expert in
formation. Calibrating the model for each person, we find that some people are predicted with startling precision.   

1. Introduction 

Trying to predict people’s actions is hard because not enough is 
known about the decision making mechanisms of the mind. Cognitive 
psychology has reached a consensus that the brain does not compute 
value or utility but conducts ad hoc and direct comparisons between the 
available options in the specific situation, circumstances, framing, and 
context (Rieskamp et al., 2006; Vlaev et al., 2011). Any choice fore
casting effort, therefore, should humbly accept the prospect to accom
plish very little. One approach could be statistical – gather data and use 
it to anticipate human behavior in the long run. In our time, machine 
learning with big data has done exactly that, with respectable success. 
Its main problem though, is that its key component – the artificial neural 
network – is a black box, not capable of discovering cognitive mecha
nisms and causal relationships. This lack of strictly scientific knowledge 
makes the method less effective with unknown data and new situations, 
posing an upper bound to its achievements. 

One alternative is the bottom-up approach developed by mathe
matical neuroscience. It studies how neural circuits in the brain give rise 
to cognitive phenomena like emotion, memory, learning, etc. This 
endeavor has already identified the neural substrate of a variety of 
complex psychological processes. As the field matured, some researchers 
made pioneering attempts – initially at the conceptual level only – to 
envision what neurobiological structures in the human brain could be at 

work in some economic, consumer, and utility-based choices in general 
(Leven & Levine, 1996; Levine, 2006; Levine, 2012; Grossberg, 2018). 

A parallel line of research conducted experiments with monkeys to 
identify brain areas and single neurons, believed to encode the useful
ness of goods (Padoa-Schioppa & Assad, 2006; Padoa-Schioppa & 
Assad, 2008; Grabenhorst et al., 2012). These efforts, alongside the 
entire field of neuroeconomics, have successfully related economic 
concepts with brain regions in which they are processed. Yet never a 
serious attempt was made at forecasting economic decisions, obviously 
due to the huge theoretical gap between neural circuits and actual 
behavior (Carandini, 2012; Kriegeskorte & Douglas, 2018; Marr, 1982; 
Palmieri et al., 2017; Turner et al., 2017). Several ways to connect 
neural with behavioral data have been developed (Zhang et al., 2017; 
Forstmann et al., 2016; Hein et al., 2016; Schulte-Mecklenbeck et al., 
2017; Wang, 2008; Klein et al., 2017; Meder et al., 2017) but no method 
for their integration has prevailed. 

Finally, another forecast-aiming approach sought to bridge the 
neuron–behavior gap by designing lab economic experiments needing 
only that kind of cognitive processes, for which neurobiological theory is 
already available. One such study put participants in the role of con
sumers, choosing to retain or abandon a service provider resembling a 
mobile-phone operator (Mengov et al., 2008; Mengov & Nikolova, 
2008). The authors applied an established neuroscience model of 
opposite emotions (Grossberg & Schmajuk, 1987; Grossberg & 
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Gutowski, 1987) to interpret their data. Influenced by Levine’s ideas 
about connecting brain neural circuits with consumer behavior (Leven & 
Levine, 1996; Levine, 2006), they made a step further by successfully 
fitting a complex model to empirical data of economic meaning. 
Following the Grossberg & Gutowski (1987) neurobiological interpre
tation of prospect theory by Kahneman and Tversky, these authors 
derived a neuroscientific analogue to the PT utility function and used it 
to explain a reference point shift in their data (Mengov & Nikolova, 
2008; Mengov, 2015). A further economic experiment entailed a choice 
among offers from four companies in an oligopoly market and imple
mented a generalized version of the earlier model (Mengov, 2014). 
These studies were based on mathematical neuroscience that could 
reproduce and predict emotion-based decisions but not rule-based or 
strategic reasoning. 

In the present paper we follow the above approach yet take it to 
another dimension by conducting a similar economic experiment in a 
lab virtual social network. In this way people are put in a more realistic 
environment as decisions in life are often made under the influence of 
others. Our network is designed to transmit messages about the partic
ipants’ economic choice and their satisfaction with the outcome, which 
makes it more focused than any other virtual social network. We seek to 
enable a word-of-mouth effect whereby predefined company profiles 
would be more easily discovered by consumers than in the benchmark 
study (Mengov, 2014) where each person had worked alone. 

To match this more complex situation, we use an augmented theo
retical frame encompassing social communication via network. We 
implement a mathematical extension of the same neurobiological model 
of opposite emotions (Grossberg & Schmajuk, 1987; Mengov, 2014), to 
simulate decision-making not only with internally emerged feelings, but 
also with emotional influences from others who make the same kind of 
choices. On the other hand, the model can still not accommodate logical 
or rule-based reasoning but only rudimentary affect and its memorizing. 
What the model can do, therefore, is predict economic choices made 
without much mental effort. Psychology has established (e.g., Seamon & 
Kenrik 1992) that people choose that way when judging the problem to 
be of little importance or very easy. 

Equipped theoretically and experimentally as explained, we seek to 
clarify if people working in a social network change their behavior and 
make more easy-going economic decisions, in contrast to work-alone 
conditions. That would imply people become more predictable from 
the standpoint of our neurobiological model. Just as interesting is the 
question, how does networking affect the quality of decisions as 
measured by economic achievement, again in relation to previous 
studies. It could be that people ignore the presence of others when it 
comes to economic matters and do not change their decision style and 
efficiency. To answer these questions, some experimental conditions are 
designed to provoke mostly the cognitive process, supported by the 
particular neural circuit, and explained by its theoretical model. 

Unlike other studies, here the model equations are calibrated on a 
person-by-person basis using a participant’s sequential records and are 
tested with subsequent records of the same person. As both data sets are 
small (10 ± 2 elements each), this may seem too ambitious and unre
alistic. After all, the state-of-the-art artificial neural networks typically 
need thousands of records to produce meaningful results. The logic of 
scientific research, however, has always been different. Science has 
sought to integrate data with conceptual thinking and theory develop
ment to discover the mechanisms of phenomena. With reliable theory, 
few observations would do the job, while with no theory thousands may 
not. Often, the researcher’s position is between these extremes and must 
deal with semi-empirical theories capturing only parts or aspects of the 
phenomena. This is exactly our case. The work of Grossberg and col
leagues (Grossberg & Schmajuk, 1987; Grossberg & Gutowski, 1987) 
comprises a strong foundation for emotion- and experience-based 
learning and adapting to environmental demands. That theory belongs 
to mathematical psychology and is general enough to explain simple 
emotion-based economic choices. On the other hand, complex cognitive 

processes develop in the brain in parallel and have a huge influence on 
the data. What one can do is, carefully design the experiment aiming to 
provoke as much as possible those brain mechanisms that are explained 
by the concrete theory. When a computer model implementing that 
theory consistently succeeds in predicting somebody’s economic choices 
using that person’s previous data, this is evidence that the cognitive 
process is sufficiently well understood. Of course, here we mean only the 
process dominating one’s thinking over a short period of time – those 
minutes in which the experiment took place. Lack of prediction success 
indicates inadequacy of the hypothesis about the theory’s usefulness in 
the specific study. Therefore, in our experiment there exist two extremes 
in the potential results. Forecasting a series of somebody’s choices with 
precision approaching or reaching a hundred percent would mean that 
the model – simple as it is – explains sufficiently well the decision 
making process, adopted by that person for the moment. Chance-level 
prediction, on the other hand, means that the hypothesized cognitive 
mechanism – intuitive-emotional decision making, had been either 
irrelevant or much obfuscated by other processes. In the latter case the 
research expectations had not been realistic. 

Previous studies (Mengov et al., 2008; Mengov, 2014) have shown 
this method to be viable in the sense that it used just as few observations 
to demonstrate an earlier model’s ability to predict human intuitive 
decisions. Here we conduct an experiment with a social network and 
hypothesize that intuitive-emotional choice will become more promi
nent. The new model is more general in the sense that it can take in and 
be influenced by other people’s emotions. Because it can still not capture 
logical reasoning, we seek to establish only if it predicts networked 
people better than isolated workers. That is, the goal is to find significant 
difference between the two groups. The direction of the expected dif
ference is clear, yet we always use two-sided statistical tests. 

For the methodology to work, some simplifying assumptions are 
needed to deal with the layers of brain computation not accounted for by 
the theory and its model implementation. These are explained in detail 
in the following sections. 

2. Materials and methods 

2.1. Model and experiment overview 

Originally introduced as the main element of a neural theory of 
reward, punishment, and opponent processing (Grossberg, 1972), the 
gated dipole model we use here was in time augmented to account for 
the neural dynamics of conditioned reflexes and cognitive-emotional 
interactions in decision making (Grossberg & Schmajuk, 1987; Gross
berg & Gutowski, 1987; Grossberg & Levine, 1987). It was later adapted 
to fit the needs of computer-based experiments with economic content. 
That line of research is based on the assumption that the neural model is 
an adequate description of the microcircuit in the brain dealing with the 
particular economic situation. In (Mengov et al., 2008) two options have 
been available, and the choice has been between status quo and change. 
The study demonstrated the possibility to use a psychometric scale of the 
type “extremely satisfied – very satisfied – satisfied – …” to gather 
quantitative data, good enough to feed computer simulations of a neural 
circuit. These authors harnessed the classic psycholinguistic finding 
(Cliff, 1959) that such adverb-adjective compounds, which form the 
Likert scales, reliably measure the presence of a property – in that case 
the intensity of an emotion. They reported slightly better forecasting by 
their computer model than the classic econometric tools. A further 
economic experiment (Mengov, 2014) entailed a choice of one among 
four options and discovered that roughly 5% of the participants were 
very well predicted, about a third remained totally unpredictable, and 
all others were in-between. All of them worked autonomously. 

In contrast to those studies, the present paper presents an experiment 
where everyone is connected and receives potentially useful information 
from everybody else. Again, assuming that we use an overall adequate 
model of the involved brain circuitry, we adapt it to accommodate not 
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only choice by internal ‘gut feelings’, but also choice, influenced by the 
experienced satisfaction of others in the same situation. In practical 
terms that means generalizing mathematically some of the equations to 
enable receiving signals from more than one source. 

The model used here is composed of neurons, synaptic connections, 
and memories (Fig. 1). Following the logic of the gated dipole neural 
circuit (Mengov et al., 2008; Grossberg & Schmajuk, 1987; Grossberg & 
Gutowski, 1987; Mengov, 2014; Grossberg, 1972; Grossberg & Levine, 
1987), we relate a positive emotion – in our case satisfaction – with the 
output signal of neuron u5, and a negative emotion of disappointment 
with u6. Feedback loops involving neurons u1→u7 and u2→u8 are 
capturing the memory of already experienced opposite emotions, be 
they as primitive as anxiety and relief, or as sophisticated as disap
pointment and satisfaction. Inhibitory connections u3→u6 and u4→u5 
implement opponent processing whereby the two loops suppress each 
other to achieve emotionally neutral state in the absence of stimuli from 
the environment – economic or any other. All neuron activities are 
described by special cases of the Hodgkin–Huxley equation (for which a 
Nobel Prize was given), used here in unitless form. For example, the 
satisfaction-generating neuron u5 is represented as u̇5 = − u5 + (1 −

u5)u3 − (u5 + 1)u4. Memories w1k and w2k store emotional responses to 
incoming stimuli and are described by the Grossberg learning law. An 
example is ẇ1k = uk( − h1w1k + h2[u5]

+), where index k designates the 
sources feeding into the memory, and h1, h2 are positive constants. 
Synapses v1 and v2 are represented by equations of transmitter release 
such as v̇1 = β1(1 − v1) − γ1u1v1, where β1 and γ1 are positive constants. 
In contrast with previous studies (Mengov et al., 2008; Mengov, 2014), 
our model incorporates not only incoming emotional signals uA,…, uD 
due to one’s own choices (“I choose A”, …, “I choose D”), but also signals 
informing how others felt due to their choices (“Participant at Computer 
5 is disappointed by Supplier B”). It should be noted that Fig. 1 is not the 
only possible configuration. At least two other variations of the basic 
circuit, without the multiple-signal sources, exist (Grossberg & Schma
juk, 1987) and all three share essentially the same mathematical prop
erties with another independently introduced model (Raymond et al., 
1992). Thus, neurobiological knowledge about a neural circuit for the 
most basic emotional reactions is used to explain and predict behavior in 
an economic experiment. 

As the computer screen shows (Fig. 1, upper part), in each round a 
participant must choose one among four offers for a fictitious good 
called ‘omnium bonum’ (a good for everyone, in Latin). The goal is to 
maximize the total amount received because at the end all are paid real 
money proportionate to their achievements. A supplier may deliver 
more or less than promised. Then the participant reports on a Likert 
scale their satisfaction or disappointment with the outcome. This game 
is played for 20 rounds, a figure unknown to the players. Each person 
receives data on all the other people’s emotional reactions in the form of 
posts (short messages similar to tweets as in the example above) popping 
up in the screen field to the right. Suppliers who deliver more on average 
do so with higher variability, which implements the idea of a risk–return 
tradeoff. 

In half of the treatments task-relevant information is provided in the 
form of two ‘macroeconomic indicators’ or ‘aggregates’: (1) total pro
duction of omnium bonum in the entire ‘economic system’ in the last 
round and (2) an unbiased forecast for the current round’s production 
growth. The aggregates’ function is to provoke logical reasoning at the 
expense of emotional reaction and therefore to act in the opposite di
rection of the virtual social network. 

In the present study, we have other people’s messages incorporated 
in the neural model dynamics. Conducting pretests, we established that 
submitting to the screen a message from somebody else every two sec
onds is quite comfortable. To attract the participant’s attention, the new 
message is highlight initially in a red frame for 400 ms (see Fig. 1), 
which is more than the 300 ms needed by the brain to comprehend a 
new event of that kind (Banquet & Grossberg, 1987). With these design 
features the player presumably spends 1/5th of the time paying 

attention to what other people do and has enough opportunity to bal
ance one’s own judgment with what others communicate. 

Further, we assume that the more omnium bonum is offered, the 
greater the satisfaction during the initial period of offer examination. 
This is common sense and corresponds to the foundations of utility 
analysis ever since Daniel Bernoulli. Next, the model flexibly accom
modates a bored or irritated participant who no longer perceives the 
most promising bid as attractive but sees it as the least unattractive. In 
the equations, this is cast as transmitter release in the negative emotion 
loop u2→u8 due to depleted positive loop. The weakest offer is used as 
reference point for the other three and is put rescaled as Ib in the u1 and 
u2 equations, shown in Section 3. When a supplier delivers more 
omnium bonum than promised this positive difference is modelled by 
term IΔ+ added to the positive loop. That does not always prompt 
satisfaction – a gratuity too small may provoke model dynamics of 
disappointment, just as in real life. Similar considerations apply to the 
negative difference. 

We plug recorded response times in the model, rather than have it 
figure them out for itself. This implementation feature is due to the 
occurrence of a variety of decisions in each game round and their 
different cognitive mechanisms. First, the participant chooses a supplier 
with a mouse click; then the delivery is comprehended, which ends with 
another click; next, satisfaction/ disappointment must be self-reported; 
a final click ends the round. The neural circuit (Fig. 1) has no capability 
to account for all of that and it was not feasible to augment it with, for 
example, a multiple-choice drift-diffusion model (Forstmann et al., 
2016) or an adaptive resonance theory mechanism (Grossberg, 2020). 
Instead, an algebraic decision function is computed for the u7 and u8 
values at moments, corresponding to the participant’s choice moments. 
Similarly, satisfaction and disappointment are accounted for by taking 
the computed u5 and u6 at the self-report moments (Supplementary In
formation, section How the Model Makes a Choice). 

2.2. Experimental design 

The experimental design implemented different supplier profiles. 
Their parameters were chosen so as to meet the following requirements:  

(1) To make choice prediction possible, each of the four suppliers had 
to offer distinctly different choices. One way to achieve this was 
to implement a risk-return tradeoff as discussed in Section 2.1. 
(See also Supplementary Information, Fig. S2).  

(2) Each supplier had to be attractive enough during the game, 
otherwise it would drop and reduce the number of competitors. 
For the same reason, no supplier ought to be so attractive as to 
become a monopolist.  

(3) The game had to last a sufficient number of rounds so that the 
suppliers could become recognizable. But the experience ought 
not be too long to make choices routine, or cause boredom. 

The experimental design is outlined in detail in the Supplementary 
Information. 

2.3. Participants 

Excluding pretests with 80 people who received no payment, 257 
students from Sofia University St Kliment Ohridski took part in the 
experiment. Of them 19.8% majored in Economics, 61.5% majored in 
Business Administration, and 18.7% majored in Public Administration. 
Their average age was 20.75 years (s.d. = 2.64). They were 154 women 
and 103 men. All of them gave consent to participate by voluntary 
registering. At the end of the procedure, which lasted about half an hour 
in total, all participants were paid in proportion to achievement, typi
cally the equivalent of EUR 5–9/ GBP 4–8/ USD 6–10. No participant 
was allowed to take part in the study more than once. All of them were 
naïve to the experiment and were told that its goal was to study how 
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people make decisions. No ethical concerns are involved in this research 
other than preserving the anonymity of the participants. 

A feature of the study design was that it can be described as 2 × 2 × 2 
in the following sense. About half of the people (N = 126) were put in 
front of a computer screen with a virtual social network (Fig. 1, upper 
part, left field), while another 131 saw no network, had to work alone, 
and served as control group. No participant was informed about the 
variations of the experimental design. In an orthogonal dichotomy, 
approximately half (N = 125) faced conditions without economic ag
gregates. About half (N = 128) experienced ever-growing market while 
the others were subjected to growth, followed by economic slump. 

2.4. Experimental procedure 

At the start, participants listened to an Instruction (the text is in 
Supplementary Information) and had the opportunity to ask questions 
for clarification. Soon after each person started the game with a mouse 
click, postings from other players began arriving on the screen (Sup
plementary Information, Fig. S1). Messaging was automatic and par
ticipants had no control over it other than giving (dis)honest answers to 
the satisfaction/ disappointment question. Filling a post-hoc electronic 
questionnaire, 93% of them declared they had given honest answers. 
Postings sent by others entered a queue and were shown in order of 
arrival at a rate of two seconds as explained above. Each participant saw 
between 51 and 300 such messages. 

3. Theory and calculation 

This section summarizes how the classic neural circuit model 
(Grossberg & Schmajuk, 1987; Grossberg & Gutowski, 1987) is adapted 
to the experiment. Information about the omnium bonum offers is 
submitted to neurons u1 and u2 (See Fig. 1). The former neuron serves as 
the entry to the ‘positive’ loop (dealing with positive events and emo
tions) and is described by its activation as follows: 

u̇1 = − u1 + Ib + δ1IΔ+ + δ2I(k)eye + Mu7. (1)  

Quantities δ1, δ2,M are constants. In Eq. (1), signal Ib is related to the 
most modest offer. The idea is that examining the four offers, a partic
ipant is likely to view the weakest among them as a reference point for 
comparing the attractiveness of the other three. In particular, Ib =

min{I(k)eye}k. 
Index k = A,B,C,D refers to that supplier of omnium bonum, to 

which the participant is paying attention at the moment. Signal I(k)eye 

implements the commonsense assumption that examining the four op
tions ends with a choice when they have been well understood, possibly 
after several glances at each. Here we follow the design in Mengov 
(2014), postulating that facing a new set of bids, a player randomly casts 
three glances at each for equal time. That may not always happen yet is a 
psychologically realistic simplification. 

We denote with ξk the amount of omnium bonum offered by Supplier 
k. When a supplier delivers more than promised, the difference Δξk is 
put in the positive emotion loop in the form of signal IΔ+ in Eq. (1) 
above. A negative difference is put in the negative loop u2→u8 and is 
accounted for as IΔ− in a similar way: 

u̇2 = − u2 + Ib + δ1IΔ− + Mu8.

In this case IΔ− is proportional to a negative Δξk. The signal transfer 
among neurons is modulated by neurotransmitter release as follows: 

v̇1 = β1(1 − v1) − γ1u1v1  

v̇2 = β2(1 − v2) − γ2u2v2.

A detailed discussion on neurotransmitter signaling is available in 
Grossberg & Schmajuk, 1987; Grossberg & Gutowski, 1987; Grossberg, 
1972). Further, Eqs. (2)–((5) are special cases of the Hodgkin–Huxley 
equation in dimensionless form and describe neuron activities: 

u̇3 = − u3 + u1v1 (2)  

u̇4 = − u4 + u2v2 (3)  

u̇5 = − u5 + (1 − u5)u3 − (u5 + 1)u4 (4)  

u̇6 = − u6 + (1 − u6)u4 − (u6 + 1)u3. (5)  

Eqs. (4) and (5) show how the two channels suppress each other by 
exchanging inhibitory input signals. The neural circuit model generates 
a pair of opposite emotions by its neurons u5 and u6: 

ϕ1 = [u5]
+ (6)  

ϕ2 = [u6]
+
, (7)  

where [ς]+ = max(ς,0). Eqs. (4)–(7) mean that a person can feel either 
satisfaction or disappointment but not at the very same moment. 

Eqs. (8) and (9) describe neurons whose behavior is driven by two 
factors – the ad hoc emotion and the effect of emotional memories: 

u̇7 = − u7 + G[u5]
+
+ L

∑D

k=A
ukw1k (8)  

u̇8 = − u8 + G[u6]
+
+ L

∑D

k=A
ukw2k. (9)  

Neuron u7 receives as input the person’s satisfaction [u5]
+ in response to 

examining supplier offers, or due to a particular omnium bonum de
livery. The sum 

∑D
k=Aukw1k represents the emotional memory with each 

of the four suppliers. Because only one of them, say, Supplier B, can 
receive attention at a given moment, only for it uB = 1. For all other ks is 
true uk = 0. Essentially, emotional memory w1k is the product of all 
positive memories the participant has had with the kth supplier in their 
interactions. Similarly, w2k in Eq. (9) accounts for all the negative ex
periences. Thus, memories w1k and w2k taken together form something 
like a supplier reputation in the eyes of a particular customer. G and L 
are constants. 

In the experimental conditions with virtual social network, other 
people’s satisfactions and disappointments also influence a supplier’s 
reputation in the mind of a participant. This fact is modelled in Eqs. (10) 
and (11) by introducing terms ϕ̃1k and ϕ̃2k for the positive and negative 

Fig. 1. A neural circuit model explains and predicts individual actions in an economic experiment. At the top is the computer screen as seen by a participant. 
Four suppliers offer and deliver a fictitious good ‘omnium bonum’. In each round only one offer may be chosen. Previous round total production and a production 
forecast are given above the offers. Other participants’ reactions to supplier behavior are posted every two seconds in the field to the right. In another screen (see 
Supplementary Information Fig. S1) each participant reports one’s satisfaction or disappointment. In the social network conditions these self-reports are sent 
automatically to every other participant. Horizontal and vertical striped areas signify the theoretical gap (bridged by simplifying assumptions) between the empirical 
data from choices and the neural circuit model at the bottom-right. Fig. 1. Inset. A computer simulation mimics the individual’s choices and emotions. Top two 
plots: A participant eyeballs the screen and feels satisfaction (initial jagged diminishing signal in ‘Satisfaction, First 60 s.’). Then the participant chooses a supplier, 
which underperforms causing a peak signal (‘Disappointment, First 60 s.’). A new round begins with eyeballing the offers (indented satisfaction signal) immediately 
followed by a peak of satisfaction (around 3000 centisec.) due to a lucky choice, supplier B. Bottom plots: Emotional memory dynamics over the entire game for the 
most popular suppliers, B and C. 
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emotions, communicated by others: 

ẇ1k = uk( − h1w1k + ykh2ϕ1 + ykh2ϕ̃1k) (10)  

ẇ2k = uk( − h1w2k + ykh2ϕ2 + ykh2ϕ̃2k). (11)  

At the heart of this experiment is the idea that internal and external 
sources of emotion mix together in the decision. Making up one’s mind is 
a complex process. It is assumed, however, that during any 10 ms in
terval – the time-step of the computer model – one can pay attention 
either to one of the four offers, or to the emotional messages from other 
people. This is realistic both psychologically and neurobiologically. 

Previous studies Mengov et al., 2008; Mengov, 2014) used simpler 
equations as they dealt with only one source of emotion – one’s own 
interaction with suppliers. To model the new situation with incoming 
data from others, now in Eqs. (10) and ((11) we introduce Boolean 
variable yk, which is equal to 1 when the satisfaction or disappointment 
with supplier k comes after one’s own choice and is zero otherwise. In 

the latter case the negation yk is switched on, yk = 1. That is how the 
emotional memory is updated by other participants’ postings. 

The model makes prediction based on three factors. The first, Φ1 is 
the momentary emotional reaction to the four offers as captured by 
neuron activities u7 and u8. The second, Φ2, is the experience with each 
supplier, accounted for by memories w1k and w2k. And the third factor 
Φ3 is emotional memory, storing the satisfaction/ disappointment after 
the last interaction with a supplier. The model’s “choice” is a weighted 
sum of the three: 

Λ = δ3Φ1 + δ4Φ2 + δ5Φ3.

Here Λ is a vector of four scalars, each representing the current attrac
tiveness of a supplier. The one with the largest number wins. Parameters 
δ3, δ4, δ5 are real positive numbers adding up to 1. 

To enhance the model’s forecasting ability, it is calibrated not only 
with a sequence of the person’s previous decisions, but also with the self- 
reported satisfactions and disappointments immediately following each 

Fig. 2. Prediction error during stochastic optimization. (a) Errors and objective function. For each person, forecast error in a sequence of game rounds is the 
ratio of successfully predicted supplier choices to the total number of choices. Errors are plotted as black dots connected by black lines for the calibration sequence 
(first 12 rounds), and grey dots with grey lines for the test sequence (last 8 rounds). Objective function J is minimized by simulated annealing. (See main text for 
details.) Notation a.u. means arbitrary units. (b) Error minima for four participants. Arrows indicate prediction accuracy reaching 100% for Person #1 in the test 
sequence, meaning correctly forecast all 8 choices. In contrast, for others (Person #4) only 25% accuracy is achieved, equal to guessing. (c) Person #1 – other 
realizations. Additional stochastic optimization runs for the same Person #1 show that the model consistently reaches error of 0% for the test sequence. 
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of them. Term R(ψ,ϕ) is the correlation between true emotions ψ in the 
calibration subsample, and their model-generated counterparts ϕ. These 

vectors are: ψ = [ψ(t(1)DS ),…,ψ(t(m)

DS )]
T 

and ϕ = [ϕl(t
(1)
DS ),…,ϕl(t

(m)

DS )]
T
, 

where l = 1, 2 accounts for satisfaction or disappointment; t(i)DS is the 
moment of mouse click conveying the self-reported emotion in the i-th 
round; and m = 12 is the size of the calibration subsample. When two 
different solutions yield identical choice predictions in the calibration 
rounds, the one with higher correlation R(ψ,ϕ) is preferred as it ac
counts better for the participant’s emotions. 

To calibrate the model equations means to find optimal values for 11 
constants like h1, h2 etc. Fig. 2 shows that indistinguishable forecasting 
results can occur through different sets of parameter values, a well- 
known effect in mathematical biology (Marder & Taylor, 2011; Prinz 
et al., 2004). In our case, an objective function J must be optimized in a 
simulated annealing procedure. In particular, J∝f(

∑m1
i=1ζi +

θ
∑m2

i=1ζm1+i + R(ψ,ϕ)), where ζi is indicator equal to 1 if in round i the 
model chose exactly as the participant, and 0 otherwise. Function J puts 
more weight on the final four calibration rounds (θ > 1;m2 = 4) to 

Fig. 3. Model forecasting. Forecasting by the model is superior in the network condition than in the work-alone condition, both as fewer failures and as more 
successes. The vertical dotted line separates model failure (inability to guess correctly more than 25% of the choices when four options are available) from substantial 
success (loosely defined as at least 50% correct prediction). Data for moderately successful prediction (above 25% but less than 50%) are not shown. P values are 
calculated by Fisher’s exact test of association. (a) In Network vs. Stand Alone, total samples. (b) Subsamples for In Network and Stand Alone conditions with data on 
economic aggregates available to the participant. (c) Contrasting Stand Alone with available aggregates, against In Network without aggregates. (d) Comparing 
subsamples In Network and Stand Alone only under the condition of economic growth. (e and f) Prediction difference is often statistically significant even with 
subsamples as small as 30–35 participants. 
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address the possible evolution of the human decision process as the 
game unfolds. Consequently, a J with fewer correct choice predictions in 
the last four calibration rounds may be better than J with more guesses, 
but mostly happening in the earlier eight rounds (m1 = 8). For this 
reason, the error function (Fig. 2a) is nonmonotonic while J is. Among 
thousands of simulated annealing iterations only a few produce new J 
minima. For each person, the model may reach the same error minimum 
several times, always with a smaller J and different parameters, as 
Fig. 2b shows. 

4. Results and discussion 

In the previous section we explained how the neural model is con
nected with the experimental data’s components – participant choices, 
self-reported satisfactions, and different kinds of response times in a 
game round. As stated, the model was calibrated with a sequence of the 
initial 12 game rounds and tested with the remaining subsequence of last 
8 rounds. All findings, reported here, are over these eight-element 
subsamples in the different experimental conditions. 

Overall, the neural model predicts better people’s decisions in the 
virtual social network than those made when working alone (Kruskal- 
Wallis Test Value = 3.99, P = 0.0457; Mann-Whitney Test Value =
9416.5; P = 0.0496; Kolmogorov-Smirnov Test Value = 1.1759, P =
0.0332). At first sight these numbers seem only borderline convincing, 
however one should remember that a 2 × 2 × 2 design loads the two 
samples with mixtures of opposing factors. Therefore, stronger statistical 
significance should be expected comparing subsamples from separate 
conditions and from divisions by different levels of successful prediction. 
Exactly that story is told by the six panels of Fig. 3, as follows. 

Technically, any statistically significant forecasting above the chance 
level of 25% (due to four suppliers) can count as successful. It is more 
convincing though, to define as such double that figure, i.e., 50%. That is 
what Fig. 3a shows – predicting ‘In Network’ decisions is significantly 
better than ‘Work Alone’. Subsamples half the size show the network 
effect to be stronger than the economic aggregates’ influence (Fig. 3b). 
As one might expect, the strongest difference occurs between the most 
extremely-opposite conditions: ‘In Network without aggregates’ and 
‘Stand Alone with aggregates’. These two are put together in Fig. 3c. 
Further, it is remarkable that the significant difference stays there with 
subsamples as small as 30 to 35 elements, as Fig. 3e and f. show. The 
complete data on the model’s predictive success as well as on all sta
tistical comparisons can be found in Supplementary Information, 
Tables S3–S13. Not a single case of superior forecasting in a ‘Work 
Alone’ condition is identified. 

In the entire sample of 257 people, a few are predicted with startling 
precision. It is worth discussing Fig. 2b (Person #1) and Fig. 2c, which 
show somebody for whom 100% accuracy is achieved, meaning 
correctly guessed all eight supplier choices in the test sequence. This 
finding was consistently repeated over a large number of independent 
simulated annealing runs. Only two people in the total sample are pre
dicted at that level. Further, at least 75% accuracy is reached for 15 
participants (5.84% of the sample). With accuracy of 62.5% or more are 
predicted 46 people (17.9%). For almost 2/3 of all participants the 
achievement is substantially above the success-by-chance value of 25%. 
As expected from the benchmark study (Mengov, 2014) the method fails 
with about a third of all players in the present experiment. In particular, 
now these are 93 people, 36.19%. 

Because we simulate a neural circuit for inciting and memorizing 
primitive emotion only, the systematically repeated forecasting success 
with a few participants supports the adopted theory and its computer 
implementation. Apparently, this tiny faction of people have considered 
the game too easy or unimportant to deserve more than an easy-going 
attitude. Seeing no necessity for a strategy or even simple logic, they 
have acted intuitively and have become transparent to the model. 

Such a forecasting result is evidence also for another kind of 
achievement. It looks like the implemented simplifying assumptions 

efficiently bridge the gap between higher levels of cognition and a 
rudimentary neural circuit somewhere in the prefrontal cortex (Levine, 
2012; Grossberg, 2018). This is important because potentially more 
complex neural models dealing with sophisticated psychological pro
cesses could in the future help explain and predict human behavior in 
economic experiments resembling yet closer the real economic activity. 

As we saw, people’s choices become significantly more predictable 
when communicating in a network as opposed to working alone. Further 
support that in a group one acts less thoughtfully offer the behavioral 
data in Fig. 4a. Comparisons between paired response times show that 
deliveries of goods are comprehended faster, and less time is needed to 
self-assess satisfaction or disappointment, though the decision task in 
the net is cognitively more complex and as expected, takes longer to do. 

Answering a post-hoc questionnaire, all participants claimed the 
others’ messages to be helpful or very helpful for maximizing their own 
economic achievement. Objectively, no such effect is found (Fig. 4b), 
meaning that information exchange about supplier behavior has either 
not been effective, or has not served its purpose. It is likely that receiving 
dozens of messages about how a company treats its customers has been 
fairly helpful in creating a reputation. Yet, linking that with a pending 
decision concerning that company appears to be more ambivalent and 
depending on the participant’s approach to the game. Answering 
another set of questions after the experiment, people described a variety 
of different strategies. It seems that the stream of postings about others’ 
choices and satisfactions has created only an illusory sense of being 
better equipped for a decision than one really is. Here we have an 
intriguing example that to be informed and to be competent are not the 
same things. 

Some of our hypotheses received no support, while other findings 
should be treated with caution. We expected that experiencing delivery 
slump would make participants think more rationally and reduce the 
model’s capabilities, but no such effect was found (Supplementary In
formation, Tables S4, S6, and S7). One possible explanation is that the 
slump happened in the last 1/4th of the game and lasted for only 5 
rounds, which may not have been enough to detect a pronounced effect. 

Another finding is that economic gains are linked only to the task- 
relevant aggregates (Fig. 4b and c). Its statistical significance may be 
the result of concrete design features. 

In addition, the average satisfaction reported round-by-round is 
higher when working alone (Kruskal-Wallis Test Value = 7.12, P =
0.0076, Table S23), suggesting that people in the network could not but 
indulge in social comparisons. That the latter have a sinking effect on 
subjective wellbeing is a well-known fact in behavioral economics. The 
interesting thing here is that it manages to show up in a cooperation- 
nudging experiment where stakes are not high. On the other hand, it 
is understandable to feel a tiny bit more miserable when a company has 
disappointed you the very moment it has acted generously toward 
somebody else. 

5. Conclusion 

A relevant question is, to what extent our findings from a lab virtual 
social network carry over to the billion-people networks on the Internet. 
We believe that a lot of what we established would still be valid. To 
begin with the obvious, it is hardly doubtful that working alone with 
expert information would make one adopt a more thoughtful approach, 
compared with someone less informed and better connected. Ceteris 
paribus, exchanging opinions with others will inevitably provoke some 
emotion. Depending on education and expertise, in some individuals 
that emotion could instigate creative thinking with unpredictable re
sults, but that is not guaranteed. What is certain is that at population 
level people would become a bit more predictable by neuroscience 
models like ours. 
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Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.socec.2022.101944. 
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