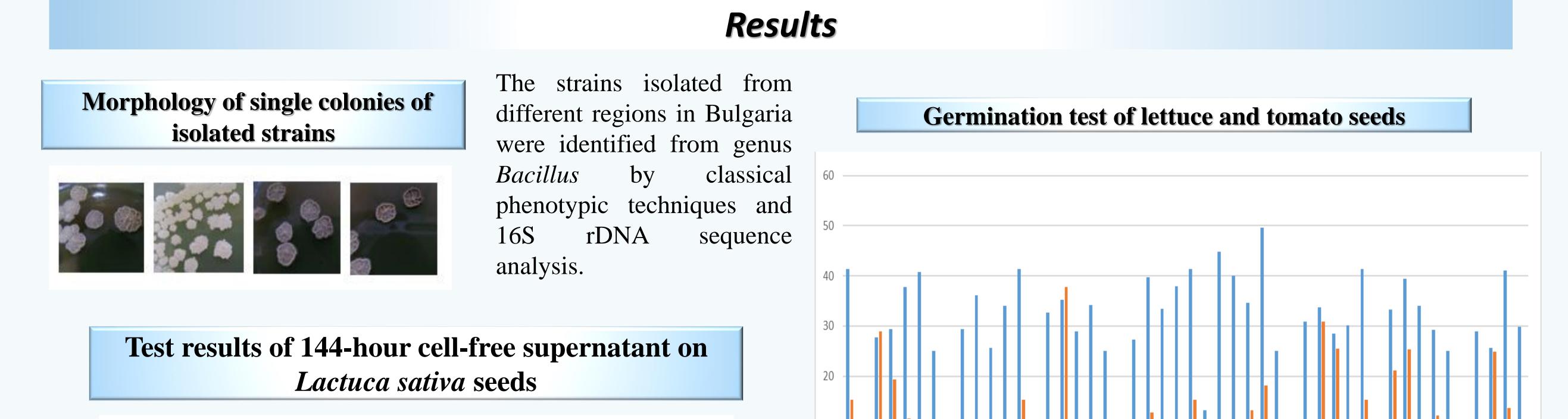


IN VITRO AND IN VIVO EVALUATION OF **PGPR-ACTIVITIES OF NEWLY ISOLATED RHIZOSPHERE STRAINS**

Tsvetana Licheva¹, Dilyana Nikolova¹, Yana Evstatieva¹

¹ Department of Biotechnology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Dragan Tsankov Blvd., 1164, Sofia, Bulgaria.

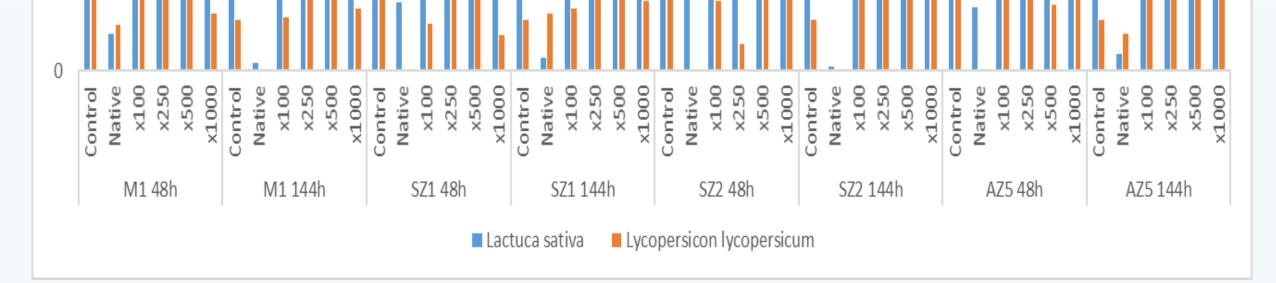

* Corresponding author : cvlicheva@uni-sofia.bg, Department of Biotechnology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Dragan Tsankov Blvd., 1164, Sofia, Bulgaria.

Introduction

In the last two decades various plant- growth promoting rhizobacteria (PGPR) strains have been known to play an essential role improving crop production. There is growing interest in the use of root-colonizing, plant growth-promoting rhizobacteria (PGPR) as supplements or alternatives to the use of chemicals to increase crop productivity in agriculture. Strains of genus Bacillus have the potential to increase growth and/or yields of different crops. Crop yield increases because PGPR can be as high as 57%, depending on the crop.

Material and Methods

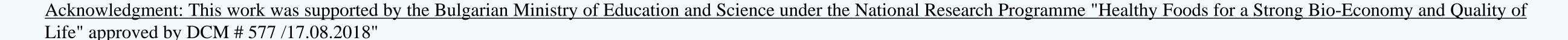
A germination test was performed to establish the biological effect of four newly isolated rhizosphere strains *Bacillus subtilis* (M1, SZ1, SZ2 and AZ5) in different concentrations on the growth and development of seeds of Lactuca sativa (lettuce) and Lycopersicon lycopersicum (tomato). The effect of cell-free supernatants (CFS) from newly isolated strains of the genus *Bacillus* has been studied.


10

Test results of 144-hour cell-free supernatant on Lycopersicon lycopersicum seeds

1.2.2.2.2	the second star was the	fin the second	ミッチママイ
AZ5 144h	MI 1445	SZ11446	872 144b

The cell-free supernatants of strains B. subtilis AZ5, B subtilis SZ1, B. subtilis SZ2 and B. subtilis M1 have a clear effect on the treated tomato and lettuce seeds, which clearly follows the "dose-effect" pattern.



A 144-hour cell-free supernatant of *Bacillus subtilis* (M1, SZ1, SZ2 and AZ5) strains was found to show a positive effect with about a 30% increase the length of the root in lettuce seed germination test compared to control variants. In all four used CFS of the bacterial strains, more than 35% positive effect was observed on the length of the root in germination seeds test of tomato compared to the control variant treated with water.

Conclusion

From the data obtained it can be concluded that the tested strains from genus *Bacillus* have the potential to be applied as components of biological fertilizers aiming to increase the bioproduction.

Acknowledgements

