

A survey of a bioinsecticide for controlling insect pests under laboratory conditions

Teodora Toshova¹, Dimitar Velchev², Danail Takov¹, Daniela Pilarska^{1,3}, Ivaylo Todorov¹, Slavimira Draganova⁴

¹ Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Blvd. Tsar Osvoboditel 1, 1000 Sofia, Bulgaria; ² Maize Research Institute, Agricultural Academy, 5835 Knezha, Bulgaria; ³ Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria; ⁴ Institute of Soil Science, Agrotechnologies and Plant Protection, Shosse Bankia Str. 7, 1080 Sofia, Bulgaria

ABSTRACT: The purpose of this study was to evaluate the efficiency of the mycoinsecticide Naturalis® (BioIntrachem, Italy) against field-collected adults of the grey maize weevil, *Tanymecus dilaticollis*, the cereal leaf beetle, *Oulema melanopus*, and the multicolored Asian lady beetle, *Harmonia axyridis*. Naturalis® was tested in six concentrations ($2.3 \times 10^2 - 2.3 \times 10^7$ conidia/ml) in glass Petri dishes. The median lethal concentration (LC_{50}) after ten days of fungal treatment ranged from 2.0×10^3 conidia/ml to 2.1×10^6 conidia/ml for the different species. Naturalis® was most efficient against *T. dilaticollis* adults causing significantly higher mortality at all concentrations tested compared to the control treatment (water). The possibility of using mycoinsecticide to control coleopteran pests in Bulgaria is discussed.

A bioassay method for evaluating Naturalis[®] (*Beauveria bassiana* strain ATCC 74040) effectiveness

Adults of *T. dilaticollis, Oulema melanopus* and *Harmonia axyridis* were collected from a maize field belonging to the Maize Research Institute, Knezha, Bulgaria (43°28'48.85"N; 24°3'22.03"E)
Naturalis[®] was tested at six concentrations: 2.3 × 10² - 2.3 × 10⁷ conidia/ml.

□ 1 ml from each concentration was applied separately on the white filter paper disc covering the bottom of a Petri dish.

 $\hfill \Box$ Adults in control variants were treated with 1 ml of distilled water.

 \Box The experiments were replicated \Rightarrow 3 times for each species.

□ Insect mortality was recorded at 24-h intervals during 10 days after treatment.

□ The mortality data were corrected using Schneider-Orelli's formula, where corrected mortality (%) = $(a - b/100 - b) \times 100$ (where a = percentage mortality data from the treated group and b = percentage mortality from the control group)

□ Probit analysis was used to estimate the median lethal concentration (LC_{50}) (time necessary to kill 50% of the tested indviduals)and lethal concentration 90 (LC_{90}),the lethal time LT_{50} and the 95% confidence intervals of these features.

LC₅₀ and LC₉₀ of different concentrations of Naturalis[®] against the adults of the three coleopteran species under laboratory conditions.

Species	LC ₅₀ conidia/ ml	Confidence intervals		LC ₉₀ conidia/ ml	Confidence intervals	
		Lower bound	Upper bound		Lower bound	Upper bound
T. dilaticollis	2.0 x 10 ³	8.7 x 10 ²	5.8 x 10 ³	5.2 x 10 ⁴	1.6 x 10 ⁴	5.8 x 10 ⁵
H. axyridis	1.4 x 10 ⁴	1.6 x 10 ³	6.5 x 10 ⁵	5.0 x 10 ⁵	2.7 x 10 ⁴	1.0 x 10 ⁸
O. melanopus	2.2 x 10 ⁵	2.8 x 10 ⁴	5.2 x 10 ⁶	1.7 x 10 ⁶	8.9 x 10 ³	4.9 x 10 ⁵

Cumulative mortality (%) of adults of T. dilaticollis, H. axyridis and O. melanopus caused by Naturalis® at different conidial concentrations (conidia/ml) ten days after treatment

Mycosis of *O. melanopus* aduls caused by the fungus *Beauveria bassiana*, $2.3 \times 10^5 - 2.3 \times 10^7$ conidia/ml.

Median lethal time (LT₅₀) in days at the highest concentrations of Naturalis[®] for the adults of *T. dilaticollis, H. axyridis* and *O. melanopus* under laboratory conditions.

Naturalis 10,7 1-3, 11-1 111-3 6984	106 I-8 TI-4 TII-9 6 gen	105 I-1 II-3 II-2 Ggen

Concentration conidia/ml	LT ₅₀ (low	LT ₅₀ (lower and upper confidence intervals), days				
	Tanymecus dilaticollis	Harmonia axyridis	Oulema melanopus			
2.3 x 10 ⁴	5.75 (5.07 - 6.70)	9.51 (5.16 - 36.06)	74.13 (35.40 - 229.09)			
2.3 x 10 ⁵	3.53 (3.16 - 4.04)	6.62 (5.32 - 8.79)	15.18 (10.23 - 29.51)			
2.3 x 10 ⁶	0.25 (0.19 - 0.30)	3.85 (3.27 - 4.75)	6.17 (4.47 - 10.07)			
2.3 x 10 ⁷	0.01 (0.001 - 0.02)	0.09 (0.03 - 0.16)	1.30 (1.24 - 1.39)			

To our knowledge these are the first results on the susceptibility of the adults of T. dilaticollis, H. axyridis and O. melanopus to Naturalis® (BioIntrachem, Italy).

It was established that the adults of the grey maize weevil were most sensitive test-insects to the mycoinsecticide under laboratory conditions.

For T. dilaticollis, the mycoinsecticide caused 100 % corrected mortality of exposed weevils when tested at concentrations over 2.3 × 10⁵ conidia/ml. There was no significant difference in mortality between treatments with concentrations above 2.3 × 10⁴ conidia/ml.

□ For *H. axyridis*, the highest concentrations tested evoked 91-100 % mortality.

For O. melanopus, the effectiveness of Naturalis® was relatively low – the highest mortality was in the range of 87-93 % for the concentations of 2.3 × 10⁶ – 2.3 × 10⁷ conidia/ml. received at the end of the bioassay.

□ Results showed potential of this mycoinsecticide for its use for microbial control of *T. dilaticollis* adults.

Acknowledgements: This study was partially supported by the Bulgarian Ministry of Education and Science under the National Research Programme "Healthy Foods for a Strong Bio-Economy and Quality of Life" approved by DCM # 577 / 17.08.2018.

Presented at the Scientific Conference Kliment's Days 2020, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, 5 November 2020.