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Introduction 

 

Methods of non-equilibrium statistical mechanics are the main tools for solving many the-

oretical problems of the contemporary physics and chemistry. Their aim is to describe time and 

spatial evolution of the macroscopic properties of matter on the base of the mechanical equa-

tions governing the underlying molecular dynamics. Historically this program has been realized 

in two ways: the kinetic theory of dilute gasses and the theory of Brownian motion. These two 

theories have played important role in the development of the statistical mechanics and are pre-

cursors of all modern statistical methods. The main achievement of the theory of dilute gasses is 

the famous Boltzmann equation, which is even nowadays the key for understanding of the be-

havior of many particles systems. Using it, all transport coefficients can be expressed by molecu-

lar characteristics. Unfortunately, finding the solution of the nonlinear integrodifferential Boltz-

mann equation is mathematically frustrated even for simple systems. Opposite to the kinetic the-

ory of dilute gasses, the theory of Brownian motion operates with simpler mathematical appa-

ratus and provides elegant solutions of many relaxation problems. It is the first attempt for sto-

chastic modeling in science, which determines its importance not only for physics, chemistry and 

biology, but to mathematics as well. Many important methods for solving relaxation problems 

have originated from the Brownian motion, e.g. the theory of Markov random processes and the 

stochastic differential equations. Applications of the theory of Brownian motion are restricted, 

however, by two main limitations. First, it is a phenomenological theory, in the frames of which 

it is impossible to express the kinetic coefficients, governing the evolution of the non-equilibrium 

systems, via molecular parameters. Second, the theory of Brownian motion postulates the sys-

tem tendency towards thermodynamic equilibrium with a known distribution, which a consistent 

non-equilibrium theory must derive by itself. 

At present the Brownian motion is a synonym of thermal motion. The ways for its descrip-

tion are naturally divided in two groups: probabilistic and stochastic methods. The main feature 

of the probabilistic methods is replacement of the complex mechanical description of the inter-

action dynamics between the Brownian particle and the environment molecules via simple sta-

tistical hypothesizes about the random behavior of the Brownian particle. As a result, one yields 

linear differential equations for the evolution of various probability densities of the Brownian 

particle. Einstein is the founder of these methods for description of non-equilibrium processes in 

Nature. In his theory of Brownian motion, he introduced in 1905 a probabilistic diffusion equation 
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for the first time in science and, in this way, initiated the successful story of the methods from 

this group. Nowadays the theory of Markov stochastic processes is the base of the probabilistic 

methods. Its main assumption is that the natural processes can be described well via a useful 

idealization without memory, called the Markov stochastic process. This type of stochastic pro-

cesses is the second in the complexity hierarchy after those with independent events. The main 

feature of the Markov processes is that the entire information for the further evolution is given 

in the present state. Among the big diversity of Markov processes there is a class, known as dif-

fusive Markov processes, whose trajectories are continuous, and for this reason they are widely 

used in the natural sciences. According to the theory of diffusive random processes, the proba-

bility density obeys the Fokker-Planck equation, which is the main tool for modeling of many 

kinetic phenomena in the modern science. 

Attributing the Fokker-Planck equation to the Brownian motion yields many important 

results. For instance, the motion of a Brownian particle in the coordinate subspace is described 

by the Wiener process, while its behavior in the momentum subspace follows the Ornstein-Uh-

lenbeck process, providing the Maxwell distribution at equilibrium. The theory of diffusive pro-

cesses describes also the Brownian motion in external potential fields via the Smoluchowski 

equation, which generates the Boltzmann distribution at equilibrium. Finally, the evolution of the 

probability density in the Brownian particle phase space obeys the Klein-Kramers equation, 

whose equilibrium solution is the Maxwell-Boltzmann distribution, as expected. There are exact 

methods for mapping the Klein-Kramers equation to another equation, governing the evolution 

of the probability density in the coordinate subspace only. The result is the telegraph equation, 

which possesses non-Markov character, but it reduces to the Smoluchowski equation in the case 

of adiabatic exclusion of the fast variables. As is seen, the probabilistic methods achieve many 

important results, which reflect the main features of the phenomenon. For this reason, every 

theory of the Brownian motion should reproduce them. The probabilistic methods suffer, how-

ever, some weaknesses as well. They are based on presumptions about the Brownian motion, 

which could be valid only in some peculiar cases. Various coefficients appear in the obtained 

kinetic equations but their physical meaning and estimation are outside the competence of the 

probabilistic methods. The latter are convenient for general description of the Brownian motion 

but cannot explain the underlining details and the elementary processes governing the phenom-

enon. These limitations require the usage of phenomenological constants and fluctuation-dissi-

pation relations. 
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The main feature of the stochastic methods is introduction of a stochastic approximation 

of the Brownian particle dynamics. Thus, the derived stochastic differential equations can help in 

the calculation of the statistical properties of the Brownian motion and in the derivation of equa-

tions, analogical to the Fokker Planck equation, governing the evolution of the probability den-

sity. The founder of this kind of methods is Langevin, who has introduced in 1908 the first sto-

chastic Newton equation for description of the Brownian dynamics. He has divided the interac-

tion of the Brownian particle with the fluid molecules to two parts: a friction force, which in the 

frames of classical hydrodynamics is given by the Stokes formula, and a zero-centered random 

force, which accounts for the permanent kicks of the environment molecules on the Brownian 

particle. The solution of the Langevin equation is a particular stochastic realization of the Brown-

ian particle trajectory. Using relatively simple assumptions about the statistical properties of the 

random force, one can obtain measurable statistical information for the Brownian motion. For 

instance, Langevin has proposed that the random force is not correlated to the position of the 

Brownian particle. Using this simple assumption and the equipartition theorem, relating the 

mean kinetic energy of the Brownian particle to the thermal one, Langevin has derived an ex-

pression for the dispersion of a free Brownian particle in the coordinate subspace, which is more 

general than the Einstein result. The latter follows asymptotically for times larger than the relax-

ation time, while in the opposite case the root-mean-square displacement equals to the thermal 

velocity multiplied by time, as expected. Moreover, the Langevin approach provides an expres-

sion for the friction coefficient even if macroscopic. In contrast to the probabilistic methods, it is 

possible now to derive all statistical characteristics of the Brownian motion, once the properties 

of the fluctuation force are known. The key model for the latter is the so-called white noise, which 

is a delta-correlated zero-centered stochastic process. Because it is equipartitioned sum of infi-

nite number of Fourier components, the white noise is Gaussian due to the central limit theorem. 

The white noise is the first derivative of the Wiener process. By the science progress the Langevin 

ideas are further developed and enriched by concepts from the non-equilibrium statistical me-

chanics. Starting from general dynamic principles, Mori and Zwanzig have derived in 1965 a gen-

eralized Langevin equation, which basic innovation is the memory function, accounting for the 

past events on the present behavior of the Brownian particle. There are many models for the 

memory function, but it is rigorously shown that the Dirac delta-function memory describes a 

Brownian particle, which is much heavier than the environment molecules. In the case when the 

memory function differs from a delta-function, the generalized Langevin equation describes non-
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Markov random processes. A popular non-Markov model is the exponentially decaying memory, 

which is a particular example of a wide class of memory functions, generated by the Lee recur-

rence relation formalism. 

Obviously, the stochastic methods describe better the Brownian motion, but their appli-

cation requires special skills and erudition. As mentioned before, there are methods for deriva-

tion of the standard and generalized Fokker-Planck equations, starting from stochastic differen-

tial equations. The application of stochastic differential equations in physical chemistry is, how-

ever, accompanied by pitfalls and the most important difficulty is the correct distinction between 

the macroscopic value of a physical quantity and its fluctuations. Practically, many processes are 

described by the Langevin equations with a peculiarity in the integral form, due to the non-dif-

ferentiable Wiener process. In contrast to the usual Riemann sums, which are independent from 

the selection of the middle point for integration, a stochastic integral sum depends essentially by 

our choice. In the modern science there are three standard alternatives for the middle point in 

the stochastic integrals: left end (Ito), center (Stratonovich) and right end (Hänggi-Klimontovich). 

From mathematical point of view all three forms are correct, but their applications in physical 

chemistry generate problems. The main difficulty is the correct physical splitting of the friction 

and diffusion in the Fokker-Planck equation, which are not independent, being related via the 

fluctuation-dissipation theorem. The advantage of the Ito choice is that the equilibrium value of 

the drift term is zero and, in this way, it is convenient for comparison with phenomenological 

equations. On the other hand, the Stratonovich choice respects the rules of traditional mathe-

matics. The choice of Hänggi-Klimontovich is appropriate for the non-equilibrium thermodynam-

ics since the drift term is proportional to the gradient of the equilibrium probability density. All 

three models are exact and the use of one of them is a matter of convenience. 

Quantum mechanics was born in 1927 and it changed dramatically the notion of motion. 

Because the Schrödinger equation is a parabolic partial differential equation, its similarity to dif-

fusion puzzled scientists from the inception of quantum mechanics. Indeed in 1966, Nelson suc-

ceeded to derive the Schrödinger equation from classical diffusion, but his derivation suffers a 

major shortcoming: the drift term in his stochastic differential equation depends on the proba-

bility density, which indicates a mean field approach. Moreover, it is known after Langevin that 

the trajectory of a classical Brownian particle is not differentiable only because to neglection of 

the inertial effects. Thus, the Wiener process is a mathematical approximation of the physical 

Brownian motion, while the status of the Schrödinger equation is exact. The latter is fundamental 
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for physics and chemistry. It is proposed to reflect the controversial de Broglie idea that quantum 

particles can behave as waves as well, resembling the Einstein photons. Unfortunately, the Brog-

lie relation, attributing a wavelength to every particle, misled generations of scientists to think 

about the electron as an object, which could be either particle or wave. The de Broglie wave-

particle duality is unable, however, to answer many relevant physical questions. For instance, if 

an electron is a wave distributed in space, its negative charge must be divided somehow into 

many small pieces but such particles with infinitesimal fractional charges are never observed. 

Moreover, if the electron localizes back as a point particle, the related work against the electro-

static repulsion between the fractional charges would tend to infinity. In the second part of the 

Dissertation, we tried to convince the reader that electrons are particles, and they should expe-

rience quantum Brownian motion as well. Keeping the Schrödinger equation as experimentally 

proven, we explored another interpretation of quantum mechanics, where the particles remain 

points at any time as in classical mechanics. It is demonstrated that quantum mechanics is merely 

due to virtual force carriers transmitting the fundamental interactions. The force carriers are 

waves/quasiparticles in the coordinate/momentum subspaces, respectively, and this is the rea-

son for the wavy character of quantum mechanics, not the point particles themselves. This phys-

ical picture is consistent with the quantum field theory. 

Despite the enormous progress of the modern quantum statistical physics, there are still 

problems in application of the developed concepts to complex systems. As a rule, the quantum 

theory of relaxation is less elaborated than the equilibrium one, but this is not surprising, since 

the same situation holds in classical physics as well. As was already mentioned, the theory of 

Markov random processes is the most powerful tool for description of the relaxation in classical 

systems. There are attempts for development similar quantum idealizations, for instance in the 

Glauber-Sudarshan or Husimi representations, but they are less general and universal. The most 

common approach to quantum dissipation is the division of a closed system to a subsystem and 

its environment. The isolated quantum system is rigorously described by the Schrödinger equa-

tion, which can be mathematically transformed to the Liouville-von Neumann equation, provid-

ing alternative description in terms of the more general density operator formalism. Integrating 

the Liouville-von Neumann equation over the environmental variables yields the master equation 

for the open quantum subsystem. The formal Nakajima-Zwanzig equation is the most general 

master equation, which reduces further to the Born-Markov equation in the case of weak sub-

system-environment interactions and negligible memory effects. If additionally, the complete 
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positivity of the density matrix is required, one arrives to the Lindblad equation. All these equa-

tions are fundamentally linear but thermodynamic arguments point out that the exact master 

equation must be nonlinear. Indeed, the Schrödinger equation is linear for the wave function, 

while the classical Markov diffusion is linear for the probability density, which is the wave func-

tion square. Due to mathematical complications, this approach is applied to simple systems such 

as coupled harmonic oscillators. An alternative way to slide over the many particles difficulties is 

the use of dissipative Schrödinger equations, e.g. the Schrödinger-Langevin equation proposed 

by Kostin. Other methods are based either on extension of the Schrödinger equation to a sto-

chastic differential one in the State Diffusion Theory or the Langevin-like description of the quan-

tum dynamics in the frames of the time-dependent Heisenberg operators. In the third part of the 

dissertation a nonlinear master equation is derived, reflecting properly the entropy of the open 

quantum system. In contrast to the linear alternatives, its equilibrium solution is exactly the ca-

nonical Gibbs density matrix. The corresponding nonlinear equation for the Wigner function ac-

counts rigorously for the thermo-quantum entropy and reduces at large friction to the Smolu-

chowski-Bohm equation in the coordinate subspace, which reflects the stochastic density-func-

tional Bohm-Langevin dynamics. The Maxwell-Heisenberg relation for the momentum dispersion 

of quantum Brownian particles is discovered, which leads to the quantum generalization of the 

classical Einstein law of Brownian motion. 

 

 

1. Brownian Motion of Classical Particles 

 

The complete theoretical knowledge about the thermal motion of a mechanical subsys-

tem of N particles in an arbitrary environment requires description of the dynamics of all atoms 

of the united system, interacting each other continuously. Because the subsystem atoms are 

heavy enough, their quantum nature will be ignored in this part of the dissertation. In the frames 

of classical mechanics, the mechanical definition of the entire system is governed by the Hamilton 

function H , which depends on the momenta and coordinates of all atoms. In a series of papers, 

we have considered a solid body as the thermal bath, where the bath particles can only vibrate 

near their equilibrium positions. If these oscillations are small, the Hamilton function can be mod-

eled well in the frames of the harmonic approximation. In this case the bath particles are simple 
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harmonic oscillators and substituting their classical trajectories in the coupled dynamic equations 

for the subsystem particles yields the generalized Langevin equation [2, 5] 

 

0

( , ) ( ) ( ) ( , )

t

XM X G t s X s ds U F X t +  = − + +       (1.1) 

 

Here M  is the diagonal 3Nx3N mass matrix, ( )X t  is the 3N-dimensional vector of the trajectories 

of all subsystem particles, ( )U X  is the interaction potential in the closed subsystem, and ( )X  

is the static interaction potential of the subsystem atoms with the bath particles, fixed at their 

equilibrium positions. As is seen, the stochastic Langevin force ( , )F X t  is multiplicative and its 

dependence on X  goes through the forces, acting from the subsystem particles on the environ-

ment. The random behavior of the Langevin force originates solely from the unknown initial state 

of the bath particles. Employing the rigorous Gibbs distribution for the initial mechanical varia-

bles of the bath determines the statistical properties of the Langevin force. It is zero-centered 

and its autocorrelation function ( , )FF BC k TG t s=  agrees with the Kubo second fluctuation-dissi-

pation theorem for classical systems. Thus, the knowledge for the memory function G  is solely 

required in addition for the complete stochastic description by Eq. (1.1) of the mechanical sub-

system coupled to the harmonic bath of the solid environment. The most general theory of the 

memory function is given in terms of the recurrence relation formalism developed by Lee. In the 

frames of the latter, we proposed a model, resembling the golden ratio, which was previously 

observed in the Brownian motion in liquids and fluctuating hydrodynamics [24]. 

The geometric Brownian motion is a particular example for a multiplicative Langevin force 

and it is applied for description of the financial markets since the beginning of the previous cen-

tury. In fact, the Bachelier thesis “The Theory of Speculation”, defended in 1900 under the super-

vision of Poincare, preceded the Einstein theory from 1905. In 1973, Black and Scholes have de-

rived a famous formula for prizing of stock options, starting from the Fokker-Planck equation of 

the geometric Brownian motion. In general, the financial markets should be rigorously described 

via the exact generalized Langevin equation and we examined the golden ratio model, together 

with others, on the financial market dynamics [23]. Assuming Brownian self-similarity, the 

memory and autocorrelation functions of the market return rate are derived, which exhibit os-

cillatory-decaying behavior with a long-time tail, similar to many empirical observations. It is re-

sponsible in particular for the well-known Elliott waves of the market prizes. Individual stocks are 
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also described via the generalized Langevin equation. They are classified by their relation to the 

market memory as heavy, neutral, and light stocks, possessing different kinds of autocorrelation 

functions. 

Returning to physical chemistry, the memory function is determined by all vibrations in 

the solid thermal bath. Usually, the acoustic phonons in solids are modeled well by the Debye 

spectrum. Since the Debye frequency, being the upper cutoff, is huge, the corresponding memory 

function approximates well by to the Dirac delta-function, which is typical for the Markov pro-

cesses. Substituting the corresponding 2 ( ) ( )G B X t s=  −  in Eq. (1.1), the generalized Langevin 

equation reduces to an ordinary Langevin equation for the subsystem particles [2, 5] 

 

1/2( ) ( ) [2 ( )] ( )X BM X B X X U k TB X F t +  = − + +       (1.2) 

 

where ( )F t  is a white noise. The last expression for ( , )F X t  must be understood as the Hänggi-

Klimontovich product [8]. An important feature of Eq. (1.2) is the position-dependent friction 

tensor B . Presuming short-range interactions between the subsystem and environment atoms, 

we derived a very important relation 3 1/2(4 )m x xc B =    , linking the dissipative friction tensor 

to the conservative subsystem-bath interaction potential  , where m  and c  are the mass den-

sity and sound velocity of the solid, respectively, originating from the Debye frequency. To exam-

ine this relation, let us consider some simple examples. The small vibrations of an atom, adsorbed 

on the solid surface, corresponds to the harmonic interaction potential 2 2

0 / 2m x=   and the 

relevant friction constant 2 4 3

0 / 4 mb m c=    depends strongly on the oscillator own frequency 

0 . If the barrier potential 2 2

1 / 2m x= −   is considered at desorption, the friction constant is 

similar but depends on the barrier frequency 1  now. In the case of surface diffusion, the peri-

odic Frenkel-Kantorova model cos(2 / )A x a =   yields a friction coefficient 3 2 3 44 / mb c a=     

which is also periodic. The latter is not constant, which is important, because the scientific liter-

ature is crowded by publications, describing Brownian dynamics in structured media with con-

stant friction coefficients, which is a very rough approximation. We extended Eq. (1.2) to amor-

phous solids, which are frozen liquids [5]. Exploring the idea for the so-called instantaneous nor-

mal modes, the model is extended to usual liquids as well via ‘melting’ the amorphous solid over 

the Gibbs quasi-equilibrium configurations. Thus, the static potential   is replaced in Eq. (1.2) 
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via the bath conditional free energy, which particularly for N=1 is uniform, and the friction coef-

ficient does not depend anymore on the position of the lonely Brownian particle, as expected. 

In classical physics, the probability density of diffusive Markov processes obeys the linear 

Fokker-Planck equation. A particular example is the Klein-Kramers equation 

 

( )t p x x p p p B pf H f H f B f H k T f +  −  =     +       (1.3) 

 

which describes the evolution of the probability density ( , , )f p x t  in the phase space of all mo-

menta and coordinates of the subsystem particles. The Hamilton function, corresponding to the 

Langevin equation (1.2), reads 1 / 2H p M p U−=   + + . If B  is annulled, Eq. (1.3) reduces to 

the Liouville equation, being equivalent to classical mechanics of the closed subsystem. Further-

more, the special relativity can be also treated by Eq. (1.3) via the relevant Einstein expression 

for the Hamilton function. The relaxation term on the right-hand side drives the irreversible evo-

lution towards the thermodynamic equilibrium. The equilibrium solution of Eq. (1.3) is the ca-

nonical Gibbs distribution exp( ) /eqf H Z= − , where 1/ Bk T   is the reciprocal temperature. 

The partition function Z  determines the equilibrium free energy ln lneq B B eqF k T Z H k T f − = +  

which is the characteristic potential of the subsystem and contains the entire thermodynamic 

information. Thus, any problem in classical statistical mechanics and thermodynamics could be 

solved via Eq. (1.3), in principle, once the mechanical definition is specified by H . 

For many applications it is sufficient to describe only the evolution of the probability den-

sity ( , )x t fdp    in the coordinate subspace. Integrating properly Eq. (1.3) yields the corre-

sponding evolutionary Euler-like equations 

 

( ) 0t x V +    =   ( ) ( ln )t x x BM V V V B V U k T  +  +  = − ++    (1.4) 

 

The first equation is the continuity equation, following from the compulsory conservation of the 

probability, and ( , )V x t  is the hydrodynamic-like velocity in the probability coordinate subspace. 

The second equation is the macroscopic force balance resembling the Langevin equation (1.2). 

One can recognize the configurational entropy in the last logarithmic term, whose gradient is the 

macroscopic image of the stochastic Langevin force. If the friction is high, one can neglect the 

inertial term as compared to the friction force to get 1 ( ln )x BV B U k T−= −  ++  . Substituting 
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this expression for the hydrodynamic-like velocity into the continuity equation yields the self-

consistent Smoluchowski equation 

 

1 [ ( ) ]t x x B xB U k T−  =     + +           (1.5) 

 

It is evident that the equilibrium solution of the Smoluchowski equation is the Boltzmann distri-

bution, which is not disturbed by the non-uniformity of the friction tensor B . The latter affects 

solely the evolution towards equilibrium but not the final equilibrium state. 

The Brownian motion through modulated structures is important process either for the 

academic science or for technology. As a rule, the diffusion coefficient of molecules exhibits non-

monotone dependence of their size, a phenomenon called resonant diffusion. For example, Gor-

ring has experimentally detected in 1973 that the diffusion coefficient of normal alkanes in zeo-

lites exhibits a minimum at C8 and maxima at C4 and C12. The resonant Brownian motion of small 

clusters on solid surfaces is important for catalysis, heterogeneous nucleation, surface coating, 

etc. In biology the transport of molecules through the highly structured biological membranes is 

another example, where the resonant diffusion takes place. Our aim now is to derive qualitative 

description of the resonant diffusion, which is very general and could be applied to diffusion in 

any modulated structure. The basic assumptions are that the structural vibrations are harmonic, 

and the diffusion mechanics is interstitial, while the effect of vacancies is of second order of im-

portance. Because of the large difference between the characteristic times of diffusion and mo-

lecular vibrations, the adiabatic separation of slow and fast variables is possible, and the latter 

can be considered as degrees of freedom at equilibrium. In 1978, Festa and d’Agliano solved Eq. 

(1.3) for a single Brownian particle. Their result / [ exp( ) exp( )]BD k T b=  −  for the diffusion 

constant accounts for the position dependence of the friction coefficient b  and the potential   

by means of the spatial average, indicated via bars. Considering the potential as a strictly periodic 

with a spatial period a , the Festa-d’Agliano formula reduces to the more specific Lifson-Jackson 

form, written here by employing our expression for the friction coefficient [3, 4, 9], 

 

3 2 2 2

0 0

4 / [ ( ) exp( ) exp( ) ]

a a

m B xD c k Ta dx dx=     −       (1.6) 
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which requires solely a model for the static subsystem-bath interaction potential. Since at low 

temperature the two integrals are essential near the maxima and minima of the potential  , 

respectively, the diffusion coefficient (1.6) decreases exponentially with the height of the energy 

barriers, which premises the Arrhenius law. Note that b  takes place in the first integral only, i.e. 

the position dependent friction is more important at the barrier hills than at the potential wells. 

For a diffusing atom in the Frenkel-Kantorova model Eq. (1.6) can be explicitly integrated and the 

corresponding diffusion coefficient 3 4 3

0 1 0/ 4 [ ( ) ( )] ( )mD c a A AI A I A I A=    −    is expressed via 

the modified Bessel functions of the first kind [4]. Since the latter tend to 1/2exp( ) / (2 )A A   at 

large argument, the diffusion coefficient 3 4 2( / 2 )exp( 2 )mD c a A A=   −   recovers the Arrhenius 

law with a pre-exponential factor, decreasing by the activation energy increase. In the opposite 

case at high temperature, the diffusion coefficient reduces to the Einstein formula /BD k T b=  

with the spatially averaged friction constant 3 2 3 42 / mb A c a=   . Note that even if the hopping 

over the energetic barriers is easy, the diffusion coefficient decreases further by the increase of 

the interaction strength A  between the Brownian particle and the environment, due to the in-

crease of the friction. 

When the Brownian particle is a dimer, moving in one direction along a surface, the Fren-

kel-Kantorova periodic surface potential 2 cos( cos / )cos(2 / )A l a x a =     depends also on the 

dimer length l  and the angle  , enclosed between the direction of motion and the dimer. It 

premises resonant diffusion since the interaction strength becomes even zero at some geometric 

conditions. Employing this potential, we have described several particular examples of rigid [4], 

rotating [6] and vibrating [12] dimers on solid surfaces and our results correlate well to existing 

experimental observations. In all cases, the dimer internal degrees of freedom ( , ,A l  ) are aver-

aged properly via the adiabatic quasi-equilibrium conditional Gibbs probability density. The 

model is further developed to describe linear chains of N interacting Brownian particles to explain 

the Gorring observation [3, 9]. The diffusion of particles through zeolites is a very important mass-

transfer process, which is related to the sorption kinetics and catalytic activity. The regular pore 

structure of zeolites provides desired selectivity by the access of the diffusing molecules to the 

catalytic centers. The 3D Brownian motion of chains in the zeolite structure is very complex. To 

reduce the system to the Frenkel-Kantorova model, we selected data only from linear zeolites, 

such as ZSM-12 and LTL, where the Brownian motion is restricted in a single channel in one di-

rection. As was mentioned, an interesting aspect of the diffusion in zeolites is the resonant effect. 
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Because of the shape of the channels, the resultant interaction potential is not monotone func-

tion from the geometric parameters of the Brownian particle and the zeolite. In this way, it could 

happen that longer alkane chains possess lower energy barriers than shorter chains, which will 

result in faster diffusion as observed experimentally by Gorring. 

The specific interaction parameters per a methylene group could be estimated from the 

data for diffusion of methane in the considered zeolite. In general, the structural periodicity of 

the zeolite crystals can be approximated by two Fourier components. The short length periodicity 

reflects the atomic structure of the zeolite. Since the lengths of the Si-O and C-C chemical bonds 

are commensurable, one can accept l  as the short period of the zeolite crystal as well. The long-

range periodicity is due to the zeolite pore structure. Because the friction constant b  is propor-

tional to the square of the second derivative of the interaction potential, it follows that the fric-

tion coefficient is determined mostly by the atomic structure of the zeolite and increases linearly 

with the increase of the number of C-atoms in the alkane. On the contrary, the effective interac-

tion potential of the diffusing molecule depends essentially on the pore structure [9]. The calcu-

lated diffusion constant in LTL, for instance, exhibits periodic resonant character with maxima for 

C6, C12, C18 and minima for C3, C9, C15, which is also confirmed by our experimental observations 

[11]. The detail description of the stochastic dynamics allows to determine the effect of some 

hidden degrees of freedom. It is confirmed, for instance, that the diffusion coefficient increases 

with the stiffness of the chain, which is opposite of the normally expected easier movement of 

flexible molecules. This phenomenon is explained by disturbance of the zeolite phonon density 

by the vibrating molecular bonds, reflecting an increase of the activation energy.  

The Langevin equation (1.2) can be extended to describe quantum effects in the environ-

ment as well. Considering the bath oscillators as quantum, the Langevin force ( )F t  becomes the 

quantum noise. Its spectral density ( / 2)coth( / 2)FFS I=      follows from the quantum fluc-

tuation-dissipation theorem where I  is the 3Nx3N dimensional unit tensor. It resembles the 

well-known expression for the thermal phonon energy and recovers logically the spectral density 

of the white noise FFS I=  in the classical limit 0→ . Inverting the Fourier image FFS  yields 

the corresponding Langevin force autocorrelation function, which can be written conveniently in 

the formal operator form ( / 2)coth( / 2) ( )FF t tC i i t s I=      − . For compactness, we will em-

ploy further the corresponding temperature operator [30] 
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ˆ ˆ ˆcoth( / 2) / 2 cot( / 2) / 2B t tk T E E  =           (1.7) 

 

which is defined via the quantum operator of energy ˆ
tE i  . The latter emphasizes the origin 

of the quantum effects because the quantum bath supplies simply energy to the classical subsys-

tem in a more complex way. The temperature operator T̂  reduces naturally to temperature T  

in the classical limit, while expanding it in series 2 2ˆ /12B B tk T k T= −   yields the leading semi-

classical correction. Since the quantum Langevin force is Gaussian, the relevant quantum Klein-

Kramers and Smoluchowski equations follow directly by application of the Furutsu-Novikov-

Donsker theorem [30]. Therefore, Eq. (1.3) and Eq. (1.5) retain their structures by replacing solely 

the temperature T  via the temperature operator T̂ . These equations describe non-Markov pro-

cesses, because they involve time-derivatives higher than the first one. The equilibrium solutions 

of the quantum Klein-Kramers and Smoluchowski equations do not depend on time and, hence, 

they are the classical Gibbs and Boltzmann distributions, respectively. This is expected, since the 

equilibrium follows rigorously at infinite time, which corresponds to zero frequency, where the 

quantum Langevin force behaves classically. Therefore, the quantum bath modulates exclusively 

the evolution of the classical subsystem to its classical equilibrium state. 

The stochastic description by Eq. (1.2) is frustrated by several nonlinearities. Considering 

a free Brownian particle ( 0U  ), one can simplify the Langevin equation further by employing of 

the spatially averaged friction tensor B bI= , which is diagonal. Obviously, b  is independent of 

the particle position and 0 =  is constant. These approximations significantly reduce the math-

ematical complexity and make possible to use the standard Fourier analysis. Thus, from the equi-

librium spectral density of the Brownian particle velocity 2 2 2coth( / 2) / ( )
XX

S b m b=     +  

one can derive at zero frequency the Einstein diffusion coefficient ( 0) / 2 /BXX
D S k T b= = = , 

which is also classical. The integral of the spectral density 
XX

S  on   should provide the equilib-

rium thermal dispersion /Bk T m  and this determines the maximal frequency of the spectrum, 

1/2(2 / )Bbk T m   [30]. As is seen, it diverges in the classical limit, because all Fourier modes 

are present in the classical bath with a white noise. Interpreting   as the maximal collision fre-

quency suggests that the smallest mean free path of the Brownian particle is restricted by the 

quantum environment. It scales with 1/2( / )b , which appears often in the theory of Brownian 
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motion in quantum environments. Expressing now the friction coefficient 2/b =   via the mean 

free path   yields an example of quantum friction in gases [21]. 

Finally, we are going to conclude the first part of the Dissertation by describing a stochas-

tic phenomenon from the living world, where the migration of living cells usually obeys the laws 

of Brownian motion as well. While the latter is due to thermal fluctuations in the environment, 

the locomotion of cells is generally associated with their vitality and active swimming. We studied 

theoretically the driving force of cell migration and proposed a model for the Brownian motion 

of cells [22]. Accordingly, another effective temperature appears as the main parameter, which 

we called the cell temperament  . The latter is a biophysical parameter describing the motivity 

of living biological entities in analogy with the physical parameter of temperature, which dictates 

the movement of lifeless physical objects. In this respect, an interesting question arises here: 

what is the osmotic pressure of fishes in an aquarium? If the cell is death the temperament   

coincides with the thermal energy Bk T . The cell migration is studied via the generalized Langevin 

equation (1.1). We explored the possibility to describe the cell locomemory via the Brownian self-

similarity [24]. In the frames of the Markov approximation, the corresponding cell Klein-Kramers 

and Smoluchowski equations are derived, where temperature is replaced by the temperament 

 . Thus, the equilibrium Maxwell-Boltzmann distribution also describes the probability density 

for the velocity and position of living cells. A heuristic expression for the diffusion coefficient of 

cells on structured surfaces is proposed by exploring the analogy to the Festa-d’Agliano formula 

(1.6). 

 

 

2. Brownian Motion and Quantum Mechanics 

 

A century after the inception of quantum mechanics, there are still attempts to derive it 

from the Brownian motion. The reasoning is due to the a priori probabilistic character of quantum 

mechanics and the parabolic form of the Schrödinger equation, resembling diffusion with an im-

aginary diffusion coefficient [28]. Since the latter describes a mechanical subsystem in vacuum, 

there are not bath atoms and the generalized Langevin equation (1.1) reduces at 0  to the 

Newton equation 
XM X U = −  of the closed subsystem. However, the lack of atoms does not 

mean that vacuum is empty. The quantum field theory states that there are virtual photons in 

vacuum, carrying the zero-point energy fluctuations. Considering a single electron, there is 
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another way for energy dissipation via emission of electromagnetic radiation. The ability of quan-

tum photons to travel freely in vacuum makes the latter a very dissipative environment. In a first 

approximation, the radiation friction can be described via the Abraham-Lorentz force, which 

must be compensated by the quantum Langevin force, originating from the zero-point energy 

fluctuations [25]. Thus, one arrives to 2 3

0/ 6 XmX e X c U F−  = − +  and this generalized Lange-

vin equation describes a non-Markov process, because the friction force is linear on the electron 

jerk. The spectral density the fluctuation force 2 2 3

0( / 6 )FFS e c=     follows from the quan-

tum fluctuation-dissipation theorem at zero temperature. As is seen, the quantum Langevin force 

is not a white noise, and it is relativistic as well. It vanishes at infinite speed of light c , which 

replaces the speed of sound in the friction coefficient. Because the generalized Langevin equation 

above becomes linear at 0U  , let us consider a free electron. Applying the standard Fourier 

analysis to this generalized Langevin equation yields the equilibrium spectral density of the elec-

tron velocity 
2 2

0 0/ ( 1)
XX

S m=    + , where the characteristic time 2 3

0 0/ 6e mc    of photon 

emission by the moving electron is extremely small, being of the order of a yocto-second. Be-

cause of ( 0) 0
XX

S  = = , the classical diffusion coefficient is zero as well, which is related to the 

zero temperature in vacuum. The integral of 
XX

S  on   diverges in general, which points out the 

existence of a maximal frequency as the Debye cutoff, which is the Zitterbewegung frequency 

22 /mc =  now. Since the product 2

0 0/ 3e c =   is of the order of the small fine structure 

constant, the velocity spectral density simplifies further to 0 /
XX

S m=  , being directly propor-

tional to the zero-point energy / 2 . Integrating this expression yields the velocity dispersion 

of the electron in vacuum at 0T = : 2 2 2

0/ 3
X

e c =    is universal, relativistic and quantum. 

Hence, the speed of the trembling motion of a free electron in vacuum is an order slower than 

the speed of light c  and an order faster than the orbital electron in the hydrogen atom. The 

relativistic quantum model described above is the core of the stochastic electrodynamics, which 

is considering it as the background of quantum mechanics. However, instead of the Schrödinger 

equation the Brownian emitter model leads to the Klein-Kramers and Smoluchowski equations, 

generalized by the semi-relativistic friction coefficient operator 2 2 3

0
ˆ / 6tb e c= −    [25, 30]. Be-

cause the latter is acting in time as the temperature operator T̂ , they do not affect the equilib-

rium solutions. Furthermore, the Schrödinger equation is valid for non-charged particles as well, 

which cannot emit electromagnetic radiation. The Brownian model considered here points out, 
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however, the fast-stochastic irregular relativistic trembling motion as the possible origin of quan-

tum mechanics. 

Because quantum mechanics is a probabilistic theory, it is more natural to reformulate it 

in terms of the hydrodynamic-like equations for the probability density, analogical to Eq. (1.4). In 

1927, Madelung has already converted the Schrödinger equation for a single particle to the hy-

drodynamic Euler equations. Employing the Madelung ansatz 1/2 exp( / )iS =   for the wave 

function, which reflects the Born rule as well, the Schrödinger equation transforms to the follow-

ing hydrodynamic-like equations [1, 19, 29] 

 

( ) 0t x V +    =   ( ) ( )t x xM V V V U Q  +  = − +     (2.1) 

 

where the hydrodynamic-like velocity 1

xV M S−   is related to the wave function phase S . 

As is seen, the Bohm quantum potential 2 1/2 1 1/2 / 2x xQ M− − −       accounts for all quantum 

effects alone. Comparing Eq. (2.1) and Eq. (1.4) reveals some peculiarities of the quantum vac-

uum as environment. As expected, there is no interaction potential   and the lack of friction 

force hints against the radiation mechanism. On the other hand, the thermal free energy is re-

placed by the quantum potential in Eq. (2.1). Obviously, Q  possesses an emergent origin [26], 

since the quantum potential is a functional of the probability density  , in contrast to the usual 

potentials. Since the average value of the quantum potential is proportional to the Fisher infor-

mation, Q  is sometimes referred as the information potential as well. On the other hand, the 

classical entropy is related to the Shannon information. Thermodynamically, at zero temperature 

the quantum potential is a kind of subsystem enthalpy in vacuum, being the characteristic po-

tential at constant entropy. Thus, its gradient /x xQ =     determines the Madelung pressure 

tensor 2 1 ln / 4x xM − = −     , which is the quantum analog of the thermal osmotic pressure 

tensor Bk T I  from Eq. (1.4). 

Looking for the underlining stochastic dynamics behind Eq. (2.1), it is natural to introduce 

stochastic Euler equations in the probability space, driven by the zero-point vacuum fluctuations 

[29, 32]. The fast and irregular relativistic trembling of the quantum particles can cause turbu-

lence in the hydrodynamic-like stochastic equations. Thus, the turbulent character of the Made-

lung pressure tensor is elucidated by splitting 1/2 1/2' 'pI M V M V = +    to a scalar pressure 



18 
 

and the Reynolds stress tensor. The quantum pressure 2 1 / 4x xp M −= −      is given by the 

kinetic energy operator acting on the probability density. Using it, one can calculate the local-

mean quantum force /x p−   in Eq. (2.1), being the macroscopic image of the quantum Langevin 

force [27]. The Reynolds stress tensor is dyadic and 1' ln / 2xV M − −    represents the local-

mean turbulent velocity. Remarkably, the flow 1' / 2xV M − = −    obeys the Fick law with the 

Nelson quantum diffusion tensor 1 / 2M − , which confirms that the quantum turbulence pos-

sesses a Brownian character. Indeed, using the quantum momentum operator ˆ xp i −   and the 

Madelung ansatz for the wave function one can write ˆ ( ')p M V iV =  +  . Because V  is the 

local-mean laminar velocity of the quantum particles probability density flow, it appears that the 

kinetic energy from the Schrödinger equation is a sum of the energy contributions of the laminar 

and turbulent motions. This is again an illustration for separation to slow and fast variables, 

where the latter are averaged in time on the scale of 1−  via the Favre procedure [29]. Consid-

ering a hydrogen atom, for example, the laminar velocity component 0V =  is zero, because the 

stationary wave function is real and 0S = . Therefore, in contrast to the Bohr model the electron 

does not perform directional motion, but it is simply trembling stochastically, and its trajectory 

draws the electron cloud, while the kinetic energy is purely turbulent. 

The Madelung hydrodynamics (2.1) describes solely the evolution in the coordinate sub-

space, which follows from the Wigner-Liouville equation in the phase space, similar to the gene-

alogic relationship between Eq. (1.3) and Eq. (1.4). Therefore, we are going now to discover what 

stochastic dynamics is hidden behind the more general Wigner-Liouville equation [33, 34]. For 

the sake of simplicity, let us consider the hydrogen atom first, constructed from an electron and 

a proton with masses 1m  and 2m , respectively, but the conclusions will be generalized later. The 

corresponding Schrödinger equation 
1 2

2 2 2 2

1 2 12/ 2 / 2t x xi m m u  = −   −   +   describes the 

evolution of the wave function 1 2( , , )x x t  at any positions 1x  and 2x  of the electron and proton, 

respectively, where 2

12 0 1 2/ 4u e x x −  −  is the Coulomb interaction potential with the ele-

mentary charge e  and the dielectric permittivity 0  of vacuum. The latter shows that vacuum is 

not empty. Because there is no wave function in classical mechanics, it is appropriate to employ 

the Wigner function 1 1 2 2( , , , , )W p x p x t  as the quasi-probability density in the particles phase 

space, where 1p  and 2p  are the electron and proton momenta, respectively. Via the Wigner-

Weyl quantization one can calculate all statistical properties in quantum mechanics. The Wigner 
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function is a useful tool and its marginal probability densities coincide with the exact solutions of 

the Schrödinger equation both in coordinate and momentum representations. The evolution of 

the Wigner function follows directly from the Schrödinger equation and obeys the Wigner-Liou-

ville equation. For the sake of the further analysis, it is important to express the interaction po-

tential 12u  via its Fourier image and to write the Wigner-Liouville equation in a decisive form [34] 

 

1 2

2

1 2
1 1 2 2 2

0

3

1 1 2 2 1 1 2 2

exp[ ( )]
/ /

[ ( / 2, , / 2, , ) ( / 2, , / 2, , )] ( / 2 )

t x x

e ik x x
W p W m p W m

i k

W p k x p k x t W p k x p k x t d k



−

 −
 +  +  =



+ − − − + 

  (2.2) 

 

Suddenly, the physics behind the Schrödinger equation becomes transparent. The large expres-

sion in the brackets describes transfer of momentum k  from the proton to the electron by a 

single photon. The other term in the collision integral of Eq. (2.2) is the acting force per unit 

momentum transmitted, i.e. it is the characteristic frequency of the photon exchange. The ratio 

between the collision and photon frequencies is the fine structure constant. The integration over 

positive and negative wave vectors k  accounts for momenta transfers in both directions. The 

photon momentum k  is the only quantum quantity in Eq. (2.2), while the point charges them-

selves are not quantum and do not propagate as waves. They simply swim in the quantum sea of 

the photons. This realistic picture correlates well to quantum field theory, stating that the funda-

mental forces are transmitted by quantum force carriers. Once the non-quantum free particles 

are set in the force carriers’ bath, they become naturally quantum, due to the interaction. One 

can easily recognize a virtual photon Feynman propagator in the term 21/ k−  of Eq. (2.2). The 

latter seems not quantum, since the photon mass is zero, and it is stationary, because the retar-

dation is neglected in the Schrödinger equation. Obviously, photon is a wave in the coordinate 

space but it behaves as a quasi-particle in the momentum space, as discovered by Einstein. There-

fore, the force carriers are the reason for the wavy character of quantum mechanics. Because 

the Feynman propagator governs the force carriers of all fundamental interactions, Eq. (2.2) can 

be easily generalized to describe gravity and strong forces as well. This is the reason why all fun-

damental interaction potentials vanish inversely proportional to the distance between the point 

particles. In general, the force carriers transmit either energy or momentum, which creates the 

interaction potentials and generates the quantum trembling motion as well. 
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Since many years, the transition of the Wigner-Liouville equation to the classical Liouville 

equation proves the generic bond between quantum and classical mechanics. If the momenta of 

the point particles are much larger than the force carriers’ quanta, one can expand in a k -series 

the expression in the brackets in Eq. (2.2). Keeping the leading terms only yields the classical 

Liouville equation. So, the importance of quantum effects depends on the momenta of the point 

particles, not on their masses only. Of course, heavy particles possess large momenta even at 

slow velocity and that is why they obey often classical mechanics. It is evident that a free electron 

should obey the classical Liouville equation without any external potential since there are not 

force carriers without interactions. Therefore, the free electron trajectory 0 0 /X X Pt m= +  in-

creases linearly in time. However, to fix the electron at its initial position, one must apply a strong 

initial attractive potential at 0X . According to Eq. (2.2) this initial potential will generate mo-

menta kicks / 2k , randomizing the electron momentum. Once the initial potential is switched 

off at 0t = , the electron will propagate freely with an initial momentum acquired by the photon 

kicks with 0 0P = . Since the initial variables 0 0 0X P =  are not correlated, the evolution of 

the free electron position dispersion 2 2 2 2 2(0) (0) /x x p t m =  +  will grow quadratic in time. Due 

to the properties of the Fourier transform, the initial root-mean-square momentum fluctuation 

(0) (0) / 2 / 2 (0)p k x =  =   is determined by the width (0)x  of the initial potential, which 

emphasizes the measurement problem of quantum mechanics as well. Thus, the Wigner function 

for a free electron is a Gaussian probability density, which is spreading via the well-known law 

2 2 2 2(0) ( / 2 ) / (0)x x xt m =  +  . The Heisenberg inequality holds at any time, due to of the Fourier 

transformation properties. The root-mean-square displacement x  obeys the dynamic equation 

2 3/ 4x xm m =  , which follows from Eq. (2.1) as well. It was introduced in mathematics first by 

Ermakov in 1880. 

Because the fundamental interactions are pairwise additive, the total potential energy is 

a sum ijU u=  of pair potentials. Thus, the many-particles problem reduces straightforward to 

the same physical picture, emerging from discrete force carriers. Let us consider now a general 

system of N particles with 3N-dimensional vectors of positions x  and momenta p , respectively. 

The Fourier image ( )U k  of the interaction potential defines the total propagator of the force 

carriers and represents the interaction energy density as well, distributed over the force carriers’ 

momenta. As was mentioned, the Wigner-Liouville equation describes the evolution of Wigner 
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function, which is traditionally written 1

Im2 ( / 2) /t x pW p M W U x i W− +   = +   by an oper-

ator of the potential energy. It can be rewritten, however, in an alternative form, symbolizing the 

collisions from Eq. (2.2): 1

Im2 ( / 2, , ) /t x xW p M W W p i x t U− +   = +  . Expressing now the 

potential U  via the corresponding Fourier integral yields after some rearrangements a classically 

looking alternative 

 

1 3exp( ) ( / 2 )N

t x x p kW p M W U ik x W d k



−

−

 +   =      
1/2

1/2

( , , )kW W p k x t d
−

 +    (2.3) 

 

As expected, all quantum effects are due to the force carriers’ momenta k , randomizing the 

momenta of the point particles. The normalized probability density kW  offers an alternative in-

terpretation as a random phase approximation of the force carriers’ momenta kicks on the point 

particles. The Bayesian product ( ) ( , , )kU k W p r t  represents the joint distribution of the interac-

tion energy over the force carriers’ momenta in the point particles phase space. Again, when the 

particles momenta / 2p k  are larger than the quanta of the force carriers then kW W  and 

Eq. (2.3) reduces to the classical Liouville equation 1

t x x pW p M W U W− +   =    but the accu-

racy of this asymptote depends strongly on the interaction energy Fourier distribution. The un-

expected validity of the Liouville equation for harmonic oscillators is due to the fact that the force 

carriers are also harmonic vibrations. Hence, there is no mode-mode coupling due to linearity of 

the underlying dynamics. As in the case of a free particle, the quantum effects of a harmonic 

oscillator originate solely from the initial distribution. For instance, the displacement of a har-

monic oscillator with an own frequency 0  reads 0 0 0 0 0cos( ) sin( ) /X X t P t m=  +    and, if the 

initial displacement and momentum are not correlated, the position dispersion obeys the expres-

sion 2 2 2 2 2 2 2

0 0 0(0)cos ( ) (0)sin ( ) /x x pt t m =   +   . The initial momentum fluctuation can be ex-

pressed again from the initial potential (0) (0) / 2 / 2 (0)p k x =  =  . The corresponding posi-

tion dispersion reduces to the well-known expression 2

0/ 2x m =  , if one is looking for the sta-

tionary solution. The oscillator energy is injected by the initial potential during the initial posi-

tioning. In contrast to a free particle, 0 / 2 =   is universal due to the stationary harmonic os-

cillator. Because of the parametric resonance, the oscillator can absorb and emit photons with 
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frequency 0  only and the possible oscillator energies are 0( 1/ 2)n n = +  . Hence, there is no 

way to lose the zero-point energy 0 / 2 . 

An extensive discussion goes in the literature about the Wigner function positivity. In gen-

eral, W  must possess negative values at some points due to the orthogonality of the stationary 

solutions of the Schrödinger equation. For the hydrogen atom 0W   is positive in the ground 

state, as well as for a harmonic oscillator. Our expectation is that the Wigner function must be 

always non-negatively defined in the ground state, while in the excited states W  can be negative 

somewhere. The reason for this is that the excited states appear only at presence of external 

photons. Hence, the latter will exercise additional momenta kicks on the electron, which are not 

included in Eq. (2.2) so far. As was demonstrated, the Schrödinger equation is generated by the 

exchange of force carriers between the interacting particles. Since there are few gauge bosons, 

Eq. (2.3) is appropriate only for systems with fundamental interactions and the total potential 

energy must be a superposition of the Feynman momenta propagators. If one employs artificial 

or even approximate potentials, they will correspond to unphysical propagators of non-existing 

force carriers, which could result in inconsistent solutions of the Schrödinger equation. It seems 

that a negative value of the Wigner function is a smart indicator for problems with potentials and 

initial or boundary conditions. For example, the so-called cat state of a single particle possesses 

a bimodal Wigner function. Its negativity problem is due, however, to unphysical initial conditions 

since it is impossible to fix at the beginning a single point particle at two different places at once. 

It is interesting how the point particles are moving after all [33]. Borrowing ideas from 

classical electrodynamics, the Lagrangian / 2 ( ) ( )L X M X U X A X X=   − +   of the entire sub-

system takes the form, where X  and X  are the 3N-dimensional vectors of the real trajectories 

and velocities of the point particles, respectively. Due to energy conservation, the Lagrangian L  

does not depend explicitly on time. Apart from the scalar potential U , the 3N-dimensional vector 

potential A  accounts for the N force carriers. This is consistent with quantum field theory, where 

the vector potentials are wave functions of the virtual particles in the Klein-Gordon equation. 

Because the traditional magnetic forces are neglected in Schrödinger equation due to their rela-

tivistic character, A  is independent of the point particles’ velocities X . Thus, the point particles 

momenta 
X

P L   consist of a differentiable part M X  plus kick momenta A  and the local-

mean of the latter are the laminar and turbulent velocities. The corresponding Euler-Lagrange 

equation reads 
X X XP L U A X=  = − +   and one can recognize in the last term the Langevin 
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fluctuation force pumping momenta via kicks. Introducing the particles momenta P M X A=  +  

in this equation yields the corresponding stochastic Langevin-Lorentz equation, which resembles 

the Brownian motion from Eq. (1.2), [34] 

 

X X XM X X A U A X +  = − +          (2.4) 

 

In contrast to the standard dissipation, however, the friction tensor X A  of the dissipative force 

A  is stochastic and it possesses zero mean value to avoid any entropy production. The stochas-

ticity in Eq. (2.4) originates from the fluctuations of ( )A X , being a random function of the parti-

cles’ configuration, because the evolution of the point particles positions causes instant redistri-

bution of the force carriers. The 3N-dimensional Lorentz force 
X XA X X A  −   does no work 

since it is always orthogonal to the velocity X . Hence, the subsystem energy remains constant 

and / 2E P X L X M X U  − =   +  is explicitly independent of the hidden A . To respect the 

Ehrenfest theorem, the mean value of the stochastic Lorentz force must be zero. 

The phase space probability density ( ) ( )f x X p P=  −  −   is averaged over the sto-

chastic realizations of the vector potential and positively defined everywhere. Differentiating f  

on time and substituting the Euler-Lagrange equation yields 

 

1 3( ) ( )( )exp( ) ( / 2 )N

t x pf p M f ik x X p P U A X ik X d k



−

−

 +   =    −  − −      (2.5) 

 

In the derivation of this equation the potentials are expressed via the corresponding Fourier 

forms and the term 1 ( ) ( ) 0x M x X p P A−     −  − =  is set zero, because the force carriers’ 

waves are transverse in average. Following the hint from Eq. (2.2), the random potential fluctua-

tions A X k X =    can be expressed by a global fluctuating parameter ( )X , being dimension-

less and zero-centered. Substituting this expression in Eq. (2.5), the latter changes after simple 

rearrangements to 

 

1 3( ) ( )( )exp( ) ( / 2 )N

t x p tf p M f ik x X p P U i ik X d k



−

−

 +   =    −  − +      (2.6) 
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It is known from electrodynamics that the gauge transformation tU U S→ −  and rA A S→ +  

does not affect the physical state. For instance, one can easily recognize the origin of the quan-

tum mechanical operators of energy and momentum from lnS i=  . The gauge theory explains 

how the force carriers transmit the potential interaction U  via the vector potential A . Appling 

the gauge transformation to cancel and relocate the fluctuation force in Eq. (2.6) results after 

employing the useful properties of the Dirac delta function in the alternative equation 

 

1 3exp( ) ( / 2 )N

t x x p kf p M f U ik x f d k



−

−

 +   =          (2.7) 

 

where ( ) ( )kf x X p P k  −  − +    reduces to the probability density f  at 0k = . Appar-

ently, the symmetric zero-centered fluctuations of ( )X  generate the randomness of quantum 

mechanics, since in the deterministic case ( 0  ) kf f=  and Eq. (2.7) reduces to the classical 

Liouville equation. To reproduce Eq. (2.3), one should identify the equivalence k kf W  between 

the probability density and the Wigner function, which corresponds to uniformly distributed  -

fluctuations in range 1/ 2 . Therefore, the global parameter   is the force carriers’ helicity, be-

ing the projection of their spin on the momentum, which is an important quantum property of 

the photon beams. 

The presented theory above is a kind of stochastic electrodynamics. As was mentioned, 

the traditional stochastic electrodynamics models describe the temporal fluctuations of the elec-

tromagnetic field caused by the zero-point fluctuations in vacuum. Since the latter result always 

in energy changes, they are excluded in the present model ( 0t L = ). To compensate the energy 

fluctuations, the traditional models consider in addition the Abraham-Lorentz force in the sto-

chastic Newton equation but how we showed already, this results in description of the quantum 

Brownian motion not of quantum mechanics itself. The zero-point fluctuations in vacuum are not 

accounted in the Schrödinger equation and they cause additionally the Lamb shift of the hydro-

gen orbitals. Their effect can be estimated by relevant fluctuations in Eq. (2.7), which will change 

to 1 2 1 3 / 4t x p xf p M f M f− − +   =     in the case of a free particle. Naturally, the corre-

sponding Schrödinger equation is not the usual one anymore. The stationary solution of this 

equation 2 2 2 2 2 3/2exp( 2 / ) / ( / 2)f p k k= −  , expressed by the Fourier image, is a Gaussian 
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distribution, where ( )x  is the stationary distribution density in the coordinate space. One can 

recognize again the virtual kicks in the momentum fluctuation / 2k . 

At present, there are too many interpretations of quantum mechanics, which indicate 

that the problem is not solved, yet. All of them respect the Schrödinger equation but introduce 

additional concepts to build a physical reality. Our interpretation relays solely on the Schrödinger 

equation, which is mathematically transformed to the Wigner-Liouville equation, representing 

the Schrödinger equation in the Wigner-Weyl quantization. This transformation allows us to see 

clearly the physics behind the Schrödinger equation without any further assumptions. The ortho-

dox Copenhagen interpretation considers the election as a point charge with a wave function, 

describing the probability for the electron presence. Only the latter exhibits wavy behavior and 

we have shown in the present paper that the force carriers are causing the probability undula-

tions. The relationship between our and Copenhagen interpretations is like that between statis-

tical mechanics and thermodynamics. Thus, the macroscopic ontology needs our interpretation 

for the microscopic origin of the Schrödinger equation to recognize its origin. Another important 

aspect of quantum mechanics is the measurement theory. Because the Schrödinger equation is 

fundamental, any measurement should affect the system only via changes of the interaction po-

tential. This will change the wave function as well and the traditional theories try to describe this 

collapse without detail knowledge for the potential disturbances. Our interpretation requires ex-

act specification of the potential during the measurement process. For instance, it was demon-

strated that during the fixing of an electron initially the relevant initial potential generates ran-

dom kicks via its force carriers. These initial kicks are later responsible for the entire quantum 

behavior of the freed electron. Finally, it appears that photons are the most unique objects, being 

quantum and moving with the speed of light. Obviously, they are relativistic and do not obey the 

Schrödinger equation. Remarkably, the vector potential A  represents either the electromagnetic 

field or the wave function of the photon. Hence, the photon is obviously a wave and the d’Alem-

bert equation 0A=  is both the classical and quantum governing one. However, because there 

is no mode-mode coupling in the Fourier image of the wave equation, the photons behave as a 

perfect gas of quasi-particles in the momentum space. That is how Einstein had explained the 

discrete photoelectric effect, bringing him the Nobel Prize in 1921. Apparently, the force carriers 

are the de Broglie pilot waves as the Bohm hidden variables. 
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3. Brownian Motion of Quantum Particles 

 

In 1952, Bohm has developed further the ideas of de Broglie and Madelung by suggesting 

that quantum particles obey the Newton equation under the action, however, of the quantum 

potential. Introducing the guiding equation ( , )X V X t=  in Eq. (2.1), the corresponding Newton-

Bohm equation ( )XM X U Q = − +  becomes density functional, because the quantum poten-

tial 2 1/2 1 1/2 / 2x xQ M− − −       depends nonlinearly on the probability density in the coordi-

nate subspace. When   is known, the solution of the Newton-Bohm equation is the quantum 

trajectory of all particles of the closed quantum subsystem. Thus, one can visualize all electron 

transfers in chemistry, for instance. The Bohmian mechanics is a modern alternative of the or-

thodox Copenhagen interpretation of quantum mechanics. Because our goal is to describe the 

Brownian motion of the quantum subsystem, combining the ideas of Bohm and Langevin, we 

introduced the following stochastic Bohm-Langevin equation [15] 

 

1/2( ) ( ) [2 ( )] ( )X BM X B X X U Q k TB X F t +  = − ++ +       (3.1) 

 

Due to the quantum potential, Eq. (3.1) is a density functional stochastic equation, and it is ge-

netically coupled to the corresponding probability density evolution. Because we know already 

how to describe the latter, the combination of Eq. (1.4) and Eq. (2.1) yields the quantum hydro-

dynamic-like equations, resembling Eq. (3.1), [14, 33] 

 

( ) 0t x V +    =   ( ) ( ln )t x x BM V V V B V U Q k T  +  +  = − ++ +   (3.2) 

 

This system of equations is self-consistent and provides simultaneously the probability density   

and the hydrodynamic-like velocity V  as its solutions. In the case of a strong friction, one can 

neglect the inertial term in Eq. (3.2) to express the hydrodynamic-like velocity via the probability 

density. Substituting the following 1 ( ln )x BV B U Q k T−= −  ++ +   in the continuity equation 

yields the Smoluchowski-Bohm equation [15] 

 

1 1 1/2 1/2ˆ[ ( ) ] [ ( ) ]t x x B x x x B xB U Q k T B H k T− − −  =     ++ +   =       +     (3.3) 
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where Ĥ  is the subsystem Hamiltonian operator in coordinate representation. Linearizing Eq. 

(3.3) results in a quantum Smoluchowski equation with the position-acting temperature operator 

2 1ˆ / 4B B x xk T k T M −= −    , which reflects the quantum nature of the subsystem particles now 

[16, 19]. The corresponding osmotic pressure ˆ
Bp k T=   is naturally a superposition of the already 

mentioned thermal and Madelung quantum components. 

The Smoluchowski-Bohm equation is a closed mathematical problem for the evolution of 

the probability density in the coordinate subspace. Unfortunately, the equilibrium solution of Eq. 

(3.3) is not the exact equilibrium quantum distribution known from statistical mechanics, but the 

reason is obvious. Because the probability density   depends on temperature as well the thermal 

fluctuations are accounted twice in Eq. (3.1). To correct this non-additivity, one could replace the 

quantum potential by the corresponding free energy 
Bk T Qd , calculated by the Gibbs-Helm-

holtz relation. Thus, the Smoluchowski-Bohm equation acquires the enhanced form [7, 10] 

 

1 1/2 1/2

0

ˆ[ ( 2 ) ]t x B xk TB H d



− −

  =      +          (3.4) 

 

One can recognize the Einstein diffusion tensor in 
1

Bk TB−
, while according to the non-equilibrium 

thermodynamics the integral must represent the non-equilibrium free energy functional in the 

coordinate subspace, divided by Bk T . Since the latter equals to ln Z−  at equilibrium, where Z  

is the quantum partition function, the equilibrium solution of Eq. (3.4) obeys the Bloch type equa-

tion 1/2 1/2ˆ2 ( ) ( )eq eqZ H Z  = −  . Its solutions 2( ) exp( ) ( ) /n n nx E x Z = −   are the quantum ca-

nonical Gibbs distributions, where nE  and n  are the eigenvalues and normalized eigenfunctions 

of the subsystem Hamiltonian, respectively. The well-known expression for the quantum parti-

tion function exp( )nZ E= −  follows from normalization. As is seen, the integral in Eq. (3.4) 

leads to the correct equilibrium distribution but it complicates additionally the nonlinear mathe-

matical problem. Fortunately, either at low or at high temperature Eq. (3.4) reduces to Eq. (3.3), 

which can be proven by the use of the l’Hopital rule. For this reason, in the further applications 

we will focus on Eq. (3.2). Considering, for instance, an adsorbed particle with 2 2

0 / 2m x=  , the 

friction coefficient is constant, and the probability density is Gaussian. Hence, the resulting 
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Ermakov equation 2 2 3

0 / 4 /x x x x B xm b m m k T +  +   =  +   follows from Eq. (3.2) and accounts 

for many particular cases. It reproduces the exact quantum equation at zero temperature and 

zero friction coefficient. At high friction one can neglect the first inertial term to obtain an equa-

tion for the dispersion evolution 2 2 2 2 2

02 / 2 2t x x x Bb m m k T  +   =  + , which follows from Eq. 

(3.3) as well. In the classical limit it predicts 2 2 2

0 0( / )[1 exp( 2 / )]x Bk T m m t b =  − −  , which is the 

well-known solution of Eq. (1.5). In the opposite case at zero temperature the position dispersion 

relaxes quicker than the classical one as 2 2

0 0( / 2 ) 1 exp( 4 / )x m m t b =  − −  . 

The Smoluchowski-Bohm equation describes the evolution in the coordinate subspace 

only, but the complete mechanical description requires master equation acting in the subsystem 

phase space. Due to mathematical complications, we will consider further structureless environ-

ments via spatially averaged friction tensor B bI=  with position independent friction coefficient 

b  and potential 0 = . It is possible to quantize the classical Klein-Kramers equation directly by 

replacing the canonical derivatives and functional products via the commutators [, ]  and anti-

commutators {,} , respectively. By this technique Eq. (1.3) transforms to the Caldeira-Leggett 

equation ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ[ , ] / [ ,{ ,[ , ] / }/ 2 [ , ] / ] /t BH i b x x H i k T x i i −  =  +   for the density operator ̂  of 

the N-particles subsystem, which reduces to the Liouville-von Neumann equation for the closed 

subsystem at 0b = . Conventionally, the superscript as that in the Hamiltonian Ĥ  denotes quan-

tum mechanical operators in the Heisenberg picture. It is well known that the Caldeira-Leggett 

equation is correct only at high temperature and that is why its equilibrium solution differs from 

the rigorous quantum canonical Gibbs density operator ˆˆ exp( ) /eq H Z = − . Introducing the Wig-

ner function W , being the quantum analog of the classical phase space probability density f , 

the Caldeira-Leggett equation can be straightforward transformed to 

 

2 sin / ( cos )t p p B pW H W b W H k T W −  =    +       (3.5) 

 

The arrows in the super operator ( ) / 2x p p x    −    indicate the direction of differentia-

tion and the commutators and anti-commutators change to 2 sini   and 2cos , respectively. 

Since Eq. (3.5) reduces to the Wigner-Liouville equation in the case 0b = , it accounts rigorously 

for quantum mechanics on the left-hand side but the last diffusional term on the right-hand side 

is purely classical. This semiclassical discrepancy results in an approximate equilibrium solution. 
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For instance, Eq. (3.5) reduces exactly to the classical Eq. (1.5) in the case of harmonic oscillators 

with the Hamilton function 2 2 2

0/ 2 / 2H p m m x +  . Thus, any initial quantum correlation will 

disappear during the irreversible evolution and the quantum oscillators will become classical at 

equilibrium. Traditionally, this crucial problem is fixed by replacing the thermal energy Bk T  via 

the mean energy 0 0( / 2)coth( / 2) =     of a quantum Brownian oscillator at equilibrium to 

obtain 

 

2

0 0 0/ [ / ( / 2)coth( / 2) ]t x p p pW p W m m x W b pW m W +  −   =   +       (3.6) 

 

Such approach is, however, neither rigorous nor universal and demonstrates again the thermo-

dynamic limitations of the Caldeira-Leggett equation. Enhancement of the latter to the Lindblad 

form fails also to reproduce the exact equilibrium density operator in general. 

The main goal of the third part of the Dissertation is to improve the widely used Caldeira-

Leggett equation [35]. Strictly speaking, the Markov processes exist neither in classical nor in 

quantum mechanics, but they are the most reliable and simple idealizations for any dynamics. As 

was mentioned, the rigorous approach requires integration of the exact Liouville-von Neumann 

equation, which is possible for harmonic oscillators only, because of the linearity of the corre-

sponding dynamic equations. In this way the Markov Caldeira-Leggett equation is derived by em-

ploying some additional hypotheses, e.g. the factorization of the initial quantum state in the 

Feynman-Vernon approach from 1963. For this reason, we will try also to map the quantum dy-

namics on the Markov one. According to the Onsager non-equilibrium thermodynamics, the flow 

is proportional to the gradient of the relevant thermodynamic potential, which is the non-equi-

librium local free energy functional lnBF H k T f + . Respecting this deeper physics, one should 

rewrite Eq. (1.5) in the more general form ( )t p x x p p pf H f H f b f F +  −  =    . Quantiz-

ing now the latter yields 

 

ˆ ˆˆ ˆ ˆ ˆˆ ˆ[ , ] / [ ,{ ,[ , ln ] / }/ 2] /t BH i b x x H k T i i −  =  +      (3.7) 

 

It is obvious that the Gibbs density matrix is the equilibrium solution of Eq. (3.7). A fundamental 

difference between this master equation and the Caldeira-Leggett equation is the Boltzmann log-

arithm, originating from the subsystem entropy. The classical Klein-Kramers equation is linear 
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due to the differentiation of the entropy, while Eq. (3.7) remains nonlinear, owing to the non-

commutative quantum algebra. It is known that the exact von Neumann entropy ˆ ˆ( ln )Bk tr−    

differs from the Shannon-Wigner entropy lnBk W Wdpdx−   [25], which is driving the classical dif-

fusion in Eq. (3.5), although the energy ˆˆ( )E tr H HWdpdx  =   is the same in both representa-

tions. The nonlinearity of Eq. (3.7) changes dramatically the quantum evolution of open systems 

by repealing the superposition principle. This requires a critical reassessment of the quantum 

decoherence, described traditionally via linear master equations. 

One can linearize Eq. (3.7) around the exact equilibrium density operator ˆ eq  to obtain 

ˆ ˆ ˆˆ ˆ ˆˆ ˆ[ , ] / [ ,{exp( ),[ ,{exp( ), }/ 2] / }/ 2] /t BH i bk T x H x H i i −  = −    and ˆˆ exp( ) /eq H Z = −  is 

naturally the equilibrium solution of this equation. If one considers further the high temperature 

limit and linearizes the exponential operators as well, this equation reduces to the Caldeira-Leg-

gett equation, as expected. An advantage of the linearity is that it can be directly transformed in 

the Wigner phase space 

 

2 sin / {exp( cos ) [exp( cos ) ]}t B p pW H W bk T H H W −  =   −        (3.8) 

 

As is seem, the formal equilibrium solution exp( cos ) /eqW H Z= −   obeys the Bloch-Wigner 

equation ( ) coseq eqW Z H W Z = −  , as required. In the simplest case of an ideal gas, the Hamil-

ton function 2 / 2H p m  depends on the momenta of the subsystem particles only and Eq. (3.5) 

coincides with the classical Klein-Kramers equation. Surprisingly, Eq. (3.8) reduces also to Eq. 

(1.3), which shows that quantum effects for free Brownian particles must be nonlinear. For har-

monic oscillators, the super operator 2cos / 2H H H = −   splits to two parts, depending on 

p  and x , respectively. The contributions of the x -part cancel in relaxation term of Eq. (3.8) since 

it commutates with p . Because the second derivative on   of the relaxation operator for the 

Brownian harmonic oscillators equals to the operator itself multiplied by 
2

0( / 2) , the latter is 

a linear combination of the hyperbolic sine and cosine functions of 0 / 2  . Therefore, Eq. (3.8) 

acquires the following particular form 
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2

0 0 0/ [ / ( / 2)coth( / 2) ]t x p p pW p W m m x W b pW m W +  −   =   +       (3.9) 

 

Both Eq. (3.6) and Eq. (3.9) are linear and possess the same exact equilibrium solution but 
eqW  is 

derived from Eq. (3.9) and presumed in Eq. (3.6). The quantum effect in Eq. (3.6) is solely pre-

scribed to diffusion, while in Eq. (3.9) both the friction and diffusion are quantum. The emergent 

friction coefficient 
0 0sinh( / 2) / ( / 2)b b      agrees with the Wigner quantum transition 

state theory at zero barrier, since 0sinh( / 2)   is inversely proportional to the partition func-

tion of a quantum oscillator. The momentum diffusion coefficient 0cosh( / 2)p BD bk T    is 

also amplified but obeys the fluctuation dissipation theorem 
0 0( / 2)coth( / 2)pD b=     for 

quantum systems. The adiabatic friction coefficient 
pD  is larger than the isothermal b  and they 

are related via the Gibbs-Helmholtz equation ( ) pb
b D  =  [1]. At zero temperature, the fric-

tion coefficients diverge, because 0 / 2  plays the role of activation energy as well, and the har-

monic oscillator drops at once in the equilibrium ground state with the well-known Wigner func-

tion 
0exp( 2 / ) /eqW H Z= −  . The quantum oscillator moves in the grounds state without any 

friction due to the tunneling effect, but to move macroscopically it should be exited first. At zero 

temperature the environment cannot supply the necessary excitation energy 0 , which reflects 

in the infinite emergent friction coefficient b . This effect weakens, however, by a decrease of the 

collision frequency /b m , which at zero temperature is solely due to the quantum motion of the 

subsystem particles in the ground state [21, 31]. 

Formally, it is possible to convert Eq. (3.7) in the Wigner representation 

 

2 sin / { [cos ln(cos )]}t p p BW H W b W H k T W −  =     +      (3.10) 

 

Using the operator equality cos exp( cos ) exp( cos )cosH H −  = −    one can prove that the 

equilibrium solution of Eq. (3.10) is the exact exp( cos ) /eqW H Z= −   again. Extracting the 

Shannon-Wigner entropy, Eq. (3.10) can be further presented in the form of Eq. (3.5). It is evident 

now that the nonlinear operator ln(cos / )Bk W W−   represents the quantum entropy, vanishing 

naturally in the classical limit 0→ . It persists even at zero temperature to ensure the correct 

quantum distribution in the ground state. Solving the nonlinear Eq. (3.10) in general is a 
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mathematical problem more difficult than quantum mechanics of closed systems, because the 

Wigner-Liouville part is much simpler than the relaxation one. However, taking the leading quan-

tum corrections, 3sin / 6 −  and 2cos 1 / 2  − , and expanding the logarithm in series 

as well yield a semiclassical Klein-Kramers equation 

 

3 22 / / 3 [ ( / 2 )]t p p B p B pW H W H W b W H k T W k TW W W −  +  =    +  −     (3.11) 

 

The last linear quantum term on the left-hand side is well known and vanishes for free particles 

and oscillators. The quantum term on the right-hand side is nonlinear. It accounts for the Fisher 

entropy via the nonlinear Bohm quantum potential represented in the Wigner phase space [16]. 

For numerical applications in chemistry, for instance, a TDDFT image of Eq. (3.10) is already pro-

posed via a nonlinear dissipative thermo-quantum Kohn-Sham equation [17]. 

Let us return to the harmonic oscillators. Although the relevant Eq. (3.11) is nonlinear, its 

solution is a normal distribution. Using the bivariate Gaussian Wigner function for each oscillator, 

the nonlinear quantum term acquires the linear form 2 2 2 2/ 4( )B p x p xpk T W   − . The relaxation 

effect is important at large friction, where the Brownian motion of the subsystem particles be-

comes overdamped at 1 /t m b    . In this case, the fast thermalization in the momentum sub-

space is already over and the observation follows solely the slow relaxation in the coordinate 

subspace. Because the nonlinear term is a quantum correction, one should employ therein the 

relevant classical expressions for the momentum dispersion 
2

p Bmk T =  and correlation 0xp =  

at equilibrium. Hence, substituting the Bohmian term 
2 2/ 4p xW m   back in Eq. (3.11) yields an 

emergent Fokker-Planck equation 

 

2 2 2

0/ [ / ( / 4 ) ]t x p p B x pW p W m m x W b pW m k T m W +  −   =   + +      (3.12) 

 

One can see immediately that the quantum entropy increases the thermal energy by the Heisen-

berg momentum uncertainty, i.e. the classical environment monitors continuously the quantum 

subsystem by measurements. This non-equilibrium thermo-quantum expression substitutes the 

equilibrium momentum dispersion in Eq. (3.6). Combining the equilibrium Maxwell-Heisenberg 

relation 2 2 2/ 4p B xmk T = +   with the virial theorem 2 2 2

0 /x pm m  =   yields the mean energy at 
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equilibrium 2

0( / 2)[ 1 ( ) 1]Bk T = +   + , which is slightly higher than the well-known exact ex-

pression 0 0( / 2)coth( / 2) =     due to the semiclassical approximations in Eq. (3.11) [15]. 

Both expressions coincide, however, at zero and infinite temperature. Following the standard 

procedure at large friction coefficient b  one can derive from Eq. (3.12) the Smoluchowski-Bohm 

equation (3.3) for the harmonic oscillators 

 

2 2 2

0[ ( / 4 ) ] / [ ( ) / ]t x B x x x x xm x k T m b U Q b D  =    + +    =    + +      (3.13) 

 

Again, the Smoluchowski-Bohm equation, governing the probability density in the coordinate 

subspace, does not provide the exact equilibrium distribution in general, because of the semi-

classical approximations in the quantum entropy, but this can be improved by Eq. (3.4). 

Finally, let us reconsider the most interesting case of an ideal gas by setting 0 0  . As 

discussed before, in this case Eq. (3.6) becomes classical. Now the Maxwell-Heisenberg relation 

provides the exact value at equilibrium, because 
2

x  diverges in time. For free particles, Eq. (3.13) 

reduces to diffusion equation, where the Planck constant scales to the thermal de Broglie wave-

length / 2T Bmk T   in the dispersion-dependent diffusion coefficient 
2 2(1 / )T xD +  . The 

direct integration of the standard diffusional equation 
2 2 22 (1 / )t x T xD  = +   unveils the quan-

tum generalization of the classical Einstein law of Brownian motion [13, 14] 

 

2 2 2 2ln(1 / ) 2x T x T Dt − +  =          (3.14) 

 

The quantum relaxation time 
2 2

2 2/ 2 / 2T D b m   =   corresponds to an oscillator with the sec-

ond Matsubara frequency 2 2 /Bk T  . The classical Einstein law 
2 2x Dt =  holds when 2t  

, which is easily achieved at high temperature, but at short time a purely quantum expression 

follows from Eq. (3.14). This sub-diffusive quantum law 2 /x t mb =  is our central invention, 

being always valid at low temperature, where the quantum entropy dominates over the classical 

one [19]. Because Eq. (3.14) is derived for large time, the necessary condition to be able to see 

quantum effects is 2 1   , i.e. the Nelson diffusion constant / 2m D  must be larger than the 
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Einstein one, which is typical for light particles at low temperature and high friction. In the case 

of the periodic Frankel-Kantorova model the purely quantum diffusion at zero temperature, de-

scribed via the Festa-d’Agliano formula, becomes logarithmic 2 2 2 2( / 8 )ln(32 / )x mA mA t b =   

and the position dispersion is proportional to the de Broglie wavelength of the activation energy 

[19]. 

The Planck constant appears in the present part of the Dissertation solely from the sub-

system quantum operators. Therefore, the considered thermal bath is classical and affects the 

subsystem particles only via the friction constant b  and temperature T . For this reason, the 

Smoluchowski-Bohm equation describes classical diffusion in the fields of classical and quantum 

potentials. A new discrete model for the energy relaxation of a quantum particle in a classical 

environment is proposed via a projection operator P̂ =  , causing the wave function collapse 

[31]. Using this original operator, which preserves the probability density, various power laws for 

the evolution of the coordinate and momentum dispersions of the quantum Brownian particle 

are derived. New dissipative Schrödinger and Liouville equations are also obtained and solved for 

particular cases. In general, the environment can be quantum as well, which complicates addi-

tionally the theoretical analysis via a time-dependent temperature operator ˆ
Bk T  and more com-

plex quantum friction, which can affect the equilibrium distribution as well. Therefore, it is es-

sential to distinguish our Brownian motion of quantum particles in a classical environment from 

the more complex Brownian motion in a quantum environment. It is well known that 
2

x  grows 

logarithmically in time for the quantum Brownian motion in an environment with non-Markov 

retardation at zero temperature. Interestingly, this quantum bath effect can also be accounted 

via the thermo-quantum Maxwell-Heisenberg relation 
2 2 2/ / 4p B xmk T m t = + +  , enhanced by 

the Heisenberg time-energy uncertainty [21]. The quantum corrections here are solely the first 

two terms in an infinite series on the powers of the Planck constant. The linear term accounts for 

the quantum environment, since it supplies pure energy, while the particle quantum contribution 

is given by the quadratic term, because it goes through the particle momentum. Knowing the 

influence of potentials in quantum mechanics, we expect a dramatic quantum effect of the posi-

tion dependent friction coefficient ( )b x  in structured media, as well as of the nonuniform viscous 

friction between the subsystem particles [18, 20]. 
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4. Conclusions 

 

A. In the frames of classical mechanics, the generalized Langevin equation is derived for an ar-

bitrary mechanical subsystem coupled to the harmonic bath of a solid and the statistical prop-

erties of the multiplicative stochastic Langevin force are rigorously obtained. An important 

expression is derived, which relates the friction tensor to the static subsystem-bath interac-

tion potential and demonstrates nonuniformity of the friction force in structured environ-

ments. 

B. The relevant classical Langevin equation is properly applied for description of many examples 

of resonant Brownian motion of atoms, rigid, rotating and vibrating dimers, and normal al-

kanes in zeolites. In all cases the nonmonotone dependence of the classical diffusion constant 

on the structure of the diffusing species is confirmed, corresponding quantitatively to several 

experimental observations. 

C. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smolu-

chowski equations, accounting for the effect of the quantum thermal bath oscillators on the 

target motion of the coupled classical subsystem. This emergent idea is extended to living 

species as well, where the temperature is replaced by a new quantity, called temperament, 

which reflects the motivity of living cells. The corresponding vital Klein-Kramers and Smolu-

chowski equations are derived, and several solutions are obtained. 

D. The model of Brownian emitters is theoretically studied in details and the corresponding evo-

lutionary equations for the probability density are derived, which possesses friction coeffi-

cient operator acting in time. It is shown that the motion of an electron, swimming in the 

bath of the zero-point vacuum energy fluctuations, is non-Markov Brownian one and it does 

not lead to the Schrödinger equation as claimed by the theory of stochastic electrodynamics. 

E. The fundamental Schrödinger equation is explained as a result of the collisions of the target 

point particles with the quantum force carriers, transmitting the fundamental interactions 

between the point particles. Thus, electrons and other point particles are no waves and the 

wavy chapter of quantum mechanics originated for the force carriers, being waves in the co-

ordinate subspace and quasi-particles in the Fourier momentum subspace. 

F. A stochastic Lorentz equation is proposed as a kind of Langevin equation, which described 

the underlaying Brownian-like motion of the point particles in quantum mechanics. The sto-

chasticity originates from the unknown behavior of the force carriers acting via stochastic 
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vector potentials. It is demonstrated how the Schrödinger equation can be derived from the 

Lorentz-Langevin equation by using gauge transformation. 

G. Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density 

functional Bohm-Langevin equation is proposed. The relevant Smoluchowski-Bohm equation 

is derived, which describes the evolution of the probability density of a quantum subsystem, 

coupled to a classical environment. 

H. A nonlinear master equation is proposed by quantization of the proper form of the classical 

Klein-Kramers equation. Its equilibrium solution in the exact canonical Gibbs density opera-

tor, while the well-known Caldeira-Leggett equation is simply a linearization at high temper-

ature. 

I. The application of our nonlinear master equation to harmonic oscillators confirms the Smolu-

chowski-Bohm equation. In the case of a free quantum Brownian particles, a new law for the 

spreading of the wave packet it discovered, which represents the quantum generalization of 

the classical Einstein law of Brownian motion. 

J. A new projector operator is proposed for the collapse of the wave function of a quantum 

particle moving in a classical environment. Its application results in dissipative Schrödinger 

equations, as well as in a new form of dissipative Liouville equation in classical mechanics. 
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