РЕЦЕНЗИЯ

по конкурс за заемане на академична длъжност "доцент"

в професионално направление 4.5. Математика (Диференциални уравнения),

за нуждите на Софийски университет "Св. Климент Охридски",

Факултет по математика и информатика (ФМИ),

обявен в ДВ бр.24 от 2023 г.

и на интернет страниците на ФМИ и СУ

Рецензията е изготвена от: доцент доктор Ангел Иванов Живков – Софийски университет, Факултет по математика и информатика, катедра "Диференциални уравнения",

в качеството ми на член на научното жури по конкурса 4.5. Математика (Диференциални уравнения) съгласно Заповед № РД-38-245/12.05.2023 г. на Ректора на Софийския университет.

За участие в обявения конкурс са подали документи следните кандидати:

1. **Георги Иванов Георгиев**, главен асиситент доктор ФМИ, СУ, катедра "Диференциални уравнения"

2. Светлин Георгиев Георгиев, главен асиситент, доктор ФМИ, СУ, катедра "Диференциални уравнения"

Общо описание на представените материали

1. За Георги Иванов Георгиев

Представените по конкурса документи от кандидата съответстват на изискванията на ЗРАСРБ, ППЗРАСРБ и Правилника за условията и реда за придобиване на научни степени и заемане на академични длъжности в СУ "Св. Климент Охридски" (ПУРПНСЗАДСУ).

Научни трудове

За участие в конкурса кандидатът е представил 8 статии, които ще номерирам с (1) до (8):

- (1) публикувана във Fractal Frac., 2021 (IF 3.57), съвместна с Т.Боев,
- (2) B AIP Conference Proceedings, 2022 (SJR 0.18),
- (3) B AIP Conference Proceedings, 2021 (SJR 0.18),
- (4) B Chaos, Solitons & Fractals, 2020 (IF 5.94),
- (5) B AIP Conference Proceedings, 2018 (SJR 0.17),
- (6) в Доклади на БАН, 2018, (IF 0.21),
- (7) в SIGMA, съвместна с О. Христов, 2015 (IF 0.45),
- (8) в Chaos, Solitons & Fractals, съвместна с О. Христов, 2015 (IF 1.61).

Изследванията, които се разглеждат в горния списък с публикации са в областта на Хамилтоновите системи и изучаване на тяхната интегруемост. Дори и публикацията (1) за съществуване на глобално решение на класическата задача на Дерихле с ненулеви гранични условия за дробното уравнение Лаплас, също е свързана с изследването на обобщеното уравнение на Бесел и проекта за намиране на неговата диференциална група на Галоа.

Това е неизследван вариант на обобщеното хипергеометрично уравнение, изследвано в публикация (7). Там са разгледани два вида уравнения от четвърти ред със свойство на Пенлеве - полиномиален вид и без подвижни особени точки. Тези уравнения могат да се запишат като Хамилтонова система. В тази публикация е доказано че уравненията, както следва означени с F-XVII по класификацията на Коусгроув и обобщените варианти на $P_{II}^{(2)}$ и $P_{II}^{(3)}$ от йерархиата P_{II} са неинтегруеми в рационални първи интеграли с изключение на някои параметри. Показано е, че тези уравнения със свойство на Пенлеве имат нормални вариационни уравнения, които са обобщени хипергеометрични уравнения и е намерена тяхната диференциална група на Галоа. Понеже нормалните вариационни имат съществена особеност, в тези случаи в генераторите на Групата на Галоа има Матрици на Стокс, които са пресметнати експлицитно.

В публикация (8) е доказана неинтегруемост на системата, описваща стационарните решения на модела на Бозе–Айщайн или както е в конкретният случай Бозе–Ферми. Доказано е, че единствените интегруеми случаи са тези, за които променливите се разделят. Тук отново се разглеждат вариационните уравнения около подходящо частно решение и се използват три подхода в Теорията на Моралес–Рамис. Първият е Алгоритъм на Ковачич; вторият – изучаване на вариациите от ред 3; третият – Теория на Поанкаре–Арнолд–Мелников–Зиглин с изследването на интеграла на Мелников. В публикация (6) е изследвана Хамилтоновата система с потенциал на Дайсън и нейната неинтегруемост. Показано е различно доказателство за мероморфна неинтегруемост от вече известното, което е малко по общ резултат от постигнатия преди това.

В публикация (5) е изследван Космологичният модел на Шази–Карзон за неинтегруемост. Тук подхода е малко по–различен – директно изследване на геометрията на решенията и доказване на тяхната условна непериодичност. Проблемът тук е, че уравненията на движение не са в подходящ вид и никаква смяна на променливите не ги привежда в лесен за изследване вариант.

В публикации (2), (3) и (4) е изследван затвореният йонен модел и въпреки някои несъответствия и неточности като например изродените случаи в (4), са показани случаите, които са неинтегруеми. Тук има доказана директна връзка между диференциалната теория на Галоа и класическата теория на Галоа.

В публикация (1) е решена класическата Задача на Дирихле в тримерният и едномерен случаи за дробното уравнение на Лаплас с ненулеви гранични условия. Използван е вариант на класическия подход на Хьормандер, разгледан през призмата на дробните Лапласиани.

Преподавателска и учебно-педагогическа дейност. Георги Георгиев води или е водил:

а) лекционни курсове във ФМИ или БФ на СУ:

– "Математика", Биологчески факултет,

- "Диференциални уравнения", ФМИ, спец. "Математика",

– "Диференциални уравнения", ФМИ, спец. "Математика и информатика" – избираем курс,

б) упражнения по диференциални уравнения във ФМИ

– специалности "Математика", "Приложна математика", "Математика и информатика".

Оценка ми за учебно-педагогическа дейност на кандидата е много добра.

Нямам критични бележки или препоръки по научната и преподавателската дейност на кандидата.

Лични впечатления за кандидата. Познавам Георги от 1989 година, когато той посещаваше семинара на Васил Цанов и Емил Хорозов. След дипломирането си във ФМИ, той дълги години работи в ПЖИ. След защитата на докторската си дисертация с фактически научен ръководител доцент Огнян Христов и постъпването си във ФМИ като главен асистент, той отбелязва бърз напредък в научните си изследвания.

Има чувство на хумор.

Заключение за кандидатурата. След като се запознах с представените в конкурса материали и научни трудове и въз основа на направения анализ на тяхната значимост и съдържащи се в тях научноприложни приноси, потвърждавам, че те отговарят на изискванията на ЗРАСРБ, Правилника за приложението му и съответния Правилник на СУ "Св. Климент Охридски" за заемане от кандидата на академичната длъжност "доцент" в научната област и професионално направление на конкурса. В частност кандидатът удовлетворява минималните национални изисквания в професионалното направление и не е установено плагиатство в представените по конкурса научни трудове.

Давам своята положителна оценка на кандидатурата на Георги Георгиев.

2. За Светлин Георгиев Георгиев

Представените по конкурса документи от кандидата съответстват на изискванията на ЗРАСРБ, ППЗРАСРБ и Правилника за условията и реда за придобиване на научни степени и заемане на академични длъжности в СУ "Св. Климент Охридски" (ПУРПНСЗАДСУ).

Научни трудове

За участие в конкурса кандидатът е представил две работи.

Съвместната с Т. Хіапд статия

T. Xiang and S. Georgiev. Noncompact-type Krasnoselskii fixed point theorems and their applications. Mathematical Methods in the Applied Sciences, Vol. 39, Issue 4, 2016, pp. 833-863

е публикувана в списание с висок Impact Factor, в което Светлин Георгиев е член на ред-колегията.

В статията се предлагат методи за решаване на различни видове пертурбационни уравнения, възникващи в приложните науки. Тези методи са базирани на обобщения на абстрактни теореми за съществуване на неподвижни точки x на операторни уравнения Tx + Sx = x, където x принадлежи на изпъкнало затворено подмножество на Банахово пространство, а операторите S и T са от различен тип. Посочени са 8 такива варианти на теореми.

По-нататък следват приложения на гореописаните резултати. Уравнението

$$\left[v_3\frac{\partial}{\partial x} + \sigma(x,v) + \lambda\right]\psi(x,v) = \int_{\mathbb{S}^2} r\left(x,r,r',\psi(x,v')\right)dv'$$

задава асимптотиката на разпределението на енергията $\psi(x, v)$, зависеща от променливите $x \in [0, 1]$ и $v = (v_1, v_2, v_3) \in \mathbb{S}^2$, функциите $\sigma, \lambda \in \mathbb{C}$ и r са известни. То характеризира възможното изтичане на енергия по границите на канал ($\psi(0, v)_{|v \in \mathbb{S}^2}$ е входящата, а $\psi(1, v)_{|v \in \mathbb{S}^2}$ е изходящата граница).

Формулирана и доказана е теорема, че ако са в сила 4 условия, то горното уравнение има решение и то е единствено.

В следващ параграф е разгледана задачата на Дарбу в първи квадрант

$$u_{xy}(x,y) = \lambda u(x,y) + \mu g(x,y,u(x,y)), \qquad x \ge 0, \ y \ge 0,$$

$$u(x,0) = \phi(x), \quad u(0,y) = \psi(y),$$

където λ и μ са неотрицателни константи, ϕ и ψ са C^1 –функции и gе непрекъсната.

Намерени са условия за λ , μ , и g, при които горната задача на Дарбу има глобално C^{1} – решение u, производната u_{xy} съществува и е непрекъсната. Доказателството на тази теорема е разбито на 12 леми и две предложения.

След това, авторът разглежда клас от диференчни уравнения

$$\Delta u(n) = a(n)u(n) + \lambda b(n)f(u(n-\tau(n))) + g(n), \quad n \in \mathbb{Z},$$

където $\Delta u(n) = u(n+1) - u(n), \, a, b, \tau$ и g са ω -периодични функции, а λ е константа.

Посочени са различни видове условия за a, b, τ, g и λ , при които можем да гарантираме съществуване на решение u = u(n), както и да оценим ръста на тези решения.

Накрая е доказана теорема за съществуване и единственост на решението на пертурбираното уравнение на Волтера

$$u(t) = \int_{a}^{t} k(t,s)u(s)ds + f(t,u(t)), \quad t \in [a,b]$$

за специални стойности на ядрото k и пертурбацията f.

Вторият представен от С. Георгиев научен труд е самостоятелната книга (402 страници)

S. Georgiev. Integral Equations on Time Scales, Atlantis Press, 2016.

Съгласно WikipediA, "In mathematics: Time-scale calculus, the unification of the theory of difference equations with differential equations."

Книгата на С. Георгиев е допълнение на основополагащия труд

M. Bocher, A.Peterson, *Dynamic Equations on Time Scales: an Introduction with Applications* (Birkhauser, Boston, 2003).

Формулирани са над 50 нови теореми, необходими за практическите пресмятания на различни интегралните уравнения върху времеви скали и свеждането на динамични до интегрални уравнения. Разбира се, доказателството на повечето от тези теореми е сравнително лесно.

Разгледани и решени са стотици конкретни примери на

- интегрални уравнения на Волтера,
- интегро-диференциални уравнения,
- уравнения от Фредхолмов тип,
- интегрални уравнения на Хилберт-Шмит със симетрични ядра,
- трансформация на Лаплас,
- решения във вид на редове ("series solution"),
- нелинейни интегрални уравнения върху времеви скали.

Теоретическата част на книгата, плюс подробните пресмятания в нея, по мое мнение я превръщат в добър учебник по "Time-scale calculus".

Преподавателска и учебно–педагогическа дейност. Светлин Георгиев има отличен списък от водени от него курсове.

Задължителни – във ФМИ или БФ на СУ:

– "Диференциални уравнения и приложения" спец. "Информатика"

– "Уравнения на математическата физика спец. "Приложна математика",

- "Частни диференциални уравнения", спец. "Математика",

- "Математика и информатика", спец. "Биология".

– "Математически анализ на функции на много променливи", спец. "Инженерна физика", "Медицинска физика".

Избираеми курсове – във ФМИ СУ:

- "Вълнови изображения",

- "Интегрални уравнения",

- "Тензорно смятане",

– "Анализ на Клифорд за диференциални уравнения",

- "Теория на полугрупите и приложения",

- "Увод в теорията на дискретните динамични системи и хаоса",

- "Динамично смятане върху времеви скали".

По повечето от избираемите курсове има написани и издадени (в чужди издателства) съответни учебници, монографии или книги.

Оценка ми за учебно-педагогическа дейност на кандидата е много добра.

Нямам критични бележки или препоръки по научната и преподавателската дейност на кандидата.

Лични впечатления за кандидата. Познавам Светлин Георгиев от 2001 година, когато бях рецензент на докторската му дисертация. Оттогава той направи неочаквано успешен за мен скок в научното си развитие.

Заключение за кандидатурата. След като се запознах с представените в конкурса материали и научни трудове и въз основа на направения анализ на тяхната значимост и съдържащи се в тях научноприложни приноси, потвърждавам, че те отговарят на изискванията на ЗРАСРБ, Правилника за приложението му и съответния Правилник на СУ "Св. Климент Охридски" за заемане от кандидата на академичната длъжност "доцент" в научната област и професионално направление на конкурса. В частност кандидатът удовлетворява минималните национални изисквания в професионалното направление и не е установено плагиатство в представените по конкурса научни трудове.

Давам своята положителна оценка на кандидатурата на Светлин Георгиев.

ОБЩО ЗАКЛЮЧЕНИЕ

И двамата кандидати имат качествата за заемане на академична длъжност "доцент" в професионално направление 4.5. Математика (Диференциални уравнения) във Софийския университет "Св. Климент Охридски", Факултет по математика и информатика.

Бих направил следното сравнение между тях.

Обемът на научната продукция на Светлин Георгиев е изключителен – общо 49 статии, 40 участия в конференции в чужбина, 16 книги, вкл. четири от тях издадени от Springer или Birkhauser. Качествата на публикациите на двамата оценявам като приблизително равни.

Преподавателската дейност на Светлин Георгиев е по-разнообразна, има и фактически написани учебници по повечето от четените от него избираеми курсове.

Въз основа на гореизложеното, препоръчвам на научното жури да класира двамата кандидати както следва:

1. Светлин Георгиев Георгиев

2. Георги Иванов Георгиев

София, 10 юли 2023 г.

Изготвил рецензията:

(доц. д-р Ангел Живков)