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Introduction

In 1940 Rao introduced certain combinatorial arrangements named orthogonal

arrays. They play important roles in statistics (used in designing experiments),

computer science and cryptography. Orthogonal arrays are related to combinatorics,

finite fields, geometry and error-correcting codes. Although much has been done in

this area, there are still many unsolved problems. [17]

Definition 0.0.1. (Definition 1.1.1) Let A be an alphabet of q symbols. An

Orthogonal Array OA(M,n, q, t) of strength t with M rows, n columns

(n ≥ t), and q levels is an M×n matrix (array) with entries from A so that every

M × t submatrix contains each of the qt possible t-tuples equally often as a row (say

λ times).

Obviously M = λqt and an orthogonal array of strength t is also of strength t′,

for any t′ < t. The number λ is called index of the orthogonal array.

Often used notations for OA(M,n, q, t) are also OA(M, qn, t) or t− (q, n, λ).

Here is an example of OA(4, 3, 2, 2) :

0 0 0

0 1 1

1 0 1

1 1 0

The origin of orthogonal arrays is experimental statistic. C. R. Rao ([30, 31, 32])

introduced them for use in fractional factorial experiments. Since their introduction

many researchers coming from different scientific arrays began to contribute to the

subject. The diversity of their background has caused various terms to be used for

one and the same notions in the area. Here are the most used terms for the basic

parameters of OA(M,n, q, t):

An: full factorial design;

OA(M,n, q, t): fractional factorial design; fraction;
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M : number of rows, or number of experimental runs, or size;

n: number of columns, or number of factors, or number of constraints; number of

variables;

q: number of levels; number of symbols;

t: strength, or estimability of parameters;

λ: index;

Generally OA(M,n, q, t) is a multi-subset of An, that is, it can have repeated

rows, but all its different rows form a subset of An. Orthogonal array without

repeated rows is called simple.

For instance t− (q, t, λ), that is, OA(λqt, t, q, t) is a trivial example of an orthog-

onal array: each element of At is repeated λ times.

Usually A = Zq, the additive group of integers modulo q, or the finite field

GF (q), when q is a prime power. The use of the finite field GF (q) as alphabet

enables results from coding theory to be drawn in for solving problems concerning

orthogonal arrays. But there are researchers which consider orthogonal arrays over

Cq, the multiplicative group of q-roots of unity in C ( Zq ∼= Cq) or other specific

alphabets.

The notion orthogonal array can be generalized to so called mixed orthogonal

array. Let A1,A2, . . . ,An be a set of alphabets with cardinality q1, q2, . . . , qn, re-

spectively. A mixed orthogonal array is defined as a multi-subset ofA1×A2×· · ·×An
satisfying the properties given in Definition 1.1.1.

Some applications of orthogonal arrays in medicine are in:

• pharmaceutical companies. Based on orthogonal arrays, they conduct

studies on stability and shelf life of drugs, which involves many different fac-

tors.

• multiple drug therapy. Orthogonal arrays can help doctors to adjust dose

levels to avoid or minimize interactions when using multiple medications.

• clinical trials to study how drugs are absorbed, distributed, metabolized,

and restricted by the body, especially to study the effects of multiple factors

on these drug characteristics.
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In experiments the joint effect of several factors on the properties of a product

or process is studied. And usually they are conducted according to an orthogonal

array. The terminology used is as follows: each column corresponds to a factor n,

the symbols are the factor levels q and each row represents a combination of the

factor levels, called runs.

The number of rows M (which represents the number of runs in the experiment

and may require too many resources) should be reduced. This brings us to the

following problems:

1. to find the smallest possible number of rows of orthogonal array;

2. for a given number of runs to know the largest number of columns that can

be used in an orthogonal array.

Or more generally these are problems of

? Existence: for which values of the number of rows, columns, strength and

levels does an orthogonal array exist?

? Construction: how can we construct an array, if one exists.

? Non-isomorphic classes: find the numbers of non-isomorphic orthogonal

arrays for given parameters.

In what follows we continue with a more detailed description of the results in

chapters. Definitions, concepts and theorems are introduced to describe the results

obtained in the Phd dissertation. The corresponding numbers are also given.

In Chapter 1 we give some notations and properties of Orthogonal arrays.

Proposition 0.0.2. (Proposition 1.2.1, [17]) For an OA(M,n, q, t) the follow-

ing properties hold

(i) Remind that the parameters of an orthogonal array satisfy the equality λ = M
qt

(ii) A permutation of the symbols (levels q) of any factor (column n) in an

OA(M,n, q, t) results in orthogonal array with the same parameters.

(iii) A permutation of the runs or factors (columns n) in an OA(M,n, q, t) results

in orthogonal array with the same parameters.

(iv) Any M × k sub-array of OA(M,n, q, t) is an OA(M,k, q, t′), where

t′ = min{t, k}.



4

(v) If A =

[
A1

A2

]
is an OA(M,n, q, t), where A1 itself is an OA(M1, n, q, t1), then

A2 is an OA(M −M1, n, q, t2) with t2 ≥ min{t, t1}.

The definitions for codes and its relations to orthogonal arrays are given in section

1.3.

Special attention is paid to Krawtchouk’s polynomials which are introduced in

1929 by Ukrainian mathematician Krawtchouk as a generalization of Hermite poly-

nomials. They play an important role in coding theory and are also useful in graph

theory and number theory (see, e.g., [22, 15], [19], [41], and [25]). .

Let Euclidean space E be a linear space over the field of real numbers R supplied

with usual scalar product.

Let E ⊂ R[x] be the linear space of polynomials of degree up to n. The bilinear

map defined by

〈f, g〉 def=
n∑
i=0

kif(xi)g(xi), ki ≥ 0,

where (x0, x1, . . . , xn) ∈ Rn+1 is a fixed (n + 1)-tuple of different real numbers

called approximation points, satisfies the axioms for scalar product. Usually the

weight vector (k0, k1, . . . , kn) is chosen to satisfy
∑n

i=0 ki = 1 in order to assure

that the norm is 1.

Let q ≥ 2 be integer, (0, 1, . . . , n) be the approximation points, and

〈f, g〉 def=
1

qn

n∑
i=0

(
n

i

)
(q − 1)if(i)g(i). (1)

The weight vector is

1

qn

(
1,

(
n

1

)
(q − 1), . . . ,

(
n

n

)
(q − 1)n

)
and satisfies

n∑
i=0

(
n

i

)
(q − 1)i

qn
= 1.

Definition 0.0.3. (Definition 1.4.1) Krawtchouk polynomial is a polynomial

defined by

Kk(x; n, q) =
k∑
j=0

(−1)j
(
x

j

)(
n− x
k − j

)
(q − 1)k−j, k = 0, 1 . . . n.

Usually n and q have already been fixed or their values are known from context.
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Hence for simplicity we often omit n and q and write only Kk(x).

The Krawtchouk polynomial Kk(x; n, q) is a polynomial of degree k in x with

leading coefficient (−q)k/k!. Here are the first three polynomials:

K0(x) = 1;

K1(x) = −qx+ n(q − 1);

K2(x) =
1

2

[
q2x2 −

(
(2n− 1)(q − 1) + 1

)
x+ n(n− 1)(q − 1)2

]
.

The generating function of Krawtchouk polynomials is

n∑
k=0

Kk(x; n, q)zk =

(
1 + (q − 1)z

)n−x
(1− z)x. (2)

Proposition 0.0.4. (Proposition 1.4.2) Krawtchouk polynomials satisfy the re-

lations

(q − 1)i
(
n

i

)
Kk(i) = (q − 1)k

(
n

k

)
Ki(k). (3)

Lemma 0.0.5. (Lemma 1.4.3) Krawtchouk polynomials K0(x), K1(x), . . . , Kn(x)

form an orthogonal system regarding to the scalar product (1), namely

〈Kk, Kl〉 =
1

qn

n∑
i=0

(
n

i

)
(q − 1)iKk(i)Kl(i) =

(
n

k

)
(q − 1)k δkl (4)

for k, l = 0, 1, . . . , n, where δkl is Kronecker delta.

The second orthogonality relation is as follows.

Corollary 0.0.6. (Corollary 1.5)

n∑
i=0

Kk(i)Ki(l) = qnδkl (5)

Theorem 0.0.7. (Theorem 1.4.5) For any polynomial f(x) ∈ R[x] of degree ≤ n

there is a unique expansion

f(x) =
n∑
k=0

fkKk(x), where

fk =
1

qn
(
n
k

)
(q − 1)k

n∑
i=0

(
n

i

)
(q − 1)if(i)Kk(i) =

1

qn

n∑
i=0

f(i)Ki(k).
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The orthogonal polynomials have many interesting properties (see [41]). The

following theorem gives some of them.

Theorem 0.0.8. (Theorem 1.4.10) The following relations hold:

(i) Kk(x; n) = (q − 1)Kk−1(x; n− 1) +Kk(x; n− 1);

(ii) (q − 1)Kk(x; n) +Kk(x− 1; n) = qKk(x− 1; n− 1);

(iii)
∑n

k=0

(
n−k
n−j

)
Kk(x) = qj

(
n−x
j

)
;

(iv)
∑m

k=0Kk(x;n) = Km(x− 1;n− 1).

Using the attractive and beautiful properties of additive characters (Section

1.4.4) we can prove the theorems that can help a lot in our investigations in the

field of orthogonal arrays.

Definition 0.0.9. (Definition 1.5.1) Let C be an OA(M,n, q, t) (or a subset of

An) and x ∈ An be a fixed vector. The set of integers p(x) = (p0, p1, . . . , pn) defined

by

pi = |{u ∈ C | d(x,u) = i}|

is called the distance distribution of C with respect to x.

The lemma below is due to Delsart ([14, 13])

Lemma 0.0.10. (Lemma 1.5.2, Delsart[14, 13]) Let C be OA(M,n, q, t) and

x ∈ An(Fnq ). If p(x) = (p0, p1, . . . , pn) is the distance distribution of C with respect

to x then
n∑
i=0

piKk(i) = 0 for k = 1, . . . , t. (6)

Theorem 0.0.11. (Theorem 1.5.3) Let C be OA(M,n, q, t) and v ∈ Fnq . If

p(v) = (p0, p1, . . . , pn) is the distance distribution of C with respect to v then for

any polynomial f(x) of degree deg f ≤ t the following hold

(a)

n∑
i=0

pif(i) = f0M, f0 =
1

qn

n∑
i=0

f(i)Ki(0) =
1

qn

n∑
i=0

(
n

i

)
(q − 1)if(i) (7)

where f(x) = f0 +
∑t

j=1 fjKj(x).
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(b)

n∑
i=0

pif(ti) = a0M, a0 =
1

qn

n∑
i=0

(
n

i

)
(q−1)if(ti) =

1

qn

n∑
i=0

Ki(0)f(ti) (8)

where f(x) = a0 +
∑t

j=1 ajQj(x) and ti = 1− 2i
n
.

In chapter 2 are used polynomial and combinatorial techniques [13, 23, 17] to

compute all feasible distance distributions of ternary orthogonal arrays of respec-

tively small lengths and strengths. We propose a method for computing and reducing

of the possibilities of distance distributions of given orthogonal arrays. We use prop-

erties of orthogonal arrays (with given parameters) and some relations with their

derived orthogonal arrays to reduce the possible distance distributions. To solve

questions about existence and classification, it is important to know the possible

distance distributions of an orthogonal array with respect to any point. Having this

information we can get knowledge about its structure.

We improve the know methods [7, 8, 2] for computing and reducing the possibil-

ities for distance distributions of orthogonal arrays. Then apply the new conditions

so that the orthogonal arrays are satisfied. If no then we get nonexistence result, i.e

there is no OA(108, 16, 3, 3) and confirm the nonexistence result for OA(108, 17, 3, 3)

([2]).

Let C be an OA(M,n, q, t) and x ∈ An be a fixed vector. The set of integers

p(x) = (p0, p1, . . . , pn) defined by

pi = |{u ∈ C | d(x,u) = i}|

is called the distance distribution of C with respect to x.

Boyvalenkov and co-authors ( [7, 8, 3]) point out that in the general case all

feasible distance distributions can be computed as nonnegative integer solutions

of certain system of linear equations with Vandermone matrix (tij), where tj =

1− 2j
n
, j = 0, . . . , n.

Recently, the results of Bose and Bush ([1]) were proved by Manev ([26]) in a

different way. The Manev’s results are summarized in the Theorem 2.1.2. This

theorem can facilitate the fast computation of the distance distributions.

Theorem 0.0.12 (Theorem 2.1.2, [26]). Let C be an OA(M,n, q, t) and v ∈ An.
If p(v) = (p0, p1, . . . , pn) is the distance distribution of C with respect to v, then for

m = 0, 1, . . . , t and s = 1, . . . , t+ 1, p(v) satisfies the following systems:
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(i)
n∑
i=0

(
n− i
m

)
pi =

M

qm

(
n

m

)
= λqt−m

(
n

m

)
;

(ii)
n∑
i=0

pii
m =

M

qn

n∑
i=0

(
n

i

)
im(q − 1)i;

(iii)
n∑
i=0

pi(n− i)m =
M

qn

n∑
i=0

(
n

i

)
(n− i)m(q − 1)i;

(iv)
n∑
i=0

(
i− s
m

)
pi =

M

qn

n∑
i=0

(
n

i

)(
i− s
m

)
(q − 1)i.

These systems (Theorem 2.1.2 (i), (ii), (iii), (iv)) show that (p0, p1, ..., pn) is

a solution of equavalent linear systems with nonnegative integer coefficients. One

should find all their nonnegative integer solutions, that is, to select the nonnegative

among all integer solutions.

In the section 2.2 we present an algorithm for determining possible vectors p. It

turns out that finding the best possible upper bound vector u for the vectors p is

very important. This increases the efficiency of the computations.

Beginning with considering the system (iv) in Theorem 2.1.2 in details.

Asp
τ = a, (9)

where

As = (akl) =

((
l − s
k

))
is a (t+ 1)× (n+ 1) matrix. The vector a = (a0, a1, . . . , at)

τ is determined by

ak =
M

qn

n∑
i=0

(
n

i

)(
i− s
k

)
(q − 1)i,

where k = 0, . . . , t. Columns of A corresponding to l = s, . . . , s+t form (t+1)×(t+1)

matrix Rt = (rij) = (
(
j
i

)
). Multiplying the system (9) with R−1t we get Bpτ = b,

where B = R−1t A = (bml) and b = (b0, . . . , bt)
τ , that is,

bml = (−1)m
t∑

j=0

(−1)j
(
j

m

)(
l − s
j

)
, m = 0, 1, . . . , t, l = 0, 1, . . . , n
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and

bm = (−1)mλqt−n
n∑
i=0

((
n

i

)
(q − 1)i

t∑
j=0

(
j

m

)(
i− s
j

))
, m = 0, 1, . . . , t.

The analytic expressions of the transformed matrix that we received in the fol-

lowing theorem helps a lot in computations.

Theorem 0.0.13. (Theorem 2.3.1) The following hold:

(a) bml = (−1)2m
(
l − s
m

)(
t− l − s
t−m

)
=

(
l − s
m

)(
t− l − s
t−m

)
;

(b) bml =

(−1)m+t l − s− t
l − s−m

(
t

m

)(
l − s
t

)
, l 6= s+m

1, l = s+m

It turns out that there is no good simple form of expression for bm in general, only

in special cases. After simplification (described in detail in Chapter 2) we obtain

bm = (−1)mλqt−n
n∑
i=0

(
n

i

)
(q − 1)i(−1)m

(
i− s
m

)(
t+ s− i
t−m

)

or equivalently

bm = (−1)m+tλqt−n
(
t

m

) n∑
i=0

(
n

i

)(
i− s
t

)
i− s− t
i− s−m

(q − 1)i,

where m = 0, 1, . . . , t.

Some bounds could be found when strength t is even number. The situation

when t is odd number is a more complicate.

Corollary 0.0.14. (Corollary 2.3.3) For t even number the inequality holds

pl ≤
⌊
bm
bml

⌋
, for l = 0, 1, ..s− 1, s+ t+ 1, . . . , n

In section 2.4. we study orthogonal arrays applying the knowledge of possible

distance distributions and derive information about its structure.

Let C be an OA(M,n, q, t) and we can assume that C contains the all-zero vector.

Let C ′ be the orthogonal array obtained from C by deleting the first column. Denote

by Ci, i = 0, 1, . . . , q−1 the set obtained by taking all rows of C with the i-th element

of A in the first column and then deleting the first column. (C0 corresponds to 0 in
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the first column.) According to Proposition 1.2.1

C ′ is OA(M,n− 1, q, t) and Ci is OA(M/q, n− 1, q, t− 1).

We compute all possible distance distributions of C ′, Ci, C using described algo-

rithm, and any other necessary arrays derived from C.

Let c = (c1, c2, . . . , cn) ∈ C, i.e., c0 = (c2, . . . , cn) ∈ C0 or Ci. The distance distri-

bution of C with respect to c is p(c) = (p0, p1, . . . , pn) and p0(c0) = (p00, p
0
1, . . . , p

0
n−1)

of C0 (or Ci) to c0, respectively.

A vector a = (a1, a2, . . . , an) dominate another vector b = (b1, b2, . . . , bn) if

ai ≥ bi for all i = 1, . . . , n.

Corollary 0.0.15. (Corollary 2.4.1) If vector p = (p0, p1, . . . , pn) is a a distance

distribution of OA(M,n, q, t) array C then it satisfies the following conditions

(i) (p0, p1, . . . , pn−1) dominates (p00, p
0
1, . . . , p

0
n−1), when p00 ≥ 1;

(ii) (p1, p2, . . . , pn) dominates (p00, p
0
1, . . . , p

0
n−1) when p00 = 0;

(iii) the difference

p(c0) = (p̄0, p̄1, . . . , p̄n−1) = (p1 − p01, . . . , pn−1 − p0n−1, pn)

has to be the distance distribution of C1∪· · ·∪Cq−1 with respect to the external

point c0;

(iv)
V
p(c0) = p(c0) + p0(c0) has to be a distance distribution of

V

C with respect to c0.

Deleting different columns we can obtain not only different Ci but different values

for p, p(c), p0. The following result holds

Theorem 0.0.16. (Theorem 2.4.2 [[7, 26]]) Let p(1), p(2), . . . , p(s) be all possible

successors of p and let p(i) be obtained in ki cases of deleting of a column, i =

1, 2, . . . , s. Then the integers ki satisfy∣∣∣∣∣∣∣
k1 + k2 + · · ·+ ks = n

k1p
(1) + k2p

(2) + · · ·+ ksp
(s) = (p1, 2p2, . . . , npn)

ki ≥ 0

In section 2.5. we prove that
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Theorem 0.0.17. (Theorem 2.5.1) The minimal index for ternary arrays with

strength t = 3 and length 17 and 16 is λ = 5.

Some structural results are shown in section 2.5.1.

Remark: All the computations are made in Maple.

In Chapter 3 we consider another connection between codes and orthogonal

arrays, i.e. covering radius ([5]). The covering radius of an orthogonal array C is

the minimum of the numbers ρ such that every point of the Hamming space H(n, q)

is within distance ρ of at least one point in C; that is, it is the smallest radius such

that closed balls of that radius centered at the points of C have all of H(n, q) as

their union.

We obtain analytically upper bounds for the covering radius of a given orthogonal

array depend on its parameters. We have done this by investigations of the set of

all feasible distance distributions of the corresponding orthogonal array and related

to it orthogonal arrays.

To prove our bounds for covering radius we choose to work with s = n− t. This

makes the situation simpler, i.e.

Bpτ = b, and B = (UIt+1) = (bml),

where b = (bm), m = 0, 1, . . . , t, l = 0, 1, . . . , n.

The coefficients b0 and b1 can be expressed.

Corollary 0.0.18. (Corollary 3.2.1) For given parameters M , n, q, t, s = n− t,
and λ = M/qt the following hold:

(i) b0 = λ
(
n
t

)
;

(ii) b1 = −λ
(
n
t−1

)
(n− t− q + 1).

The next theorem gives the first bounds on covering radius for a given orthogonal

array.

Theorem 0.0.19. (Theorem 3.2.2) Let C be an OA(M,n, q, t) having covering

radius ρ(C). Then

ρ(C) ≤ n− t.

The uniqueness of the solution in the proof of Theorem 3.2.2 allows further

improvements.
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Distance distributions with max-
imum number of zeros in the begin-
ning

ρ(C) Theorem 3.2.2, 3.2.3

OA(54, 5, 3, 3) 2 ρ(C)
(0, 0, 20, 0, 30, 4) ≤ 5− 3 = 2
Sloane’s page [40] n− t = q − 1

OA(18, 7, 3, 2) 4 ρ(C)
(0, 0, 0, 0, 14, 0, 0, 4) ≤ 7− 2− 1 = 4
Evangelaras, Koukouvinos,
Lappas [16]

n− t > q − 1

Schoen, Eendebak, Nguyen[34]

Table 1: Examples of covering radius of orthogonal arrays that attain the bounds
from Theorems 3.2.2, 3.2.3.

Theorem 0.0.20. (Theorem 3.2.3) Let C be an OA(M,n, q, t) having covering

radius ρ(C). If n− t > q − 1, then

ρ(C) ≤ n− t− 1.

Using a procedure for reduction of the possible distance distributions of orthog-

onal array we improve the bound by 1 under certain assumptions.

Theorem 0.0.21. (Theorem 3.2.3) Let C be an OA(M,n, q, t) with covering

radius ρ(C). If n > 2(t+ q − 1), then

ρ(C) ≤ n− t− 2.

Some examples that attain the bounds are pointed out.
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Sloane’s page [40], Distance dis-
tibutions with maximum number of
zeros in the beginning

ρ(C) Theorem 3.3.1

OA(27, 13, 3, 2) 7 ρ(C)
[0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 13, 0, 0, 1] ≤ 13− 2− 2 = 9
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[0, 0, 0, 0, 0, 14, 42, 42, 133, 126, ≤ 14− 4− 2 = 8
210, 70, 84, 0, 8]

Table 2: Examples of covering radius of orthogonal arrays
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Author’s contribution

According to the author, the main contributions of the Ph.D thesis are the

following

1. We develop a combinatorial method for computing and reducing the possibil-

ities of distance distributions of ternary orthogonal array of given parameters

OA(M,n, q, t).

2. We receive analytical expression of the matrix (Theorem 2.3.1) used for evaluating

the distance distributions of a given orthogonal array. This helps a lot in faster

calculation of distance distributions.

3. The main result is nonexistence of OA(108, 18, 3, 3) and (108, 17, 3, 3) ternary

orthogonal arrays. The result of nonexistence of OA(108, 18, 3, 3) was already

obtained by M. Stoyanova and T. Marinova, but we receive it independently

using another approach. We wrote a paper together [2].

4. We obtain analytically upper bounds for the covering radius of orthogonal arrays.

5. We apply a procedure for reduction of the possible distance distributions of or-

thogonal array to improve the bound by one under certain assumptions.
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