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The present work contains results on problems from finite geometry that are

related to the theory of error-correcting codes. These two areas of mathematical

research emerge at the same time and develop independently from each other for

some time. The birth date of coding theory is the publication of C.Shannon’s

remarkable paper [50], where he proves that for every rate strictly less than the

capacity of a given channel there exist block codes and a decoding rule such that

the decoding error is less than any fixed constant. Unfortunately, the random

codes introduced in this paper are of such big length that their practical use is

completely excluded. In this connection, the converse theorem is of great prac-

tical importance: in cases where the rate of the used codes is greater than the

capacity of the channel data transmission with arbitrarily small decoding error

is impossible. From practical point of view it is very important to have “good”

codes and algorithms for their decoding. Usually good codes are considered to be

such codes whose parameters are meeting, or lying close to the known theoretical

bounds.

In the years after Shannon’s paper, linear codes become the most investigated

class of block codes. The presence of a good mathematical structure makes them

easy to describe and work with and leads to effective decoding algorithms. It

has to be noted that although the general decoding problem for linear codes is

NP-complete [12], this does not exclude the existence of linear codes for which

there exists an effective decoding algorithm.

The intensive investigation of finite geometric structures starts around 1950

although there exist single earlier results. So, for instance, G. Fano in his paper

[20] investigated the possibility of coincidence of the fourth harmonic point with

its conjugate. This leads to the construction of a three-dimensional space with

15 points, 35 lines and 15 planes, known today as PG(3, 2). In 1955 B. Segre

proves in [49] that every set of q + 1 points in PG(2, q), q odd, no three of which

are collinear, is a conic. The following years are marked by intensive investiga-

tions in finite geometry. The research in coding theory during the same period

leads to the rediscovery of many geometric results. In the early 70’s the deep

connection between the linear codes and the sets of points in the finite geome-

tries becomes much more visible. Central results, which influence the research in

coding theory to a big extent, are the discovery of the algebraic-geometric codes

by V. Goppa [22, 23, 24], the construction of the 56-cap by R. Hill [28, 29], as
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well as the construction by M. Tsfasman, S. Vladut and Th. Zink [54] of

a family of algebraic-geometric codes that improve asymptotically the Gilbert-

Varshamov bound [21, 55].

In the 80s and the 90s of the 20th century it became clear that the so-called main

problem in coding theory has a geometric nature and can be stated in a natural

way as a distribution problem for points in certain geometries over a finite field. In

its most popular form it can be stated as the problem of minimizing the length of

linear code over a fixed field given its dimension and minimum distance. A natural

lower bound for the length of a linear code is the so-called Griesmer bound

[26, 51]. Of great importance is the characterization of the codes that meet this

bound. Despite the huge progress due to the research of various authors such as B.

I. Belov, V. N. Logachev, V. P. Sandimirov, S. Dodunekov, N. Manev,

I. Buyukliev, N. Hamada, R. Hill, T. Helleseth, H. van Tilborg, T.

Maruta, L. Storme this problem is not solved for arbitrary fields.

In the last few years, several very important results for linear codes over finite

fields were proved. All they were obtained as results for special sets of points in

finite geometries. The most important of them are the following:

◦ S. Ball’s proof for the maximal cardinality of a set of points in general position

in PG(r, p), p a prime [2, 8]; this is equivalent to the celebrated MDS-hypothesis

in coding theory about the maximal length of a MDS-code over a field;

◦ H. N. Ward’s theorem about the divisibility of linear codes meeting the Gries-

mer bound [56];

◦ Bruen’s lower bound for the cardinality of a t-fold blocking set in a finite affine

geometry AG(n, q) [15], as well as its improvements made by S. Ball and A.

Blokhuis [3, 6];

◦ the non-existence proof for maximal arcs in finite projective planes of odd order

by S. Ball, A. Blokhuis, and F. Mazzocca [5, 7].

In this thesis we present solutions of problems from finite geometry that are

directly connected to problems from coding theory. Although all results are stated

in its geometric form, their re-formulation in coding theoretic terms is clear and

straightforward. Below we give a concise description of all results in this thesis.
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Chapter 1. Introduction. The first chapter is introductory. It contains

some classical recent geometric results related closely to coding theory. Further

the chapter contains a brief summary of the main results in this thesis.

Chapter 2. Preliminaries. This section contains definitions and results on

finite projective geometries, special pointsets in finite projective geometries and

linear codes over finite fields. In Section 2.1 we introduce projective geometries

over finite fields. In this section we describe the finite projective spaces PG(r, q)

over the fields Fq and formulate the so-called fundamental theorems of projective

geometry. Furthermore, we define the notions of arc and blocking set as special

multisets of points in PG(r, q), in which the multiplicity of every hyperplane is

upperbounded (resp. lowerbounded). We introduce some special constructions

for arcs (resp. blocking sets). The most important constructions are projection

from a subspace and dualization, i.e construction of the so-called σ-dual arc for

a fixed function σ. In Section 2.2 we describe classes of important multisets of

points such as n-arcs, (n, w)-arcs and n-caps. The classification of some arcs in

small projective planes used throughout this text is also given. Section 2.3 deals

with linear codes over finite fields. We define basic notions such as linear code,

the orthogonal of a given code, a generator and a parity check matrix of a linear

code, the spectrum and the weight enumerator of a linear code. Several impor-

tant bounds on the parameters of a linear code are presented. These include the

Singleton bound, the Gilbert-Varshamov bound, the generalized Single-

ton bound and the Griesmer bound. In Section 2.4 we describe the connection

between the k-dimensional linear codes and the multisets of points in the geome-

tries PG(k−1, q). We present geometric versions of important results about linear

codes such as the theorems by H. N. Ward about the divisibility of codes meeting

the Griesmer bound, and the extendability theorem by Hill and Lizak. We

describe some improvements of the Hill-Lizak theorem following from a result

by Beutelspacher [13] on blocking sets. At the end of the section we give a

table that describes the correspondence between some notions from coding theory

and finite geometry.

The following three chapters contain the original results of this thesis.

Chapter 3. Arcs and optimal codes. The main subject in this section is

the achievement of the Griesmer bound and a geometric characterization of the
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codes meeting this bound. The Griesmer bound says that for a linear code with

parameters [n, k, d]q the following inequality holds true:

(1) n ≥ gq(k, d) :=
k−1∑

i=0

⌈
d

qi

⌉
.

Codes whose parameters satisfy this bound with equality are called Griesmer

codes. The arcs associated with these codes are called Griesmer arcs. A

large class of Griesmer codes was constructed by Belov, Logachev and

Sandimirov in [11]. Their construction consists in deletion of simplex codes

of small dimension from a concatenation of simplex codes of dimension k. Geo-

metrically this construction is more natural: it consists in deletion of a blocking

set from several copies of PG(k − 1, q). The minimal length n, for which there

exists an [n, k, d]q-code for fixed k, d and q, is denoted by nq(k, d). It turns out

that the following representation of D is very convenient:

(2) d = sqk−1 − λk−2q
k−2 − . . .− λ1q − λ0,

where 0 ≤ λi ≤ q − 1. In this case,

(3) gq(k, d) = svk − λk−2vk−1 − . . . λ1v2 − λ0v1,

where vi = (qi − 1)/(q − 1).

A central problem is to determine the behavior of the function tq(k) defined as

the maximal deviation of the optimal length of a code of dimension k from the

value given by the Griesmer bound:

(4) tq(k) := max
0≤d<∞

(nq(k, d)− gq(k, d)),

where the field Fq is fixed. It is known [30] that for any fixed dimension k there

exists a constant δ(k, q) such that nq(k, d) = gq(k, d) for all d ≥ δq(k, d). Fix d and

let k tend to infinity. Then (nq(k, d) − gq(k, d)) → ∞, whence also tq(k) → ∞.

This fact is not trivial and is noted for the first time by Dodunekov in [18]. In

Sections 3.1–3.3 we investigate the rate of this growth.

In Section 3.1 we give three equivalent formulations of the problem of deter-

mining the maximal deviation from the Griesmer bound of the best codes of

fixed dimension over a fixed field. Formally, this is equivalent to finding the rate

of growth of the function tq(k) defined by (4). The three formulations are in
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terms of linear codes, arcs, and blocking sets (or minihypers) in PG(k − 1, q),

respectively.

Problem A. Given a power of a prime q and a positive integer k, find the

minimal value t for which there exist [gq(k, d) + t, k, d]q-codes for all d.

Problem B. Given a power of a prime q and a positive integer k, find the minimal

value t for which there exists an arc with parameters (gq(k, d) + t, wq(k, d) + t) in

PG(k − 1, q) for all d.

Problem C. Given a power of a prime q and a positive integer k, find the maximal

value t such that for all d given by (2) there exists a minihyper in PG(k − 1, q)

with parameters

(σvk + λk−2vk−1 + λ1v2 + λ0v1 − t, σvk−1 + λk−2vk−2 + λ1v1 − t),

with maximal point multiplicity not exceeding σ + s.

We start the section with a new proof of Dodunekov’s theorem on the un-

bounded growth of tq(k) as a function of k. Furthermore, we prove several results

simplifying the investigation of tq(k). One of the important lemmas is the follow-

ing.

Lemma 3.6. If nq(k, d) = gq(k, d)+ t, then nq(k, d+ qk−1) ≤ gq(k, d+ qk−1)+ t.

It follows by this lemma that it is enough to compute the maximum in (4) only

for a finite number of values for d:

(5) tq(k) := max
0≤d<qk−1−qk−2

(nq(k, d)− gq(k, d)).

The main result in section 3.2 is Theorem 3.10, which can be viewed as a

generalization of the construction by Belov, Logachev and Sandimirov for

non-Griesmer codes.

Theorem 3.10. Let d = sqk−1−λk−2q
k−2− . . .−λ1q−λ0, and let the multiset

F be a minihiper in PG(k − 1, q) with parameters

(σvk + λk−2vk−1 + . . .+ λ0v1 − τ1, σvk−1 + λk−2vk−2 + . . .+ λ1v1 − τ1).

Define a new multiset F ′ in the following way:

F ′(x) =

{
F(x), if F(x) ≤ σ + s,
σ + s, if F(x) > σ + s.
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Let N = |F| and N ′ = |F ′|. If F − F ′ is an (N −N ′, τ2)-arc then there exists a

(gq(k, d) + t, wq(k, d) + t)-arc in PG(k − 1, q), or, equivalently, a linear code with

parameters [gq(k, d) + t, k, d]q, where t = τ1 + τ2.

Geometrically, this construction consists in deleting a blocking set obtained as

a sum of subspaces of given dimensions from the s-fold sum of the whole geometry

PG(k − 1, q). The problem is that in the constructed blocking set there might

appear points of multiplicity greater than s. The idea of Theorem 3.10 is to cut

down the multiplicities of such points and replace them by points of multiplicity

exactly s. In such case, some hyperplanes turn out to be underblocked and have

to be compensated for by taking some additional suitably chosen points.

There is a lot of freedom in the choice of subspaces that form the blocking set to

be removed in Theorem 3.10. For geometries of odd dimension, i.e. the geometries

PG(2l − 1, q), there exist spreads of (l − 1)-dimensional subspaces which can be

used to construct the blocking sets needed. Using this idea, we prove an estimate

on on tq(k) in the case of even k.

Theorem 3.13. If k = 2l, then

tq(k) ≤ 2
ql − 1

q − 1
− (2l + q − 1).

Asymptotically, we get tq(k) . qk/2, whence we obtain the following interesting

corollary.

Corollary 3.14. tq(4) ≤ q − 1.

This result gives a partial answer to the question of determining the growth of

tq(4) as a function of q. This is an interesting modification of the main question

about the behavior of the function tq(k). In the case of plane arcs, the problem

of finding the asymptotics of tq(3) as a function of q was asked by S. Ball [4].

He even made the conjecture that

tq(3) ≤ log q.

In section 3.3 we investigate the problem of the rate of growth of tq(3). First,

we prove that if there exists an (n, w)-arc in PG(2, q) with n = (w− 1)q+w−α,

then there exists an [n, 3, d]q-code, where d = n − w and n = t + gq(3, d), with

t = ⌊α/q⌋ (Lemma 3.15). This relates the trivial upper bound for the size of an
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arc to the deviation from the Griesmer bound of the parameters of the code

associated with this bound. The main result in this section is a proof of Ball’s

conservative estimate for the possible deviation of the best 3-dimensional linear

codes from the Griesmer bound. The idea resembles Denniston’s construction

for maximal arcs in planes of even order. We construct a family of arcs that are

a sum of suitably chosen maximal arcs. Such arcs do exist in planes of even order

by various constrictions [17, 46, 52, 53]. Our theorem is based on two lemmas.

Lemma 3.16. Let q = 2h and let Ki, i = 1, . . . , r, be maximal arcs. Define the

arc K =
∑r

i=1
Ki. If the code CK, associated with K, has parameters [n, 3, d]q,

then n = gq(3, d) + (r − 1).

Lemma 3.17. Let q = 2h. Every integer m ≤ q can be represented in the form

m = 2a1 + . . .+ 2ar − r, where ai ∈ {1, . . . , h− 1} and r ≤ h.

These two lemmas imply the following result.

Theorem 3.18. If q = 2h, then tq(3) ≤ log2 q − 1.

In planes of odd order maximal arcs do not exist [5, 7] and we use a result by

R. Hill and J. Mason [33] to give a weaker estimate.

Theorem 3.19. If q is an even power of an odd prime, then tq(3) ≤
√
q − 1.

In section 3.4 we find new exact values of nq(k, d) for q = 4, k = 5. For codes

over F4, k = 5 is the smallest dimension, for which there still exist minimum

distances d, such that n4(5, d) is unknown. In subsections 3.4.1 and 3.4.2 we give

a characterization of the arcs with parameters (100, 26), (117, 30), and (118, 30)

in PG(3, 4). This characterization is used further in the nonexistence proofs for

arcs in higher dimensions, but it is also of independent interest.

The characterization of the arcs with parameters (118, 30) is made in Lemmas

3.20–3.25. A (118, 30)-arc in PG(3, 4) is of one of the following types:

(α) K = 2 − F , where F is a (52, 12)-blocking set; F is the sum of two planes

and two lines, chosen is such way that the maximal point multiplicity is 2. Two

spectra are possible:
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a14 = 2, a22 = 0, a26 = 10, a30 = 73, λ0 = 9, λ1 = 34, λ2 = 42;
a14 = 2, a22 = 1, a26 = 8, a30 = 74, λ0 = 10, λ1 = 32, λ2 = 43

(β) K = 2 − χπ0∪π1
+ χL − F , where πi are the planes through a fixed line L,

F is a (15, 3)-blocking set, contained in π2 ∪ π3 ∪ π4. There exist two such arcs.

They are obtained if the blocking set F is taken to be either

(a) the sum of three mutually skew lines, or else

(b) the subgeometry PG(3, 2).

In both cases we obtain the same spectrum:

a18 = 2, a22 = 0, a26 = 12, a30 = 71, λ0 = 3, λ1 = 46, λ2 = 36.

(γ) K is the dual to a multiset of cardinality 18 with maximal point cardinality

2 and intersection numbers 2, 6, and 10. There exist three such multisets which

give the following possible spectra for K:

(γ′) a22 = 5, a26 = 8, a30 = 73, λ0 = 2, λ1 = 48, λ2 = 35;
(γ′′) a22 = 9, a26 = 0, a30 = 76, λ0 = 6, λ1 = 40, λ2 = 39.
(γ′′′) a22 = 9, a26 = 0, a30 = 76, λ0 = 6, λ1 = 40, λ2 = 39.

(γ′) The two 0-points are incident with a 6-line; the planes through this 6-line

have multiplicities 22, 30, 30, 30, 30.

(γ′′) There exists a 30-plane containing all six 0-points; five of them are collinear;

the planes through the obtained 0-line have multiplicities 30, 22, 22, 22, 22; the

2-points outside this 30-plane form a cone with vertex the sixth 0-point and a

hyperoval as a ruling curve.

(γ′′′) There exists a 22-plane with seven 2-points; through each one of the four 2-

lines there exist two 22- and two 30-planes; each one of these 22-planes contains

four 2-points (the characterization of the (q2 + q + 2, q + 2)-arcs is described in

[9]).

The characterization of the (118, 30)-arcs in PG(3, 4) implies also the characteri-

zation of the (117, 30)-arcs by the following result.

Lemma 3.26. Every (117, 30)-arc in PG(3, 4) is extendable.

The arcs with parameters (100, 26) can be obtained from the (102, 26)-arc via

deletion of two points (not necessarily different). The latter is a sum of a 17-cap
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in PG(3, 4) and the whole space. Of particular interest is the construction of the

nonextendable (100, 26)-arc in PG(3, 4), which turns out to be unique.

Theorem 3.34. Let K be a (100, 26)-arc in PG(3, 4). Then K is of one of the

following two types:

(1) a sum of a maximal cap and the whole space minus two points;

(2) a cone without the vertex, with a ruling curve a hyperoval plus the whole space

minus the symmetric difference of the hyperoval and a line from the cone.

Until the end of the section we give nonexistence proofs for several hypothetical

arcs in PG(4, 4) associated with Griesmer codes, whose existence was not yet

decided. Below, we list the nonexistence theorems for these arcs. The correspond-

ing results for the associated codes and the exact values of n4(5, d) are given as

corollaries.

Theorem 3.35. There exist no (467, 118)-arcs in PG(4, 4).

Corollary 3.36. There exist no linear codes with parameters [467, 5, 349]4. This

determines the exact values n4(5, 349 + i) = 468 + i for i = 0, 1, 2, 3.

Theorem 3.37. There exist no (465, 117)-arcs in PG(4, 4).

Theorem 3.38. There exist no (464, 117)-arcs in PG(4, 4).

Corollary 3.39. There exist no linear codes with parameters [464, 5, 347]4. This

determines the exact values n4(5, 347 + i) = 465 + i for i = 0, 1.

Theorem 3.40. There exist no (398, 101)-arcs in PG(4, 4).

Corollary 3.41. There exist no linear codes with parameters [398, 5, 297]4 and

[399, 5, 298]4. Consequently, n4(5, 297) = 399 and n4(5, 298) = 400.

Theorem 3.42. There exist no (396, 100)-arcs in PG(4, 4).

Theorem 3.43. There exist no (395, 100)-arcs in PG(4, 4).

Corollary 3.44. There exist no linear codes with parameters [395, 5, 295]4 and

[396, 5, 296]4. Consequently, n4(5, 295) = 396 and n4(5, 296) = 397.

These results imply the exact value of n4(5, d) for ten minimal distances d =

295, 296, 297, 298, 347, . . . , 352. At the end of chapter 3 we present a table with all

minimum distances d for which the exact value of n4(5, d) remains still undecided.
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Chapter 4. Extendability of arcs and codes. In chapter 4 we investigate

the extendability problem for arcs in projective geometries and, equivalently for

the linear codes associated with them. It is well-known that every binary [n, k, d]-

code with odd minimal distance is extendable to an [n + 1, k, d + 1]-code. This

observation was generalized by R. Hill and P. Lizak in [31, 32]. They proved

that every q-ary [n, k, d]q-code with (d, q) = 1, in which every word has weight

congruent to 0 or d modulo q is extendable to a [n + 1, k, d+ 1]q-code. A typical

case shows up for Griesmer codes with d ≡ −1 (mod q). This train of research

was followed by T. Maruta who proved new results for the extendability of

linear codes [40, 42, 43, 44]. The most interesting of them is from [43], where

he proves that for odd q ≥ 5 every [n, k, d]q-code with d ≡ −2 (mod q), having

weights ≡ −2,−1, 0 (mod q), is extendable.

The investigations on the extendability of arcs were initiated before the corre-

sponding problem for codes. Maybe the first result of this type is a theorem by

A. Barlotti [10], who proved that every ((w − 1)(q + 1), w)-arc in PG(2, q) is

extendable to a maximal ((w − 1)(q + 1) + 1, w)-arc. The extendability results

are a special case of a broad class of theorems known as stability results.

In this chapter we present a new geometric approach to the extendability prob-

lem for codes and arcs. In other words we aim at formulating conditions under

which an (n, w)-arc in PG(r, q) is extendable to an (n+1, w)-arc by increasing the

multiplicity of one point. The main idea is to relate the extendability of a given

arc K with the structure of a special arc K̃ in the dual geometry. The extendabil-

ity of the so-called arcs with t-quasidivisibility is of special interest. Such arcs are

rather common when we consider Griesmer codes with d ≡ −t (mod q), t < q.

In section 4.1 we introduce a special class of arcs called (t mod q)-arcs. These

are obtained by a special dualization of arcs with the property t-quasidivisibility.

The t-quasidivisible arcs, in turn, are associated with Griesmer codes with mini-

mal distance d ≡ −t (mod q). Let K is a (n, w)-arc in Σ = PG(r, q) with spectrum

(ai)i≥0 and w ≡ n+t (mod ∆), 1 ≤ t < ∆. The arc K is said to be t-quasidivisible

with divisor ∆, if ai = 0, for every i 6≡ n, n+1, . . . , n+t (mod ∆). For K we define

an arc K̃ in the dual geometry Σ̃, with pointset H̃ = {H̃|H− a hyperplane in Σ},
by

(6) K̃ :

{
H̃ → {0, 1, . . . , t}
H̃ → K̃(H) ≡ n + t−K(H) (mod q)

,
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Theorem 4.1. Let K be an (n, w)-arc in Σ = PG(r, q), which is t-quasidivisible

modulo q with t < q. Then for each subspace S̃ in Σ̃ of dimension dim S̃ ≥ 1 it

holds

K̃(S̃) ≡ t (mod q).

This observation justifies the following definition. Let t be a non-negative

integer. An arc K in Σ is called a (t mod q)-arc if the multiplicity of each

subspace S of projective dimension at least 1 satisfies K(S) ≡ t (mod q). The

following theorem is the main result of this section.

Theorem 4.3. Let K be an (n, w)-arc in Σ = PG(r, q), which is t-quasidivisible

modulo q with t < q. Let K̃ be the dual of K, defined by (6). If K̃ is represented

in the form

K̃ =
c∑

i=1

χP̃i
+K′

where K′ is an arc in Σ̃, and P̃1, . . . , P̃c are c not necessarily different hyperplanes

in Σ̃, then K is c-extendable. In particular, if K̃ contains a hyperplane in its

support then K is extendable.

According to this theorem, a sufficient condition for c-fold extendability of an

arc K which is t-quasidivisible is that the dual arc K̃ is a sum of c hyperplanes and

some other arc. In particular, a t-quasidivisible arc K is 1-extendable (or simply

extendable) if its support SuppK = {X | K(X) > 0} contains a hyperplane.

This explains the importance of the problem of determining the structure of the

(t mod q)-arcs.

In section 4.2 we investigate the structure of (t mod q)-arcs unrelated to the

extendability problem. We present a non-trivial construction which starting from

a (t mod q)-arc in PG(r − 1, q) produces a (t mod q)-arc in PG(r, q).

Theorem 4.6. Let F0 be a (t mod q)-arc in the hyperplane H ∼= PG(r− 1, q) of

Σ = PG(r, q). Let the point P ∈ Σ \H be fixed. The arc F in Σ, defined in the

following way:

– F(P ) = t;

– for every point Q 6= P : F(Q) = F0(R), where R = 〈P,Q〉 ∩H.

is a (t mod q)-arc of cardinality q|F0|+ t.
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A central problem here is to determine the structure of the (0 mod q)-arcs, i.e.

those arcs in which every arc has multiplicity ≡ 0 (mod q). From this point on

our investigation is restricted to the geometries PG(r, p) of prime order p. In this

case, the point multiplicities can be considered as elements of Fp and the set of

all (0 mod p)-arcs is a vector space over Fp under the usual addition and scalar

multiplication of arcs. The main result in this section is Theorem 4.12.

Theorem 4.12. The vector space of all (0 mod p)-arcs in PG(r, p) is generated

from the complements of the hyperpalnes.

This result is obtained by using the classical formula of N. Hamada [27] on

the p-rank of the incidence matrix of PG(r, q), in which the rows are indexed by

the points and the columns – by the lines in this geometry. A closed form for

the rank of these matrices is found by J. van Lint. His proof is contained in a

paper by P. V. Ceccherini and J. Hirschfeld [16]. It follows from Theorem

4.12 that every (0 mod p)-arc, and, consequently, every (t mod p)-arc for t < p

is a sum of lifted arcs (Corollaries 4.13 and 4.14). Theorem 4.12 does not answer

the question about how large the number of summands can be large. In Theorem

4.15 we prove that this number is at most p.

Theorem 4.15. Let P1, . . . , Pp+1 be the points of a conic in PG(2, p). Denote

by Vi the vector space of all (0 mod p)-arcs, that are lifted from the point Pi,

i = 1, . . . , p+ 1, and by V – the vector space of all (0 mod p)-arcs. Then

V = V1 + V2 + · · ·+ Vp.

It is plausible that a similar assertion holds true for geometries of any dimension.

The proof of such a result depends on a condition which guarantees the validity

of the inclusion/exclusion formula for the dimensions of the subspaces, which is

not true in general.

In Section 4.3 we investigate (t mod q)-arcs, in which the maximal point mul-

tiplicity is t. The section opens with a theorem in which we prove that if a (t

mod q) arc has the additional property that its restriction to every hyperplane is

lifted then the original (t mod q)-arc is lifted itself.
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Theorem 4.18. Let K be a (t mod q)-arc in PG(r, q) and let the restriction to

every hyperplane H, K|H , is lifted from a point. Then the arc K is also lifted from

a point.

In the plane case, (t mod q)-arcs with restricted point multiplicity are obtained

as σ-dual of blocking sets, for which the line multiplicities are contained in an

interval of length t.

Theorem 4.19. A necessary and sufficient condition for the existence of a (t

mod q)-arc in PG(2, q) of cardinality mq+t and maximal point multiplicity t is the

existence of a blocking set in the same plane with parameters ((m− t)q+m,m− t)

and line multiplicities contained in the set {m− t,m− t+ 1, . . . , m}.

At the end of this section we characterize the (3 mod 5)-arcs in PG(2, 5) with

a small number of points: 18, 23, 28 and 33. From this characterization we deduce

the following partial result on the structure of (3 mod 5)-arcs in PG(3, 5).

Theorem 4.21. Every (3 mod 5)-arc F in PG(3, 5) of cardinality |F| ≤ 158 is

a lifted arc from a 3-point. In particular, |F| = 93, 118, and 143.

This result is used further in section 4.5 to prove the nonexistence of (104, 22)-

arcs in PG(3, 5).

In the next section 4.4, we investigate the extendability of Griesmer arcs

having the property t-quasidivisibility modulo q. In the cases, when the minimum

distance d of the code associated with such arc satisfies d ≡ −t (mod q), these

arcs are t quasidivisible with t ≡ −d (mod q). So, we can apply for them the

results from the previous three sections. Let K be a Griesmer (n, w)-arc in

PG(k − 1, q), which is t-quasidivisible for some t < q. Let CK be a linear code,

associated with K. Then CK has parameters [n, k, d]q, where d = n − w. Let us

write d as:

(7) d = sqk−1 −
k−2∑

i=0

εiq
i,

where 0 ≤ εi < q for all i = 0, . . . , k − 2.

In the next lemmas we establish important properties of the arc K̃, defined in

(6). The first of them gives a relation between the multiplicity of the hyperlines
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(subspaces of codimension 2), contained in a given hyperplane and their respective

multiplicity with respect to the dual arc K̃.

Lemma 4.22. Let K be a Griesmer arc in Σ = PG(k − 1, q) with parameters

(n, n − d), which is t-quasidivisible. Let d be represented in the form (7) and let

S be a subspace of codimension 2, contained in a hyperplane H0 of multiplicity

K(H0) = wk−2 − aq for some integer a ≥ 0.

(i) If K(S) = wk−3 − a− b, 0 ≤ b ≤ t− 2, then K̃(S̃) ≤ t+ bq;

(ii) If K(S) = wk−3 − a− b, b ≥ t− 1, then K̃(S̃) ≤ t + (t− 1)q.

The next few lemmas provide an estimate on the multiplicity of the hyperplanes

in the dual space, corresponding to maximal (with respect to K) subspaces in Σ

of different codimensions.

Lemma 4.23. Let K be a Griesmer (n, n − d)-arc in PG(k − 1, q), having the

property t-quasidivisibility. Let d be represented in the form (7) and let K̃ be the

dual K, obtained by (6). Let T be a subspace of PG(k − 1, q) of codimension 3 of

the maximal multiplicity K(T ) = wk−4. Then

K̃(T̃ ) ≤ t(q + 1) + ε1q.

Lemma 4.24. Let K be a Griesmer (n, n− d)-arc in PG(k− 1, q), q ≥ 3, having

the property t-quasidivisibility, where d is represented in the form (7). Let K̃ be

the dual of K, given by (6). Finally, let ε0, ε1 <
√
q. Then for every subspace T

in PG(k − 1, q) of codimension 3 with K(T ) = wk−4, it holds

K̃(T̃ ) = t(q + 1).

Lemma 4.25. Let K be a Griesmer (n, w)-arc in PG(k−1, q), q ≥ 3, having the

property t-quasidivisibility for which d = n−w is presented in the form (7). Let K̃
be dual to K, as defined in (6). Let U be a subspace in PG(k−1, q) of codimension

codimU = r, 1 ≤ r ≤ k, having the maximal multiplicity wk−1−r (if U = ∅, we

set codimU = k). Under these conditions, if ε0 = t, ε1, . . . , εr−2 <
√
q, then

K̃(Ũ) = ε0vr−1.
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The main result in section 4.4 is the following theorem, which is obtained and

formulated as a result about arcs.

Theorem 4.26. Let K be a Griesmer (n, n − d)-arc in PG(k − 1, q), which is

t-quasidivisible and let d be presented in the form

d = sqk−1 −
k−2∑

i=0

εiq
i,

where 0 ≤ εi < q for all i = 0, . . . , k − 2. If for the numbers εi we have the

following inequalities

t = ε0 <
√
q, ε1 <

√
q, . . . , εk−2 <

√
q,

then K is t-extendable.

This result can be reformulated for linear codes.

Theorem 4.27. Let C be a Griesmer code with parameters [n, k, d]q, that is

t-quasidivisible. Let d be represented by

d = sqk−1 −
k−2∑

i=0

εiq
i,

where 0 ≤ εi < q for all i = 0, . . . , k− 2. If the numbers εi satisfy the inequalities

t = ε0 <
√
q, ε1 <

√
q, . . . , εk−2 <

√
q,

then C is t-extendable, i.e. there exists a linear code with parameters [n+ t, k, d+

t]q.

In general, the parameters of a t-quasidivisible arc K do not determine the

parameters of the dual arc K̃. In some cases, we know the possible spectra of

the restriction of K to the maximal hyperplanes. Then it is possible to obtain a

restriction on the cardinality of K̃, and hence gain knowledge about its possible

structure. In many cases, this allows to prove the extendability of K. One such

result is presented in Theorem 4.28, which gives a sufficient condition for extend-

ability, which depends on the spectrum of K|H , where H is a maximal hyperplane.
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Theorem 4.28. Let K be a Griesmer arc in PG(k−1, q) with parameters (n, w),

w = n − d, which is t-quasidivisible modulo q. For a fixed hyperplane H0 of

multiplicity w let (ai)i≥0 be the spectrum of the arc K|H0
. Denote by A the largest

integer for which every blocking set with parameters (tvk−1 +A, tvk−2) contains a

hyperplane in its support. If

(8) qaw−⌈d/q⌉−1 + 2qaw−⌈d/q⌉−2 + . . .+ (t− 2)qaw−⌈d/q⌉−t+2+

(t− 1)q
∑

u≤w−⌈d/q⌉−t+1

au ≤ A,

then K is extendable.

At the end of section 4.4 we give two examples which use the obtained ex-

tendability results. In the first example, we investigate a class of hypothetical

arcs in PG(3, q) with parameters (q3 − 3q − 6, q2 − 3). It turns out that all they

are extendable to the nonexistent (q3 − 3q − 3, q2 − 3)-arcs. For q ≥ 11 this

result follows from Theorem 4.29. For q = 5, 7, 8, 9 the hypothetical arcs with

parameters (q3−3q−6, q2−3) are again extendable, but the proof requires addi-

tional geometric arguments. In the second example we prove the t-extendability

of (q2 + 1− t)-caps in PG(3, q) for every t <
√
q.

In section 4.5 we use the methods developed in section 4.4 to prove the nonex-

istence of arcs with parameters (104, 22) in PG(3, 5).

Theorem 4.36. There exists no (104, 22)-arc in PG(3, 5).

This solves one of the four open cases for codes with k = 4, q = 5 [45]. The idea

is that if there exists such an arc K, then it is 3-quasidivisible and non-extendable.

So, the dual arc K̃ does not have a hyperplane in its support. In addition, a so-

phisticated counting argument shows that there is no 18-hyperplane with respect

to K̃ which contains just an 18-line, i.e. a line with six 3-points. Using the char-

acterization of the plane (3 mod 5)-arcs and some additional observations for the

spectrum of the hypothetical (104, 22)-arc K in PG(3, 5), we get a contradiction.
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Chapter 5. Affine blocking sets. In Chapter 5 we present new constructions

of affine blocking sets. A set of points B in AG(n, q) is called an affine t-fold

blocking set if every hyperplane in AG(n, q) contains at least t points from B.

Section 5.1 contains a survey of the known lower bounds on the cardinality of a

blocking set in AG(n, q). The lower bound on the size of an 1-fold blocking set is

proved independently by R. Jamison [34] and A. Brouwer and A. Schrijver

[14]:

|B| ≥ n(q − 1) + 1.

This bound is sharp for all dimensions n and all finite fields Fq. An example of

such blocking set is given by n concurrent lines, no three of which lie in a plane.

A generalization of this bound was given by A. Bruen [15], who proved that if

B is a t-fold blocking set then its cardinality is lowerbounded by:

|B| ≥ (n+ t− 1)(q − 1) + 1.

This bound is not trivial for 1 ≤ t ≤ (n − 1)(q − 1) since for values of t outside

this interval it becomes weaker than the trivial bound

|B| ≥ tq.

For large values of t the Bruen bound cannot be achieved. C. Zanella [57]

proved that for values of t satisfying

t >
(n− 1)(q − 1) + 1

2

there exist no blocking sets meeting the Bruen bound. The Bruen bound can be

improved for some special values of t and n. S. Ball [1] proved that for t < q a t-

fold blocking set B in AG(n, q), q = ph, has cardinality at least (n+t−1)(q−1)+k

provided there exists an integer j, for which
(
k − n− t

j

)
6≡ (mod p).

In particular, if

( −n

t− 1

)
6≡ 0 (mod p), then

|B| ≥ (n + t− 1)q − n+ 1.
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In the same paper [1] S. Ball constructs blocking sets in AG(n, q) with param-

eters ((n + t− 1)q − n+ ε, 2) where

ε =

{
1 for n 6≡ 0 (mod p),
0 for n ≡ 0 (mod p).

In the case of ε = 0 the constructed blocking sets meet the Bruen bound. In-

dependently, C. Zanella [57] and S. Ball [1] note that if one removes a plane

from a hyperbolic quadric in PG(3, q) intersecting the quadric in two lines the

resulting pointset is a (q2, q−1)-blocking set in AG(3, q), which meets the Bruen

bound. Thus around 2010, the known values for which there exist blocking sets

meeting the Bruen bound were the following:

(1) t = 1 for all n and q;

(2) t = 2 for all n ≡ 0 (mod p) and every q = ph;

(3) t = q − 1, n = 3 for every q = ph.

Section 5.2 contains the main result of this chapter. This is Theorem 5.6, in

which we present a new general construction for affine blocking sets.

Theorem 5.6. Let n ≥ 3 be an integer and let q = ph be a power of a prime. If

there exist

• an arc with parameters (M,w) in PG(r, q), where 2 ≤ r ≤ n− 2, and

• a blocking set with parameters (M ′, u) in the affine geometry AG(n− r− 1, q),

then there exists an (N, t)-blocking set in AG(n, q) with parameters

N = qM, t = min{M − w, aqu}.

where a = ⌊M/M ′⌋.
Several corollaries following the theorem describe important special cases of

Theorem 5.6.

Corollary 5.7. Let n ≥ 3 be an integer and let q = ph be a prime power. If there

exist

• an (M,w)-arc in PG(r, q), 1 ≤ r ≤ n− 2, and

• an (M,u)-blocking set in AG(n− r − 1, q),

then there exists an (N, t)-blocking set in AG(n, q) with parameters N = qM and

t = min{M − w, qu}.



19

Corollary 5.8. Let n ≥ 4 be an integer and let q = ph be a prime power. If

there exists an arc with parameters (M,w) in PG(n − 2, q), then there exists an

(N, t)-blocking set in AG(n, q) with parameters

N = qM, t = min{M − w, q⌊M/q⌋}.

Corollary 5.9. Let n ≥ 3 be an integer and let q = ph be a prime power. If there

exists an (M,w)-arc in PG(n − 1, q), then there exists a (qM,M − w)-blocking

set in AG(n, q).

Corollary 5.10. Let n ≥ 3 be an integer and let q = ph be a prime power. If

there exist

• an (M,w)-arc in PG(r, q), where 1 ≤ r ≤ n− 2, and

• an (M ′, u)-blocking set in AG(n− r − 1, q),

then for every i ≥ 1 and all α ∈ {1, . . . , q − 1} there exists an (N, t)-blocking set

in AG(n, q) with parameters

N = qM − iα, t = min{M − w − i, aqu− bα},

where a = ⌊M/M ′⌋ and b = ⌊i/M ′⌋.

In section 5.3 we present several applications of the general construction from

Theorem 5.6. and Corollaries 5.7–5.10, that give blocking sets with good parame-

ters (small cardinality). So, for instance, we obtain Theorem 5.12 as a special case

of Corollary 5.7. In this theorem we obtain a new class of blocking sets meeting

the Bruen bound.

Theorem 5.12. For every n with 3 ≤ n ≤ q − 1, there exists a (q2, q − n + 2)-

blocking set in AG(n, q).

This class contains as a special case the hyperbolic quadrics from (3) obtained

for n = 3. This class is used further for the construction of new examples of

optimal blocking sets that have the minimal cardinality for fixed t, n and q.

Theorem 5.13. For every s = 0, 1, . . . , q + 1 − n, 3 ≤ n ≤ q − 1, there exist

blocking sets with parameters (q2 − s(n− 2 + s), q − (n− 2 + s)) in AG(n, q).
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Theorem 5.14. For every n ≥ 2 and every prime power q = ph there exists an

affine blocking set in AG(n, q) with parameters (q2 − n + 1, q − n + 1). These

blocking sets are optimal.

Corollary 5.15. For every prime power q = ph there exist blocking sets in

AG(n, q), 3 ≤ n ≤ q − 1, with parameters (q2 − 2n, q − n).

Theorem 5.16. There exist (q2 +2q− 1, q− n+3)-blocking sets in AG(n, q) for

every 3 ≤ n ≤ q − 1.

Furthermore, by using Theorem 5.6, we construct blocking sets with the fol-

lowing parameters:

(28, 4) in AG(5, 4); (40, 4) in AG(9, 4);
(52, 4) in AG(13, 4); (64, 4) in AG(17, 4);
(120, 8) in AG(9, 8).

These blocking sets are optimal and meet the new bounds found by Ball in

[3] and by Ball and Blokhuis from [6]. These are the first examples meeting

these two bounds. Up to this moment, these are the only examples for blocking

sets meeting the Ball or the Ball–Blokhuis bound.

In section 5.4 we present two tables. The first one is a table of blocking sets in

AG(n, 4), obtained by the construction of Theorem 5.6, compared with the lower

bounds from [3, 6]. The second table contains lower and upper bounds for the

cardinality of 3-fold and 4-fold blocking sets in small affine geometries AG(n, q),

for n = 3, 4, 5, q = 5, 7, 8, 9, 11, 13.
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Main results of the thesis

The main results in these thesis are the following:

(1) The function tq(k) is investigated, defined as the maximal deviation from the

Griesmer bound of an optimal q-ary code of dimension k. It is proved that

for even dimensions it holds tq(k) . qk/2. In case of k = 4, the inequality

tq(4) ≤ q − 1 is proved.

(2) The inequality tq(3) ≤ log2 q− 1 for the case of q even is proved. This gives a

partial solution of one hypothesis of S. Ball about plane arcs (threedimen-

sional codes). For even powers of odd prime numbers q the weaker inequality

tq(3) ≤
√
q − 1 is proved.

(3) The nonexistence of hypothetical Griesmer arcs (and Griesmer codes) for

q = 4, k = 5 is proved for the following minimal distances:

d = 295, 296, 297, 298, 347, 348, 349.

These results solve ten open cases for the function n4(5, d). This reduces the

number of the open cases to 98.

(4) A new geometric object called a (t mod q)-arc is introduced. It is proved

that the extendability of a t-quasidivisible arc K is equivalent to the existence

of a hyperplane in the support of special dual arc K̃, which is a (t mod q)-arc.

(5) It is proved that every (0 mod p)-arc, p – a prime, is a sum of complements

of hyperplanes. In particular, every (t mod p)-arc is a sum of lifted arcs from

arcs in geometries in smaller dimension. In the case of plane arcs, it is proved

that every (t mod p)-arc is a sum of at most p lifted arcs.

(6) A partial characterization of the (3 mod 5)-arcs in PG(2, 5) and PG(3, 5) is

made.

(7) A proof of the nonexistence of (104, 22)-arcs in PG(3, 5) is given. Equivalently,

this proves the nonexistence of linear codes with parameters [104, 4, 82]5. This

determines the exact value of n4(5, d) in one of the four open cases for d.

(8) A new general construction for affine blocking sets is described. As a special

case a new infinite class of t blocking sets with t = q−n+2 meeting the Bruen

bound is constructed. This is the third example of blocking sets meeting the
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Bruen bound. This class gives rise to an infinite family of optimal affine

blocking sets with t = q− n+ 1. These blocking sets meet the first bound by

S. Ball from 2000.

(9) Five examples of blocking sets meeting the bounds by Ball and Ball–

Blokhuis are constructed:

(28, 4) in AG(5, 4), (40, 4) in AG(9, 4), (52, 4) in AG(13, 4),
(64, 4) in AG(17, 4), (120, 8) in AG(9, 8).

These are the first examples for blocking sets meeting these two bounds.
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