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Abstract
Wepresent an original study of bulk epitaxial GaAsSb:N layers in view of photovoltaic applications of
thismaterial. The layers are grown onn-GaAs substrates by low-temperature liquid phase epitaxy
(LPE). The grownGaAsSb:N layers exhibit reproducible properties and good optical quality. A
number of experimentalmethods including x-ray diffraction, energy dispersive x-ray spectroscopy,
atomic forcemicroscopy, x-ray photoelectron spectroscopy andRaman spectroscopy are applied for
investigation of the structural properties, surfacemorphology, local arrangement and chemical
bonding of Sb andN in the obtained compounds. The band gap values at room temperature assessed
from surface photovoltage and photoluminescence (PL)measurements are in good agreement and are
∼20meV lower than those of referenceGaAsSb layers. PL spectrameasured at different temperatures
(10–300 K) show a veryweak S-shape-like behaviour of the PL peak energy position indicating
minimal carrier localization. The obtained results reveal the capacity of the LPE for growing bulk
GaAsSb:N layers with good optical quality.

1. Introduction

During the last decadeGaAs-based alloy systems such asGaAsN,GaAsBi, GaAsSb are intensively studied for
longwavelength optoelectronics applications [1–8]. The incorporation a small quantity of nitrogen (N),
antimony (Sb) or bismuth (Bi) into the crystal lattice causes large-scale bowing of the band gap.Quaternary
alloys such as InGaAsN,GaAsSbNoffer the possibility of independent tuning of the lattice constant and the
energy bandgap, which creates an additional flexibility desired inmany applications such as solar cells and
photodetectors. Significant progress in application of thesematerials has been achieved inmany optoelectronic
devices based onQWstructures, such as infrared lasers and vertical-cavity surface-emitting lasers (VCSELs) for
telecommunications [8–10]. However, the growth of thick epitaxial layers involvesmany problemswhich are
absent in theQWstructures.

Formany yearsmost of theworks have been focused on the InGaAsN alloy system [11–23]. Recently, an
increasing interest appears to the growth of bulkGaAsSb andGaAsSbN [24–31]. The incorporation of the large
size Sb substitutional atoms intoGaAs results in bandgap narrowing and an increase of the lattice parameter.
However, the compositional fluctuations in ternaryGaAsSb compounds lead to the arising of localized states in
the band gap, which greatly affect the optical properties of the semiconductor alloy. The incorporation of a small
quantity ofN intoGaAsSb leads to a further reduction of the bandgap and a decrease of the lattice parameter. In
this quaternary alloy system, variations in the Sb content affects the valence band offset while theN content
primarily affects the conduction band offset. Thismakes it possible to tune the conduction band and valence
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band offsets independently, while keeping the latticematching toGaAs [24, 32]. However, similar to the other
dilute nitrides, GaAsSbN suffers from reduced optical properties with respect toGaAs. In addition, its
photovoltaic parameters are poorer as compared to those of InGaAsN.Usually the growthmethods used for
deposition ofGaAsSbN andGaAsSb layers aremolecular-beam epitaxy andmetal-organic chemical beam
epitaxy. To the best of our knowledge, there are no reports onGaAsSb:N grown by liquid-phase epitaxy (LPE).
Investigations of LPE grownGaAsN and InGaAsNhave been reported in [3, 15, 17, 33–35].

The purpose of ourwork is to obtain amaterial with lower band gap thanGaAs using LPE growth, which
could be applied for fabrication of solar cells with extended infrared photosensitivity compared toGaAs.
Previously we have obtained [15–17] InGaAs(Sb)Nbulk layers nearly latticematched toGaAswith good
structural and optical properties, but the red shift of the spectral sensitivity with respect toGaAs is about
100 meV. This is due to the low solubility of nitrogen and low incorporation efficiency intoGaAs lattice during
LPE growth. Significantly larger shift (about 160 meV) is achieved forGaAsSb layers, but their photoresponse is
week. Adding nitrogen even in the ultradilute region improves the intensity of the photoresponse and slightly
shifts (about 20 meV) it to the longerwavelengths. In this studywe investigate LPE grownGaAsSb:N bulk layers
in view of the application of thismaterial in solar cells. The structural properties and localmicrostructure of the
grown layers are investigated bymeans of different experimentalmethods. The optical quality and electronic
band structure of the alloys are studied by photoluminescence (PL)measurements in the range 10–300 K and
surface photovoltage (SPV) spectroscopy at room temperature.

2. Experiment

A series of GaAsSb:N layers were grown onn-type (100)GaAs:Si (∼2×1018 cm−3) substrates in conventional
LPE systemusing horizontal graphite piston boat technique. Because of the hugemiscibility region [36, 37], the
technological parameters are carefully chosen to obtainGaAsSb:N compoundswithout phase separation. The
crystallizationwas carried out fromGa+4.5 at%Sb solutionswith 6 Npurity of the solventmetals.
PolycrystallineGaAs andGaNwere used as sources of As andN, respectively. TheN content in themelt was
0.5 at% for all growth experiments. The charged boat was annealed at 720 °C for 1 h under Pd-diffused ultra-
pure hydrogen flow in order to homogenize themelt and to reduce the residual impurities. Epitaxial layers were
deposited from initial epitaxy temperature 570 °C. The growth occurred from super-cooledmelt at a cooling
rate of 0.5 °Cmin−1 for 35–40 min. Epitaxial GaAsSb layers were also grown at the same growth conditions as
reference samples.

High-resolution x-ray diffraction (XRD)was used for determination of the lattice parameter,mismatch and
crystalline quality of the layers. Themeasurements were performed in the θ/2θ geometry on an x-ray
diffractometer (Empyrean PANalytical B.V., Holland) equippedwith parallel beamoptic, PIX cell detector and
CuKα tube operated at a voltage of 45 kV and current of 45 mA. The Sb content of theGaAsSb:N samples was
determined by energy dispersive x-ray spectroscopy (EDX) (Quantax, Bruker) to be∼3.4 at%. The same value
was obtained for GaAsSb samples without nitrogen. The thickness of the layers wasmeasured on cross sectional
samples by scanning electronmicroscopy (SEM) (Tescan LYRA IXMU). The surfacemorphology was
characterized by atomic forcemicroscopy (AFM). TheAFM topography imagewas obtained in soft tapping
mode on aQuesant universal SPMapparatus. TheAFMprobe usedwasHQ:NSC19/Al BS (MikroMasch®)with
cantilever force constant 0.5 Nm−1 and resonance frequency 65 kHz, and tip radius∼8 nm.

In order to assess the chemical bonding and localmicrostructure in theGaAsSb:N alloys x-ray photoelectron
spectroscopy (XPS) andmicro-Raman spectroscopywere used. Raman spectra were recorded on a JobinYvon
LabRAMHR800 spectrometer with laser excitation of 632 nm in backscattering geometry at room temperature.
TheXPS experiments were carried out onAXIS Supra electron spectrometer (Kratos Analytical Ltd, a Shimadzu
GroupCompany)with base vacuum in the analysis chamber of∼10−9mbar. The spectraweremeasured using a
double Al Kα/MgKα excitation source. The concentrations (in at%) of the observed chemical elements were
calculated by normalizing the areas of the corresponding photoelectron peaks to their relative sensitivity factors.
The procedure included also corrections for the differences in the transmission function and the inelasticmean
free paths of the photo-emitted electronswith different kinetic energies. The accuracy of the binding-energy
determination is within±0.1 eV.

SPV spectra were recorded in the chopped light configuration [38] (94 Hz) applying the set-up and
measurement procedure described elsewhere [39] and introducing a sheet ofmica (15 μm) between the sample
and the probe electrode. AnAvaSpec-2048TECThermo-electric cooled FiberOptic Spectrometer equipped
with a Sony 2048CCD light detector was used for quick PLmeasurements at room temperature exciting by a
532 nm laser with 20 mW. In addition, PL spectra at different temperatures weremeasured using laser excitation
at 532 nm (Nd:YAG)with a power of 140 mWand a 0.5 m focal length spectrometer (Acton 2300i, Princeton
Instruments)with a Si detector.
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3. Results and discussion

3.1. Structural properties
3.1.1. XRD, SEMandAFMmeasurements
Figure 1 shows a typical high resolutionXRD (004) scan spectrumof aGaAsSb:N/GaAs sample. The sharp peak
corresponds to theGaAs substrate, while the signal from theGaAsSb:N layer is weaker and broader. The lattice
mismatchΔa/ao determined from the distance between theXRDpeaks is about 0.48%. The broad layer peak
suggests relaxation of themetamorphic layer. Since the thicknesses of the epitaxial layers are about or higher
than 1micron (see below), we consider that they are nearly relaxed. Using the Sb compositionmeasured
separately by EDX (x≈0.068) andVegard’s rule (equation (1)) for the lattice constant of relaxed layers, theN
content in the crystal lattice is estimated to be y≈0.001.

a GaAs Sb N x y a GaAs x a GaSb y a GaN1 1x y x y1 * * *= - - + +- -( ) ( ) ( ) ( ) ( ) ( )

A cross-section SEM image of aGaAsSb:N epitaxial layer is shown infigure 2. The interface between
substrate and layer is not smoothwhich is due to somemismatch between their lattice parameters as can be seen
from theXRDmeasurements. The layers thicknessesmeasured on cross-sections of different samples are in the
range 1.0–1.2 μm.

Figure 3 presents the AFM topography image of aGaAsSb:N layer surface. It shows undulated surface
morphology formed as a result of the plastic relaxation in themetamorphic layer followed by surface step
formation [40, 41]. The RMS roughness of the surface is 2.4 nmover the entire area of the image.N-induced
nano-formations related to the peculiarity of the growth process are observed on the surface. In addition to the
low solubility of nitrogen in themelt and in the solid these formationsmay further limit the incorporation ofN
in the layer.

Figure 1.XRD theta/2theta diffraction curves of GaAsSb:N onGaAs around (004) reflections.

Figure 2. SEM image of the cross-section of aGaAsSb:N layer grown onGaAs substrate.
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3.1.2. XPSmeasurements
The photoelectron spectra of GaAsSb:N show a complex structure of overlapping peaks, which requires the
application of a deconvolution procedure. Thefit parameters, especially the spin-orbital splitting of Ga 3d- and
As 3d-doublets, have been determinedmeasuring aGaAs standard bymonochromatized Al Kα x-ray radiation.
The surface chemical composition of the as-preparedGaAsSb:N sample shows a presence of thick layer
containingmainly Sb- andGa-oxides, and also traces of As-surface oxide. This oxide layer was fully removed, as
well as part of theGaAsSb:N sample with thickness of∼90 nmafter Ar+ - ion bombardment with ion energy
of 1 keV.

Photoelectron peaks ofGa 3d, Sb 4d andAs 3d characterizing a cleanGaAsSb:N sample are detected in the
lowbinding-energy region displayed infigure 4(a). The corresponding 3d5/2 - peaks ofGa andAs are observed at
19.0 eV and 40.9 eVwhile the binding-energy peaks at 31.7 eV and 32.9 eV can be attributed to 4d5/2 and 4d3/2
peaks of Sb incorporated in theGaAs lattice. The results are in good agreementwith the literature data [42–45].
Note, that in XPSmeasurements the relative sensitive factors (RSFs) of Sb 4d- and Sb 3d-photoelectrons are
significant higher than theRSFs of As 3d andGa 3d electrons (and also ofO 1s-electrons)whichmakes the
detection of small amounts of antimony inGaAsSb:N reliable.

At a depth of about 90 nm from the surface, only single Sb 3d5/2 - and Sb 3d3/2 - peaks have beenmeasured in
the high binding-energy region (figure 4(b)) in agreement with the single Sb 4d-doublet observation in
figure 4(a). The calculated concentration of the antimony atoms using the Sb 3d- or Sb 4d-peaks yield close
results of 3.6 and 3.2 at%, respectively. These values correspond to the value found by EDX.

The use of Al Kα x-ray radiation does not lead to a reliable determination of the nitrogen content inGaAsSb:
N because theN 1s peak is shielded by the substantially intenseGa L2M45M45 Auger structure as can be seen in
our previous study [17]. To address this problemwe also used excitationwithMgKα radiation resulting in the
displacement of theGa LMMstructure to lowbinding-energies. Nevertheless, a weak and broadGaAuger peak
is also observed on the photoelectron background [46]. To distinguish theN 1s signal from this background,
having inmind the very lownitrogen content in theGaAsSb:N sample, the experiment parameters-the pass-
energy, x-ray flux and registration time-were increased, which leads to the substantial decrease of background
noise. In addition, theGaAs standardwas used for comparison purposes. The results for theGaAsSb:N andGaAs
samples and their difference are shown infigure 4(c). Aweak and noisy peak appears at about 398 eV in the
difference spectrum that can be attributed to theN 1s peak of nitrogen atoms. This result allows us to confirm
the presence of nitrogen in the studied samples, although a quantitative estimation of its concentration is
difficult to achieve because the uncertainty of its calculation is very high in this region of weak signalsmeasured
at the limit of the detection sensitivity (around 0.1 at%).

3.1.3. Raman spectroscopy
Figure 5 shows Raman spectrumof aGaAsSb:N layer at room temperature. It consists of twoGaAs - like sharp
LO andTO lines andmanyweek peaks over a large frequency range. Both LO andTOpeak are red shifted in
comparisonwith the phononmodes ofGaAs influenced by the differentmaterial composition. They reveal
significant reduction of the intensity of theGaAs like LOpeak and an increase in intensity of the forbidden TO

Figure 3.AFMsurface topography image of aGaAsSb:N layer.
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peak. Additional two peaks around 220 and 240 cm−1 are also observed and could be associatedwith the local
vibrationmode (LVM) ofGaSb in theGaAs lattice [47, 48]. Theweek peak at 454 cm−1 could be assigned toN
induced LVM (as a result ofN incorporation into the crystal lattice). Two peaks at 162 cm−1 and 188 cm−1 are
observed also in the spectrum. Such peakswere reported forMBE grown and annealedGaAsSbN samples
[27, 47]. The peaks at about 330 cm−1 could be assigned to a combination of LA and LOphonons [49]. Second
order scattering of theGaAs peaks are observed over a frequency range between 500 and 550 cm−1. All these
observations clearly evidence the presence of some disorder. This is also in correspondencewith the broadXRD
peak indicative of nearly relaxed layers.

Figure 4.Photoelectron spectra of aGaAsSb:N sample after Ar+- ion bombardment (with ion energy of 1 keV): (a)Ga 3d-, As 3d- and
Sb 4d-photoelectron region; (b) Sb 3d-spectral region. The peak-fitting contributions and their sum aremarked in blue and red,
respectively. The Sb 4d- and Sb 3d- peak areas of antimony are coloured in green; (c)N1s - photoelectron regions of theGaAsSb:N
sample, GaAs standard and their difference (shown from top to bottom) recordedwithMgKα excitation radiation. Thefit of N 1s
peak ismarked in red.

Figure 5.Raman spectrumofGaAsSb:N at room temperature.
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3.2.Optical properties
3.2.1. SPV spectroscopy
To study the optical absorption characteristics of the layers SPV spectra weremeasured. Figure 6 presents typical
SPV amplitude and phase spectra of aGaAsSb and aGaAsSb:N layers. The SPV amplitude spectrum is
considered as emulating the optical absorption [38]. The spectrumofGaAsSb:N shows larger signal by a factor,
which increases from3 for 800 nm to 6.5 for 1010 nm indicating better photo-response. Therefore adding
nitrogen intoGaAsSb even at ultradilute level, improves the photo-response of thematerial. The improvement
ismore pronounced for photon energies below theGaAs band-gap. This is also seen from the inset offigure 6(a),
which presents the normalized SPV amplitude spectra of the two samples. The above observations could be
explained as follows. The strain effects caused by Sb andN atoms are opposite in sign: Sb try to expand, whileN
try to shrink the crystal lattice. Therefore, N in small quantities leads to partially passivation of the Sb-related
localized states in the band gap ofGaAsSb and this wayweakens the carrier trapping effects in the alloy. The step
around 1.22 eV infigure 6(a) corresponds to the optical absorption edge. The band gap energy ofGaAsSb:N
assessed fromTauc plot is 1.24 eV,which is 180 meV lower than the band gap ofGaAs (1.42 eV) and∼20 meV
lower than that of theGaAsSb sample.

The SPVphase values of the two samples displayed infigure 6(b) are similar. They are in the 4th quadrant,
which indicates that the bending of the energy bands across the structure is upward in the direction from the
bulk towards the surface [39]. Such bending is expected at the interface layer-substrate because of the high
n-type doping ofGaAs. The upward band bending at the surface shows that the doping of the layers is also
n-type [39].

3.2.2. PLmeasurements
Figure 7 presents typical PL spectra of aGaAsSb and aGaAsSb:N layersmeasured at room temperature. The
spectra are similar in terms of shape, but the PL peak ofGaAsSb:N is red shifted by∼20 meVwith respect to that
of GaAsSb in agreementwith the SPV results. Applying the band-anticrossingmodel [50], this shift corresponds
to aN content y≈0.001, which is in a good agreementwith the XRD results. The PL peak position is considered
as an estimate of the band gap energy. For theGaAsSb:N sample it is 1.23 eV.

The optical emission of GaAsSb:N layers is investigated also bymeans of temperature-dependent PL
measurements. The normalized PL spectrameasured in the temperature range between 10 and 300 K are
presented in figure 8(a). For compounds of this kind (GaAsSb, GaAsN, GaAsSbN) the PL peak position
commonly demonstrates a strong S-shape behavior with the temperature at low temperatures [30, 31, 34, 51,
52]. This behaviour is a characteristic of carrier localization effects induced by compositional fluctuations. At
low temperatures, the carriers are trapped in Sb orN-related localized states. As the temperature increases, the
carriers acquire enough thermal energy to escape out of the localized states and as a result, the PL peak energy
initially increases. At even higher temperatures, it follows the expected decrease with temperature due to the
band gap decrease. Figure 8(b) displays a very weak S-shape-like behavior of the PL peak energy with
temperature. The latter follows quite well Varshni’s formula Eg(T)=E0−aT2/(T+b)with E0=1.32 eV,
a=5×10−4 eV.K−1 and b=276 K. This indicates that the optimally chosen technological LPE growth
conditions suppress the compositional fluctuations and henceminimize the carrier localization in the alloy.

For all samples, the PL peak full width of half-maximum increases with increasing the temperature, as
expected. The integrated PL intensity decreases with increasing the temperature (figure 8(c)) due to the

Figure 6.Typical SPV amplitude (a) and phase (b) spectra ofGaAsSb:N (black circles) andGaAsSb (blue triangles) layers. The inset in
(a) shows the normalized amplitude spectra in linear scale.
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activation of non-radiative recombination channels. The estimate of the activation energyEA obtained from
Arrhenius plots of the Ln of the PL intensity versus the reciprocal absolute temperature is 49 meV. Similar values
forEA have been reported for quantumwells of GaAsSbN/GaAs (42–46 meV) [53] andGaAsN/GaAs (50 meV)
[54] grown bymolecular beam epitaxy and explained by the presence ofN induced defects in the crystal lattice.

4. Conclusion

Anoriginal study is presented of bulkGaAsSb:N layers 1.0 μmthick grownonn-GaAs substrates by low-
temperature LPE. The Sb composition x∼0.068 in the alloy is determined by EDX and confirmed byXPS
measurements. TheN composition evaluated fromXRDmeasurements applyingVegard’s rule is y∼0.001. The
surface of the layer is slightly undulated because of the plastic relaxationwith RMS surface roughness of the
order of 2.4 nm, as found byAFM. The nitrogen and antimony bonding configurations have been studied by
means of XPS andRaman spectroscopy. TheXPS spectra reveal clearly the Sb content and give indication for the

Figure 7.Room temperature PL spectra ofGaAsSb (black dashed line) andGaAsSb:N (red solid line) layers.

Figure 8. (a)PL spectra of GaAsSb:Nmeasured at different temperatures between 10 and 300 K. (b)Temperature dependence of the
PL peak energy position (symbols)fittedwithVarshni’s formula (line)withE0=1.32 eV, a=5×10−4 eV.K−1 and b=276 K. (c)
Ln of the integrated PL intensity as a function of the inverse temperature (symbols) andfit (line).
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presence of aweakN1 s peak at∼398 eV corresponding to very lownitrogen concentration close to the
detection limit,most probably around 0.1 at%. TheRaman spectra reveal two sharpGaAs-like LO and
forbidden TOpeaks, andweek LVMpeaks connectedwith Sb andN incorporation in theGaAs lattice. SPV and
PLmeasurements of theGaAsSb:N layers at room temperature reveal band gap values of good correspondence,
which are about 20 meV lower than the band gap values of the referenceGaAsSb layers with the same Sb content.
PL spectrameasured at different temperatures reveal negligible S-shape behaviour of the PL peak energy with
temperature, which attest forminimal carrier localization at low temperatures due to the optimally chosen
technological LPE growth conditions that suppress the compositional fluctuations. The SPVphase spectra
indicate upward energy band bending at the layer surface and interface and n-type doping of the layer.

The obtained results reveal the capacity of the LPEmethod for growingGaAsSb:N as a promisingmaterial
for photovoltaic applications. In this sense, they contribute to the searching of alternative ways for obtaining
solar cells with higher efficiency.
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