Chapter 7
Adaptive Resonances Across Scales

7.1 Social and Neural Networks

As Stephen Grossberg developed his famous equations of cooperative-competitive
neural interactions, he briefly examined their applicability for characterizing eco-
nomic systems. He showed that some of his models described equally well neurons
competing locally while exhibiting globally coordinated behaviour, and production
companies driven by Adam Smith’s “invisible hand” in a class of stable competitive
markets (Grossberg 1980a, b, 1988). Interestingly, at macroscopic level some
systems seemed cooperative while in reality they were competitive. Whether the
competing components could ultimately begin to cooperate to establish structures
that are more complex remained an open question. At the time, that line of research
was pursued no further, but in the age of virtual social networks and big data
analysis it may gain renewed importance.

Considering that the invisible hand is a mix of market signals related to prices,
perceived demand, customer opinions, company reputations etc., all of them
enhanced by the speed of modern communications, one can view today’s economy
to a large extent as a virtual social network. The link between the fields of social
networks and neural networks was perhaps best summarized by Bruno
Apolloni’sremark that, “The social network is a fractal extension of our brain
networks” (Apolloni 2013). This is a modern variation of the old idea about mo-
nadology by Leibniz (1714), who suggested that each living creature, plant or
animal, contains in itself a multitude of its own micro replicas.

This book ends with a discussion about an analogy between the operations in the
adaptive resonance theory (ART) neural network (See Box 7.1) and some of the
essential procedures in leader-electing social organizations. The possible founda-
tions for such a common mechanism are examined, as well as the implications for
the social sciences of a knowledge transfer from mathematical and computational
neuroscience.
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Box 7.1. Adaptive Resonance Theory

Scholars in ancient times discovered that people distort reality when per-
ceiving it. In the 1st century C.E., the Greek philosopher Epictetus noticed
that humans are affected not by events happening around them, but by their
own attitudes to those events. Indian gurus made a similar observation by
saying that, “You cannot see more than what you are”. As society developed,
that idea began to receive scientific garments. Johannes Mueller, a 19th
century physiologist and mentor of Herman von Helmholtz, proclaimed in
1826 that we do not comprehend what we see directly, but only absorb our
own neural responses to external stimuli. Helmholtz (1866, 1896) combined
theoretical and experimental methods to develop his theory of unconscious
inference. It stated that people learn new knowledge only after their senses
modify all incoming information under the guiding influence of previous
knowledge. In other words, we perceive and learn what we expect to per-
ceive, based on previous experience and education.

Scholars from the humanities and social sciences have often come across
the same insight. It is present in the works of prominent figures such as art
historians Gombrich (1972, 1989) and Bell (2007) and science historian
Kuhn (1962) . It is also popular in the folklore of various professions. Earlier
in the book, I quoted human resource managers who claimed that, “Reality is
not the facts, it is the interpretation of facts”. Financier George Soros
observed a similar phenomenon in the capital markets: the agents’ beliefs
affect the fundamentals behind share prices, whereby reality is driven away
from those beliefs. The latter gradually become inadequate and need updating
(Soros 1988, 1995).

This mindset is summarized scientifically by adaptive resonance theory
(ART), initially introduced by Grossberg (1976a, b, 1980a, b, 1982), and
further developed in cooperation with Gail Carpenter (Carpenter and
Grossberg 1987a, b, 1990) and others (Carpenter et al. 1991a, b, 1992, 1998,
etc.). It is built from the same three differential equations or their algebraic
approximations. According to this theory, all knowledge is stored in con-
nections among neurons in the brain whereby, to a first approximation, three
neural layers are instrumental. They exchange signals in two directions: a
“bottom-up” stream comes in from the senses and provokes a “top-down”
response of associations, based on previous knowledge. Both streams are
compared and matched to produce “impressions”, which, if found adequate in
a certain mathematical sense, are eventually memorized. These interactions
are shown in the Figure.
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Grossberg introduced a model clarifying how one manages to learn new
knowledge without destroying the existing. It posits that the brain is “plastic”
as it is able to accommodate change, and at the same time “stable” as it retains
what has been learned before. This is the solution to the famous “stability-
plasticity dilemma”. It is the object of adaptive resonance theory (ART) and
its central element—the ART neural network. The term “adaptive resonance”
denotes information processing and is analogous to the physical resonance in
mechanical and electrical systems. It is information that “resonates”, as
multidimensional signals are exchanged between layers F; and F, in the
Figure. Responding to an incoming image, the neural network instantly scans
its memories to find a sufficiently close match. If one exists, all related
neurons are activated to exchange signals with the impressions layer. This
process is called adaptive resonance. Until it lasts, knowledge update takes
place. The interaction is local as it affectsa limited number of synaptic con-
nections. If the old memories fail to offer an adequate match, a new set of
neurons assimilates the incoming signals and patterns, whereby the network
enters again a resonant state.
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7.2 A Fractal-Type Analogy

Now that enough was said about the neuroscientific part of the alliance, let us
discuss briefly its self-similarity component. The fractal school of thought flour-
ished in the last decades of the 20th century due to Mandelbrot and others, and gave
fruits in the shape of research methodologies for the natural sciences and life
sciences (Mandelbrot 1983). Often, the fractality idea was not straightforwardly
utilized, either because of a lack of scientific rigour, or due to the huge distance
between the subset and superset domains, but assumed the form of analogy between
phenomena across scales, and exerted only indirect intellectual influence. For
example, an important analogy by Ernest Rutherford suggested that the electrons in
the atom circle around a small but heavy nucleus, just like the planets move around
the sun in the solar system. Newton’s law of gravity inspired the development of
international economics’ gravity models, positing that trade between two countries
is more intense when they are geographically closer and have bigger economies.
Similarly, the Navier—Stokes heat and mass transfer equations were adapted to
model capital flows in finance.

The analogy across scales, suggested here, is in line with the insights of
Grossberg and Apolloni, but is more concrete. The main idea is summarized in
Fig. 7.1, showing typical parliamentary procedures in a democratic establishment
that resemble the operations in an ART neural network. There are many similar
details between the two sequences of events.

The left column in Fig. 7.1 describes political events characterizing parliamentary
democracies. The civilized manner in which these governments, their leaders, and
members, replace each other tends to disguise the intense and often fierce power
struggle behind the scene. The example here is modelled after the typical contem-
porary European country, yet it could be easily reshaped in line with the procedures in
North America or in the ancient democracies of the Greek cities and Rome. With some
adaptation, the chart would comfortably fit the cardinals’ conclave electing a new
Pope. Similar in principle are the ways in which corporations and all kinds of insti-
tutions, large and small, replace their chief executive officers, presidents, com-
manders-in-chief, deans, editors-in-chief etc. Moreover, all totalitarian dictatorships
also have their own mechanisms for power transfer that could be accommodated by
variations of the left column in Fig. 7.1. Hardly different, though simpler, is the power
handover in the animal world, where each species has developed its own rituals—
generally brutal—to determine the next leader of the herd.

The right column in Fig. 7.1 describes the operations in the adaptive resonance
theory (ART) neural network as they happen in time. Today we know that adaptive
resonances are widespread in the brain (Grossberg 2013) and take part in many
cognitive processes. Recalling Stephen Jay Gould’s vision that the human brain was
not build for a restricted purpose, but as it evolved for hunting, social cohesion and
other functions, it transcended the adaptive boundaries of its original purpose
(Gould 1981), it seems plausible that the mechanism of adaptive resonance could
have extended to interpersonal relations. That is how and why individuals in a
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Fig. 7.1 An analogy between parliamentary procedures and neural network interactions. The way
in which political leaders are elected resembles the way neurons in the F, layer of an ART neural
network get activated to accommodate new knowledge

social network, such as the political system or any other socioeconomic system with
a hierarchy, may resemble neurons in an ART neural network.
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The right column in Fig. 7.1 is drawn to represent the activity in a single ART
module, but could be adapted for an ARTMAP system (e.g., Carpenter etal. 1991a, b,
1992, 1998; Carpenter 2003) where the ART, module would be analogous to a
country’s political establishment with its parliament, parties, leaders etc., while
ART}, the senior module, would embody either the “sovereign”—the people in their
more important collective actions, or abstract entities and concepts like the laws of
history, the imperatives of social development, or something of this kind.

7.3 Socioeconomic Fractality

Taking seriously the analogy between the ART neural network and any leader-
electing social system may help to open new directions for research in the social
sciences. Indeed, contemporary mathematical neuroscience has already developed a
multitude of suitable models—the analogy in Fig. 7.1 in no way exhausts the pool of
potential applications. It should be considered only as a starting point and an illus-
trative example. The recurrent gated dipole looks like a straightforward candidate for
analyzing social processes in which emotion is involved. The dynamics of various
markets, the sentiments in virtual social networks, any socially or politically moti-
vated mass protests are all suitable examples. Moreover, neural models that are more
complex may tackle successfully the relations among entities such as a country’s
political establishment, industry, labour force, trade unions, third sector, professional
and other communities. Even today, there exist models of the brain’s ability to
decompose information into streams dealing separately with the various important
aspects of an attended phenomenon while processing them in parallel (Grossberg
2009, 2013; Grossberg and Vladushich 2010). Each stream loses information about
everything except its own highly specialized function, thus avoiding combinatorial
explosion of data. Then all streams accomplish fusion at a higher cognitive level.

In time, science will mature and explain with rigour the projection from brain to
socioeconomic processes—a research field that might be called social fractality.
Because economic aspects often tend to be important, their influence may make
more relevant some other term, for example socioeconomic fractality.

Thus, a promising application domain for existing neuroscience models are some
of the traditional social sciences—sociology, social psychology, organizational
psychology, management science, and economics. Of course, these fields have their
own methods and models, yet they could benefit from a transfer from such a
powerful body of theoretical knowledge. For example, the kind of models coming
from the Grossberg School could be used to forecast the evolution of important
trends and events in socioeconomic systems, previously unpredictable. And if
prediction may seem too ambitious, another important goal is to generate new
philosophical explanations of poorly understood social phenomena from the past or
the present. For instance, in the 1990s, the peoples in Eastern Europe embraced
democracy with its key attributes such as free elections—now taking place fre-
quently—and parliamentary procedures exactly as in Fig. 7.1°s left column.
However, they were soon disappointed by the hardships of economic reforms
leading to pain and suffering. Putting that social development side by side with
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neural network operations shows it in a new perspective: It now looks like those
societies had undertaken a learning process on a grand scale and were taking only
the first steps in a journey of historic proportions.

A different but related new field for applying the models of mathematical and
computational neuroscience may become the study of virtual social networks.
Research in that area has gained momentum not least due to the invasion of
Facebook, Twitter, LinkedIn and other internet platforms that have already become
household names. In response, over the years many scientific journals devoted
special issues to the subject, while leading international publishers even launched
new dedicated journals. However, their content has remained mostly empirically
oriented, a fact suggesting that a deep theoretical grasp is hard to achieve.

The future may bring about new alliances between neuromodelling and web data
analyses. In fact, such examples already exist. A study by Sakata and Yamamori
(2007) revealed a topological similarity between the brain and some social net-
works. It was based on positive and negative influences among the participating
units—i.e., neurons and people respectively. That effort quantified some of the
realistic boundaries of the analogy between the two domains.

There are essential pragmatic aspects of the suggested knowledge transfer. It is
generally believed that the collective mind is less sophisticated than the single
mind, not least because the brain has orders of magnitude more elements (neurons)
and connections than any social network. Therefore, the advocated foray into
socioeconomic systems should begin with some of the simpler neural models such
as gated dipoles, ART and ARTMAP networks. A major difficulty would be to
identify prospective concepts and variables from the social sciences that could be
mapped onto suitable components of the neuroscience models. This nontrivial task
may take quite long. Yet, as was discussed already in the previous chapters, some
small steps have already been taken by a number of researchers.

A hypothetical neuroscience-inspired social science model could look like the
creation of some branches of contemporary theoretical physics: a mathematical
structure nicely fitting key elements from the general picture, yet containing
quantities about which little or nothing is known. However, phenomenological and
semi-empirical models are the natural early companions of each pioneering effort.
All the same, if the hypothesized link between neural systems operating in the
millisecond-to-second range and socioeconomic systems evolving over months and
years becomes the object of intense research, it may open immense opportunities
for a new kind of social science.
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