

ST. KLIMENT Ohridski SOFIA LINIVERSITY

The fluorescence in situ hybridization - an innovative method in the circular solutions for resources recovery in Municipal enterprise for waste treatment - Sofia

Dinova N.^{1,2}, Belouhova M.^{1,2}, Yotinov I.^{1,2}, Lincheva S.³, Schneider I.^{1,2}, Topalova Y.^{1,2}

¹ Sofia university "St. Kliment Ohridski", Faculty of Biology

² Center of competence "Clean technologies for sustainable environment – water, waste, energy for circular economy"

³ Municipal enterprise for waste treatment - Sofia

The circular economy and the sustainable development impose a waste minimization and a continual use of resources. New technologies and innovative control systems have been developed and implemented in waste treatment plants.

This study aims to present the role of the fluorescence *in situ* hybridization as a tool in the management of different resource recovery technologies.

ЕВРОПЕЙСКИ СЪЮЗ вропейски структурни и инвестиционни фондове

Strengths	Weaknesses
Precise technique for control The fixed samples could be storage long time It detects the cultivable and the non-cultivable microorganisms Gives information about the quantity of the target microorganisms Gives information about the localization of the target microorganisms Gives the opportunity to be studied different groups of microorganisms The software is able to extract information better than human and could avoid the subjectivism in the images interpretation The dveing with DAPI, a step of the FISH protocol, gives additional information about the polyphosphate accumulation	A multi-step protocol that is a precondition for experimental mistakes The use of each different probe requires a different concentration of the hybridization and the washing buffer as well as different hybridization time It includes the use of expensive chemicals and equipment The study of some groups of microorganisms requires the implementation of different methods for cell wall permeability It requires qualified personnel It is necessary the presence of a specialized software for microbial ecology and FISH
Opportunities	Threats
An opportunity for observation of the hybridized samples on a scanning confocal laser microscope for removing of the out of focus fluorescence and studying the structure in deepness Different variations of the FISH methods exist	An unspecific bonding of the probe to the sample Background fluorescence Experimental mistakes Unvenetration of the probe in the cell due to different specifics of the microoroanisms cell walls

SWOT analysis of the FISH

Case study – Municipal enterprise for waste treatment – Sofia (MEWT)

Fig. 1 Biological treatment plant "Han Bogrov"

Fig. 2 Wastewater treatment plant "Sadinata"

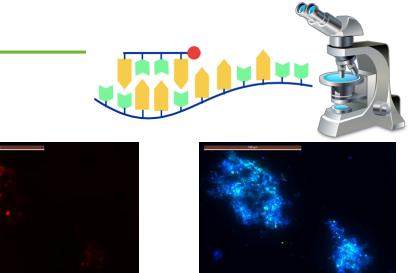
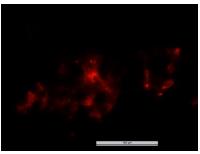
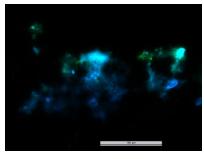
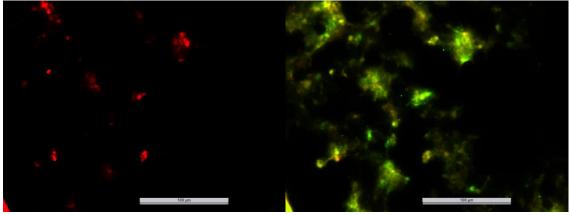
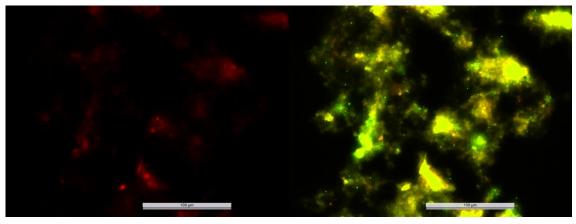



Fig. 3 FISH for Family Methanobacteriaceae and a DAPI dyeing in a digester of BTP "Han Bogrov"


Fig. 4 FISH for Pseudomonas sp. and a DAPI dyeing in a model experiment with activated sludge from WWTP "Sadinata"

FISH as a tool in the management of the biotechnologies for resource recovery in MEWT The FISH technique is based on hybridizing fluorescently labeled probes to ribosomal rRNA in permeabilized whole microbial cells. The method makes it possible within a relatively short time to retrieve information on phylogenetic identities of the cells directly in a sample, and since it also maintains the morphology of the cells it also supplies information on the spatial distribution as well as the number of identified microorganisms.

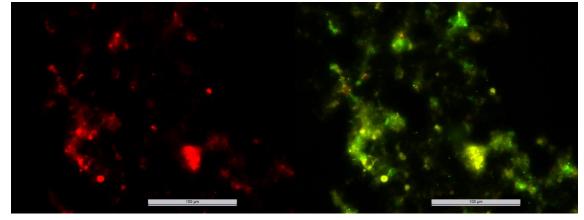

FISH for the target microorganismDAPI (4',6-diamidino-2-phenylindole) dyeing

Fig. 5 FISH for Alcaligenes sp. and EUB mix in a model experiment for landfill treatment with an activated sludge from WWTP "Sadinata"

Fig. 6 FISH for Paracoccus sp. and EUB mix in a model experiment for landfill treatment with an activated sludge from WWTP "Sadinata"

Fig. 7 FISH for cluster Azoarcus-Thauera. and EUB mix in a model experiment for landfill treatment with an activated sludge from WWTP "Sadinata"

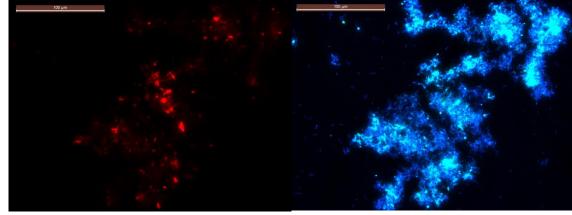


Fig. 8 FISH for domain Archaea. and DAPI dyeing in a digester of BTP "Han Bogrov"

The FISH has been proved its large potential as a method in the management of the resource recovery biotechnologies in MEWT giving information at the same time about the quantity of the target microorganisms, their localization, their relationships and thus it contributes to the understanding of their functioning.

FISH for the target microorganism

Acknowledgments

This study is supported by Project G05M2OP001-1.002-0019: "Clean technologies for sustainable environment – water, waste, energy for circular economy", financed by Operational program "Science and education for smart growth", co-financed by the European union through the European structures and investment funds; and by Project PT019-DG-56-22/22.05.19 "Gradual adaptation of activated sludge towards biodegradation of leachate from Sofia Waste Treatment Plant", financed by Municipal enterprise for waste treatment - Sofia