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a b s t r a c t

Decision making is an interdisciplinary field, which is explored with methods spanning from economic
experiments to brain scanning. Its dominant paradigms such as utility theory, prospect theory, and the
modern dual-process theories all resort to formal algebraic models or non-mathematical postulates, and
remain purely phenomenological. An approach introduced by Grossberg deployed differential equations
describing neural networks and bridged the gap between decision science and the psychology of
cognitive–emotional interactions. However, the limits within which neural models can explain data from
real people’s actions are virtually untested and remain unknown. Herewe show that amodel built around
a recurrent gated dipole can successfully forecast individual economic choices in a complex laboratory
experiment. Unlike classical statistical and econometric techniques or machine learning algorithms,
our method calibrates the equations for each individual separately, and carries out prediction person-
by-person. It predicted very well the behaviour of 15%–20% of the participants in the experiment –
half of them extremely well – and was overall useful for two thirds of all 211 subjects. The model
succeeded with people who were guided by gut feelings and failed with those who had sophisticated
strategies. One hypothesis is that this neural network is the biological substrate of the cognitive system
for primitive–intuitive thinking, and so we believe that we have a model of how people choose economic
options by a simple form of intuition. We anticipate our study to be useful for further studies of human
intuitive thinking as well as for analyses of economic systems populated by heterogeneous agents.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

General Charles de Gaulle of France once remarked that it
was difficult to govern a nation that had 246 different kinds of
cheese. Besides the obvious message about developed countries
being sophisticated, these words hint that economic choice is
not only important but also somewhat frustrating. Economists
have studied its more traditional aspects extensively and have
come to the understanding that the axioms used in economic
and political theory need revision (Sen, 1997). To better explain
and predict, they ought to account for the subtle rationality of
seemingly irrational decisions as in Amartya Sen’s famous example
of somebody taking a fruit from a basket with two fruits, but
refusing to do so when only one is left. Behavioural economics has
addressed the general issue by relaxing its axioms as well as by
equipping themwith more empirical knowledge about the human
being’s cognitive characteristics.
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In the meantime, psychology has gone a long way in under-
standing human decision processes. Kahneman and Tversky’s re-
search programmeenriched economic analysiswith findings about
the heuristic and emotional aspects of decision making (Kah-
neman, 2003, 2011; Tversky & Kahneman, 1971, 1981). In our
time, it has been established that a decision is reached in the
complex interaction of two cognitive systems. Different theories
have labelled them in different ways, but in general it is be-
lieved that there is one system for ‘‘intuitive’’, ‘‘experiential’’, or
‘‘impulsive’’ reasoning, also called ‘‘System I’’, and another for
‘‘logical’’, ‘‘rational’’, or ‘‘reflective’’ reasoning, also called ‘‘System
II’’ (Epstein, 1994, 2003; Kahneman & Frederick, 2002; Schnei-
der & Shiffrin, 1977; Stanovich & West, 2000; Strack & Deutsch,
2004). Recent reviews on the subject can be found in (Alós-
Ferrer & Strack, 2014; Brocas & Carrillo, 2014; Dayan, 2009),
while some of the recent modelling advances constitute (An-
dersen, Harrison, Lau, & Rutström, 2014; Fudenberg & Levine,
2006; Fudenberg, Levine, & Maniadis, 2014; Mukherjee, 2010). In
this view, the intuitive system is automatic, effortless, emotion-
driven, governed by habit, but difficult to change, while the log-
ical system is effortful, controlled and slow, but flexible and
able to adopt complex decision rules. Easy tasks are dealt with
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predominantly by the former, while complications prompt the
intervention of the latter. Buying some cheese would demand
mostly intuition – but being not entirely simple – would also
need some input from the logical system, while governing a nation
would ask for a lot more of it. Therefore, the cognitive load due to
every decision can be regarded as a point on a linear segment, with
the domains of the intuitive and logical systems located at its ends.
Of course this dichotomy is somewhat schematic, as studies of the
brain using modern scanning technologies have led to the under-
standing that the neural basis of emotion and cognition is highly
integrated and hardly decomposable (Pessoa, 2008). It has been
suggested (Evans & Stanovich, 2013) that it would be better not
to speak of ‘‘System I’’ and ‘‘System II’’, but of ‘‘Type I’’ and ‘‘Type
II’’ processes instead. Hence, it would be more correct to refer to
dual-process, rather than dual-system theories.

Somewhat apart from the above family of dual-process theories
is fuzzy-trace theory (Reyna & Brainerd, 1991, 2008), which posits
that intuition is ‘‘gist-based’’, i.e., resorting to vague memories
about the gist of information relevant in a decision situation. In
this view, intuition is more advanced than logical reasoning and
is more characteristic of experts rather than novices. This theory
has successfully explained a variety of empirically established
cognitive effects. This is perhaps the only dual-system theory that
regards intuition as a sophisticated form of mature reasoning.

It proved worthwhile to approach the issues of intuitive–
emotional vs. logical–rational choice in general, and with regard
to economics and business in particular, with the tools of math-
ematical neuroscience. Its ideas have for long translated into a
variety of models that look promising for understanding the com-
plexities of decision making. Perhaps the earliest theoretical for-
ays in this direction were made in the 1960–1970s by Stephen
Grossberg, withmost of his ideas summarized in Grossberg (1980).
Not necessarily driven by the needs of economic analysis, further
contributions have assisted in developing the field. Affective bal-
ance theory (Grossberg&Gutowski, 1987) extended and subsumed
Kahneman and Tversky’s prospect theory. A cognitive–emotional
model, CogEM, of reinforcement learning and motivated atten-
tion (Grossberg & Schmajuk, 1987) was used alongside ART neu-
ral networks in a theory of consumer motivation (Leven & Levine,
1996). CogEM was further developed and became the precursor of
the more general MOTIVATOR model (Dranias, Grossberg, & Bul-
lock, 2008), which explained how cognitive–emotional resonances
occur between brain areas that code subjective value and form
the basis of behavioural choices. Levine (2006) proposed a neural
model for the interaction of selfishness and empathy in economic
actions.

This line of research owes a lot to Grossberg’s theoretical
method, which consists of a number of iterative steps (Grossberg,
2006) when studying a particular cognitive phenomenon. These
involve: top-down analysis of behavioural data, discovery of un-
derlying principles, using them to develop mathematical models,
refining the latter by computer simulations, and eventually iden-
tifying the most adequate theoretical model. The building blocks
of all models are three nonlinear ordinary differential equations,
characterizing the fundamental neural interactions. Complex brain
processes aremodelled by recombining the three equations aswell
as by embedding simpler models into more sophisticated ones in
an evolutionary way. This method was adopted by other neurosci-
entists with interest in economic behaviour (notably, Levine), who
carried on using it successfully even in the era of fMRI data.

Indeed, in the 2000s, fMRI studies helped to clarify how ele-
ments from the classical psychological theories of heuristic judge-
ment and decision making, including prospect theory, could be
mapped on brain processes (Tom, Fox, Trepel, & Poldrack, 2007;
Trepel, Fox, & Poldrack, 2005). Complementary theoretical and ex-
perimental advancements led to the creation of new and more
sophisticated neural models. For example, Levine (2012) proposed
an elaborate nonlinear neural network accounting for the bias-
ing effects of emotion on probabilistic choice. It was composed of
ART modules and gated dipoles, and was based also on fuzzy-trace
theory, findings from fMRI studies, and traditional psychological
experiments. Levine (2009) developed a similarly complex neural
network that explained a variety of instances of emotionally in-
fluenced decision making. It was named DECIDER and combined a
neural representation of Maslow’s hierarchy of needs with a sys-
tem of ART modules, conceptually grounded in facts about brain
processes.

All of these modelling efforts aimed at producing theoretical
knowledge andwere generally not intended for direct applications.
Trying to use one of Grossberg’s or his disciples’ theories to guide a
novel laboratory experiment or R&D work usually leads to unfore-
seen obstacles that call for introducing simplifications and ad hoc
adaptations, trading off theoretical rigour and beauty for practical
viability. This is necessary for at least two reasons: first, the target
domainmay be quite different from the theory’s territory of origin,
both conceptually and methodologically, which makes the com-
munication between the two problematic. In that respect, a good
example is the attempt to employ instruments frommathematical
neuroscience to examine economic decision making. Secondly, in
applied science, an essential goal of the knowledge transfer is to
create models for prediction, often in real time. However, this is a
return to the imperfect empirical world, full of artefacts and con-
taminating factors, and almost always involving work with noisy
data both as calibration and validation sets.

In the present study, we investigate experimentally the abili-
ties of the Grossberg–Schmajuk CogEM model to explain and pre-
dict individual economic choice under laboratory conditions close
to real markets. The main element in CogEM is a neural network
called READ (REcurrent Associative gated Dipole). We suggest that
READ may be remotely related to the ‘‘intuitive’’ system, or ‘‘Type
I’’ process, as understood by the majority of the dual-process the-
ories, and indeed may be seen as its hypothetical neural substrate.
It must be stressed though, that the Grossberg–Schmajuk model is
conceptually independent from these theories and can in no way
be affected by any controversies around their empirical validation.
In fact, when future research clarifies the difference between prim-
itive intuition and gist-based expert intuition, READ could turn
out to be just as useful for modelling the former, or may be even
both.

Further, because the intuitive and the logical systems (or pro-
cesses) are locked together in a loop of intensive mutual com-
munication, if READ is to model that, it must be augmented with
additional elements, as in Levine’s (2009, 2012) approach. How-
ever, even as it stands now, this neural network can account for
the more primitive aspects of intuitive decision making. Precisely
that is what it is used for in the present study.

Previously, READ successfully predicted 87% of people’s binary
preferences in a simple experiment, thus surpassing some state-
of-the-art econometric tools (Mengov, Egbert, Pulov, & Georgiev,
2008). Here we develop a more complex economic experiment,
which involves profit maximization by choosing one among four
competing suppliers of a good. Our goal is to use READ as a vehi-
cle to connect real people’s market behaviour with some of the es-
tablished theoretical concepts of decision science. Along the way,
practical problems call for combining the gated dipole with econo-
metric variables, thus obtaining a hybrid neuralmodel of economic
choice. A separate model is calibrated for each individual and is
then tested with validation data to establish to what degree per-
sonal choices are predictable. In summary, what sets this study
apart from many others is that it utilizes a sophisticated neural
model to predict real people’s economic choices person-by-person
in a relatively complex economic game.
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2. Equations of the READ neural circuit

READ is a representative of Grossberg’s set of neuralmodels and
combines three basic elements: short-term memory (STM) identi-
cal with neuron activity; medium-term memory (MTM) compris-
ing synapses with neurotransmitter gates; and long-termmemory
(LTM) storing information patterns contained in a population of
neurons, active during certain time intervals. The former two are
sufficient to build a gated dipole—a model of opposite emotions,
arising due to external stimuli and rebalancing each other. LTM is
necessary tomemorize the link between emotions and stimuli that
caused them. All three elements are described by ordinary nonlin-
ear differential equations. Sometimes, an issue about terminology
has been raised on the grounds that it is not clear what the mem-
ory correlates for medium-term memory would be. The answer is
given by the MTM’s defining mathematical equation below, which
characterizes it as another type of long-term memory.

READ, as implemented in the present study with four market
players, consists of a system of 18 differential equations that can-
not be solved analytically. However, a number of simplifyingmodi-
fications are possible. Because short-termmemory is typically two
or three orders of magnitude faster than the other memories, in
computational models it can be assumed to reach equilibrium in-
stantaneously. In practical terms this means that when the entire
systemof equations is solved, all STMderivatives can be set to zero.
At the same time, recurrent solutions of the two slower types of
memories, if exist, can be used alongside the STM algebraic equa-
tions. Grossberg andGutowski (1987) andGrossberg and Schmajuk
(1987) have shown that if the neural activations and transmitters
obeyMTM and LTM equations such as (1) and (2) below, themath-
ematical product of instantaneous input signal and slower trans-
mitter release can adequately approximate the conveyed signal.

Here the following notation is used. Neurons and their activi-
ties, i.e., the STM are denoted by x1, . . . , x8, xA, . . . , xD; Quantities
y1 and y2 designate MTM transmitter gates; Long-term memories
are z7k, . . . , z8k, where k = A, B, C,D denote four mutually exclu-
sive categories, here associated with four economic alternatives.

The three types of equations are introduced as follows, and
a more elaborate discussion on them can be found in Grossberg
(2013).
STM: neuron activation:

dxi
dt

= −a1xi + (a2 − xi)J+i − (xi + a3)J−i . (1)

Eq. (1) is a variant of the classical Hodgkin–Huxley equation and
describes the activity xi of the ith neuron in the network. Term J+i
is the sum of all incoming signals from other neurons activatingxi.
Similarly, J−i sums all inhibitory signals from other neurons.
Constants a1, a2, a3 are real andpositive. All neuron equations used
in this article’s model can be regarded as special cases of Eq. (1).
MTM: neurotransmitter gate:

dyi
dt

= bi(1 − yi) − cixiyi. (2)

Eq. (2) describes neurotransmitter depletion and recovery in a neu-
ron xi, sending out a signal in response to received signals as per
Eq. (1). Transmitter quantity yi is a function of the strength of the
emitted signal. In the absence of external activation, quantity yi
accumulates at fixed rate bi until reaching its maximum of 1. Con-
stants bi, ci are real and positive, and due to biological plausibil-
ity, in computer simulationsmay sometimes be considered slightly
different for each gate i = 1, 2.
LTM: gated learning:

dzik
dt

= xk(−h1zik + h2[xj]+). (3)
Eq. (3) is a variant of the gated learning law,which differs from that
in Grossberg (2013), but is identical with the one used in Grossberg
and Schmajuk (1987). It shows how a single LTM component zik be-
tween neurons xi and xk changes under the influence of a third neu-
ron xj. Operator [.]+ denotes rectification: [ξ ]

+
= max{ξ, 0}, and

h1, h2 are real and positive constants. (In simulations, sometimes
h2 = 1.)

Assuming t is discrete time with sufficiently high sampling rate
(which is achieved in the experiment below, see Section 4), the
existing analytical solution of Eq. (2) can be rewritten straightfor-
wardly in this recurrent form:

yi(t) = yi(t − 1) exp (−cixi(t) − bi)

+
bi

bi + cixi(t)
(1 − exp(−cixi(t) − bi)) , (4)

where i = 1, 2.
Similarly, the recurrent solution to Eq. (3) is

zik(t) = zik(t − 1) exp (−h1xk(t))

+
h2

h1
ol(t) (1 − exp (−h1xk(t))) . (5)

Here, quantity ol(t) with l = 1, 2 is the READ-predicted consumer
emotion of satisfaction o1 = [x5]+ or disappointment o2 = [x6]+.
Note that in Eqs. (4) and (5), each of xi, ol, and xk is taken atmoment
t rather than t − 1 because it is assumed to react instantaneously.

3. Economic experiment

The main objective of the experiment was to establish to what
extent people act in the affective–intuitive way, accounted for by
the READ neural model, when they are put in a moderately com-
plex economic situation. Briefly, the content of this lab study is
as follows. In a number of rounds, subjects had to choose repeat-
edly one among four suppliers of a fictitious commodity called om-
nium bonum (a good for everyone, in Latin) seeking to obtain as
much as possible of it. At the end of the game the accumulated
units of the commodity were exchanged for real money. Typically,
one could earn e 4–8 in about 20 min, the duration of the entire
procedure. The participants were rewarded for their ability to ori-
ent themselves in an environment with insufficient information
by subjectively developing in their minds adequate profiles of the
suppliers and using them as choice factor. The instruction was
written so as to avoid any role-assigning in any concrete economic
or business circumstances, thus escaping potential confound ef-
fects (Zizzo, 2013).

The four suppliers provided omnium bonum of equal quality,
but were not always reliable in delivering it—they could offer
certain amount, but often deliver less, or even more. Their profiles
are summarized in Fig. 1, which shows how the supplier offering
the most on average was also the least dependable. In essence,
this was an implementation of the economic idea that higher
profit goes hand in hand with more risk-taking. The subjects were
unaware of this feature and could only discover it by trial and error.

The exact figures of the design were chosen such as to meet the
following requirements:

1. There had to be real competition among the suppliers so that
the participants could be facing real choices. Only that could
make prediction by any method meaningful.

2. Each supplier had to remain competitive throughout the game
lest the number of options diminished. Conversely, no supplier
ought to come close to monopolizing the market.

3. Each supplier had to be in a position to form a distinct image
in the eyes of the participant. One way of achieving this was by
introducing the two-dimensional design shown in Fig. 1.
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Fig. 1. Four suppliers offered and delivered different units of omnium bonum,
whereby the riskiest (the one with the largest standard deviation) was most
rewarding.

4. The game had to be long enough for the suppliers to become
recognizable, yet it could not be too long lest the participants
got used to it to the point of routine or boredom, which would
be two additional confounding effects.

There might be many ways to implement the above demands
andhere iswhatwedid. The number of roundswas fixed at twenty.
They were divided in subsequences of five rounds each, with every
supplier acting in each subsequence as follows:

• On one occasion they delivered omnium bonum exactly as
offered;

• On two occasions more was delivered than offered;
• On two occasions less was delivered than offered.
The order of these events was unpredictable for the participant,
who did not even know that such an arrangement existed. No
transaction costs were involved in abandoning one supplier for
another. The four suppliers were put on the computer screen as
shown in Fig. 2.

In each five-round batch, the total amount offered equalled
the amount delivered, should a supplier be chosen repeatedly.
Of course no subject was obliged to do so, and was never told
about this design feature. Further, in any given round at most two
suppliers behaved similarly, e.g. by delivering exactly as having
offered. In half of the experimental treatments a continuous eco-
nomic growth was simulated, implemented by raising the offered
and delivered quantities by 10 units after each five rounds (i.e. af-
ter rounds ##5, 10, and 15). Thus the subjects’ motivation and in-
volvement were maintained until the end of the game. The ratio
between smallest and biggest offer in the first five rounds was 1.5
and diminished to 1.33 in the last five. This was needed to keep the
absolute difference between them constant at 30 units of omnium
bonum in all rounds. Such an arrangement ensured that the sup-
plier with the most modest offer was able sometimes to deliver
more than what was offered by the frontrunner. For example, in
round #9, Supplier A offered 70 units andwould deliver 102 if cho-
sen, whichwould bemore than the 100 units offered by Supplier C.

All these delicate balances created genuine competition as well
as enough attractiveness for each supplier with no one becoming
a monopolist. In a pre-test condition with 34 subjects (producing
680 decisions) Supplier Awas chosen in about 14% of the cases and
Supplier C in approximately 40%.

Half of the treatments simulated economic growth followed by
economic crisis. This was achieved by reducing the quantities of
offered and delivered omnium bonum in the last five rounds by
all suppliers. Again, all figures were chosen so as to maintain the
above balances.

An essential element of the experimentwasmeasuring the con-
sumer satisfaction, self-assessed and reported immediately after
each omnium bonum delivery. On a separate screen not shown
Fig. 2. Each round began with an experimental screen showing four offers. In the example, sometime through the game the participant examined them and chose Supplier
C with a mouse click. Immediately, the actual quantity of omnium bonum was ‘delivered’ and added to the total.
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here the subjects had to express their feelings about how theywere
treated in the current round in this Likert-type scale: ‘‘Extremely
disappointed (−4)—Very disappointed (−3)—Disappointed (−2)—
More disappointed than satisfied (−1)—As much satisfied as
disappointed (0)—More satisfied than disappointed (+1)—. . .—
Extremely satisfied (+4)’’. The adverb–adjective compounds were
chosen such as to make the measurement scale interval by ensur-
ing that the segments between neighbouring points were equidis-
tant in line with Cliff’s multiplicative rule (Cliff, 1959). Finally, the
timing of each mouse-click was recorded alongside the action as-
sociated with it, and was later used in calibrating the system of
differential equations.

Immediately after the game, the software application deman-
ded answers to a sequence of open and closed questions about the
subject’s strategy, tactical reasoning, and other issues, potentially
relevant for the individual’s decision-making style. Obviously
these components were unrelated to the CogEM model, but
were included to investigate what factors could be linked with a
potential predictive success by a READ-based neuralmodel. A large
part of them are of qualitative nature.

In particular, the debriefing session started with the open
question, ‘‘Please describe how you chose the suppliers of omnium
bonum’’. The next questionwas, ‘‘Did youhave a strategy? Yes/No’’.
This was followed by: ‘‘If you did have a strategy, please explain
when and how it was formed’’. The next question was, ‘‘Did you
use different strategies throughout the game? Yes/No’’. That line
of questioning was continued by, ‘‘If you did change your strategy
during the game, what made you do so?’’ The last question of
the series was, ‘‘If we gave you the opportunity to play again,
would you adopt a strategy different from the one you just used?’’
Apparently, therewas a lot of redundancy in these questions, but it
was introduced to ensure that all potentially relevant information
was captured. In addition, our pre-test experience taught us that
some subjects needed more time and questioning to give the best
explanations they could formulate.

Another question asked was if the subject was loyal to a sup-
plier. Finally, the participant was asked to assess the degree to
which any of a number of factors influenced their decisions. Some
of those factors were: The immediately preceding choice of a sup-
plier; the decisions taken in the last couple of rounds; the differ-
ence between initially offered and eventually supplied omnium
bonum.

4. A hybrid neural model of economic decision making

Herewe explain howREADwas connectedwith the experimen-
tal data. Our study involved psychological but no neurobiological
data, yet they had to be made tractable by the neural model. This
challenge called for some assumptions that might seem a bit too
speculative, however, results discussed in Section 5 show that the
introduced simplificationswere justified—they did not hamper the
adequate prediction of subjects’ behaviour. In addition, someof our
postulates touch upon the issue of whether the brain computes
‘economic’ value or utility, and if yes—is it absolute or relative, or is
the brain choosing by performing just a mere comparison among
alternatives without computation. The question has not received a
definitive answer yet (Vlaev, Chater, Stewart, & Brown, 2011), but
our technical solutions do not seem to contradict any of the plau-
sible hypotheses.

The data were fed into READ via two channels: information
about omnium bonum got in through neurons x1 and x2, while
the identity of the currently active supplier was submitted through
neurons xA, . . . , xD as shown in Fig. 3.
Neurons x1 and x2 are described by the following equations,
which show how the supplier offers are incorporated in the
model.

dx1
dt

= −x1 + Jbase + δJ∆+ + δ1J (k)eye + Mx7 (6)

dx2
dt

= −x2 + Jbase + δJ∆− + Mx8. (7)

Term Jbase is the baseline signal, also known as tonic signal in
the gated dipole. Term J (k)eye with index k = A, B, C,D accounts
for the omnium bonum commodity qk, offered by the four sup-
pliers. By submitting J (k)eye to the on-channel (for positive events
and emotions) we implemented the idea that under the game cir-
cumstances, looking at offers of omnium bonum was inherently
pleasant.

Signal J (k)eye is greater than zero only while the subject eyeballs
the offers on the screen and deliberates which one to choose.
All quantities of the commodity are scaled to become J (k)eye =

qk/10max(qk) and not exceed 10% of the maximum STM value of
1. The two signals are related:

Jbase = min

J (k)eye


k
, (8)

with the logic that Jbase is neural activation caused by the weakest
offer. Similarly, terms J∆+ and J∆− reflect a positive difference
(more omnium bonum delivered than promised) and a negative
difference (less delivered than promised), and are also scaled down
to ∆qk/10max(∆qk). Eqs. (6)–(7) contain positive constants δ, δ1
which due to previous experience are fixed in advance at 0.4 and
0.2 respectively, and M , which is determined together with some
other constants in a simulated annealing procedure.

Eqs. (6)–(8) embody a number of assumptions that had to be
introduced in order to link neural and economic variables. First,
Eq. (8) may not be the only way to establish the baseline signal
but it rests upon sufficient common sense: Eyeballing the four
offers, a participant is likely to view the weakest one as a reference
point for assessing the potential benefit of the remaining three. An
alternative approach would have used some form of averaging of
the four, but that could add little and would be an unnecessary
complication.

Next, the model implementation of eyeballing signal J (k)eye in-
volved perhaps another amount of scientific speculation. In the
absence of brain scanner or eye-tracking facility, and having only
records of economic decisions, self-assessed satisfactions, and
their timing, that was but necessary. One assumption was that
in each eyeballing-and-deliberation period all four options were
sufficiently well understood. In reality, it may have taken several
glances at each of them, andmaybemore attentionwas paid to one
than to another, especially after some initial experience. We pos-
tulated, however, that in each round the subject divided her/his
attention (i.e. time) among the four suppliers equally, and cast ex-
actly three glances at each of them at random. Thus, the eyeballing
periodwas split into 12 equal parts, duringwhich J (k)eye propelled the
offers inwards as per Eq. (6). This happened in synchrony with sig-
nals xA, . . . , xD, switched on and off accordingly. Of course it can-
not be claimed that such was the real sequence of events, but only
that this was a reasonable way to model how the options were ad-
equately grasped.

The entire cognitive mechanism is described by Eqs. (9)–(24)
below and can be summarized with the help of Fig. 3 as follows.
A signal xk (with k = A, B, C,D) indicates which of the four sup-
pliers is currently in the focus of attention. If, for example, this is
Supplier A, then xA = 1, and xk = 0 for all the other ks. The par-
ticipant reacts to the supplier’s performance with various degrees
of satisfaction [x5]+ or disappointment [x6]+. When the relevant
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Fig. 3. Dynamics of the neural circuit. Bottom left and middle plots: Signals x1 and x2 are the responses to the incoming stream of offers, deliveries, and to the participant’s
eyeballing before choosing. In the example, the person kept choosing Supplier C in the first three rounds and received extra omnium bonum in the third, which is reflected
in the two ‘‘first 70 seconds’’ plots (third column, below the neural circuit). There, x1 produced ‘‘ripples’’ at the onset of each round and then jumped around the 4500th
centisecond (45th s) due to the surplus delivered. Around the 2000th centisecond, the corresponding [x5]+ signal shows that eyeballing four positive options can cause
satisfaction, almost as intense as that of the actual lavish treatment. Upper-left plots: The memory for positive emotions z7C initially rose negligibly due to eyeballing, and
then increased around the 50th second after the generous delivery in the third round. In contrast, the memory for negative emotion z8C rose steeply in the first round
and remained high in the next due to disappointingly unfulfilled promises. The supplier’s dynamic reputation was defined by the logistic ratio z7C/z8C reflecting the two
memories’ joint action.
gating signal xk is switched on and for instance the customer gets
disappointed (positive [x6]+, zero [x5]+), neuron x8 is active and
the corresponding memory component z8k, described by its con-
crete equation among Eqs. (21)–(24), undergoes learning due to
signals xA and x6. If the emotionwere positive, z7k would have been
updated. Coming back to the example of Supplier A disappointing
the subject, Eq. (21) below shows how z8A changes to account for
the situation.
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Table 1
Response times recorded as intervals between mouse clicks. Data are over 131 participants.

Round in the economic game
#1 #2 #3 . . . #19 #20

T1 , seconds (Time for eyeballing and choice) Max 157.62 104.25 83.05 31.96 50.62
Median 29.92 13.60 10.03 . . . 4.29 4.59
Min 7.43 2.12 1.87 0.76 0.76

T2 , seconds (Time for comprehending the delivery) Max 72.06 31.42 16.01 32.14 9.19
Median 7.38 4.29 3.65 . . . 1.34 1.28
Min 1.34 0.69 0.62 0.59 0.56

T3 , seconds (Time for assessing own satisfaction) Max 104.69 33.15 22.98 21.18 11.28
Median 12.42 4.74 3.71 . . . 1.93 1.65
Min 3.42 1.25 1.01 0.70 0.75

T4 , seconds (Time for starting next round) Max 12.36 10.90 7.16 3.51 3.18
Median 1.70 1.25 1.23 . . . 0.80 0.76
Min 0.70 0.47 0.42 0.30 0.30
Beyond x1 and x2, the other equations of the READ model,
adapted for the present experiment, are as follows:

dy1
dt

= b1(1 − y1) − c1x1y1 (9)

dy2
dt

= b2(1 − y2) − c2x2y2 (10)

dx3
dt

= −x3 + x1y1 (11)

dx4
dt

= −x4 + x2y2 (12)

dx5
dt

= −x5 + (1 − x5)x3 − (x5 + 1)x4 (13)

dx6
dt

= −x6 + (1 − x6)x4 − (x6 + 1)x3 (14)

dx7
dt

= −x7 + G[x5]+ + L(xA.z7A + xB.z7B + xC .z7C + xD.z7D) (15)

dx8
dt

= −x8 + G[x6]+ + L(xA.z8A + xB.z8B + xC .z8C + xD.z8D) (16)

dz7A
dt

= xA(−h1z7A + [x5]+) (17)

dz7B
dt

= xB(−h1z7B + [x5]+) (18)

dz7C
dt

= xC (−h1z7C + [x5]+) (19)

dz7D
dt

= xD(−h1z7D + [x5]+) (20)

dz8A
dt

= xA(−h1z8A + [x6]+) (21)

dz8B
dt

= xB(−h1z8B + [x6]+) (22)

dz8C
dt

= xC (−h1z8C + [x6]+) (23)

dz8D
dt

= xD(−h1z8D + [x6]+). (24)

Eqs. (9)–(10) represent neurotransmitters and are identical with
Eq. (2), while Eqs. (11)–(16) are neural activations that can be
viewed as special cases of Eq. (1).

There exist a number of approaches to integrate the system
of equations (6)–(24). Typically (Grossberg & Raizada, 2000;
Grossberg & Seitz, 2003; Grossberg &Williamson, 2001) the fastest
cell reactions are computed at steady state, other activity equations
are solvedwith the Runge–Kutta–Fehlberg 4–5method, andMTMs
and LTMs are solved at a reduced time scalewith Euler’smethod. In
a model similar to the present one, Mengov et al. (2008) reported
implementing a version of the Runge–Kutta–Fehlberg 4–5method
with improved precision (Gammel, 2004) for computing the entire
system of differential equations.

Here we adopted a different approach by introducing discrete
time and then computing all neuron activations at steady state
while solving all MTM and LTMwith Eqs. (4) and (5). To do so ade-
quately, onemust use sufficiently high ‘‘sampling’’ rate, in the spirit
if not the letter of the sampling theorem. In practical terms this
meant considering the following points. On one hand, no neural
signals but only moments of mouse clicks were recorded, which
were four in number for each round of the game. This means
that each participant had to eyeball each offer, choose one by a
mouse click, then comprehend the delivery, do another mouse
click, and then assess their own satisfaction or disappointment,
which is done by a mouse click on the Likert-type scale measuring
the emotional valence and intensity. A final mouse click is needed
to start the next round. Table 1 gives an overview on the response
times in a sample of 131 subjects. Apparently, the interval medi-
ans diminished systematically as the subjects got used to the game
settings.

The adopted twelve-look scheme implied that T1, the time for
examining offers and taking a decision, had to be divided by 12.
This was a plausible assumption with regard to the overwhelming
majority of response times, but needed a closer look in the
boundary case of the quickest responses. In particular, the shortest
recorded T1 was 530 ms, which happened twice and was achieved
by one and the same subject towards the end of the game. This
number divided by 12 gives approximately 44 ms and puts on
display the following limitation of the scheme validity. It is hard
to imagine that in half a second the subject glanced over each
of four options three times—such a speed is reminiscent of Saul
Sternberg’s discovery (Sternberg, 1966) of an internal automatic
scanning process for image recognition operating at a rate of one
sample per 33–40ms. However, this speed could not leave enough
time for the slower and more complex cognitive process involving
economic reasoning. Most probably, on that occasion the subject
glanced only once at each offer before choosing. A more detailed
data examination revealed that early in the game she/he had tried
only two suppliers and had remained loyal to Supplier C ever since.
Therefore, a predisposition towards one option had a powerful
effect on the speed of the two fastest decisions.

Although the plausibility of a twelve-look schememay be ques-
tioned in that specific case, it still remains unproblematic from a
modelling point of view. Opening the gate for a fixed time inter-
val in any of Eqs. (17)–(24), and in particular Eqs. (19) and (23) for
Supplier C, would have resulted in the same LTM value regardless
of whether that interval was divided into three parts (correspond-
ing to three separate looks at the supplier), or was uninterrupted.
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A time step of 10 ms (1 centisecond) was used for computing
the entire system of equations. It apparently provided high enough
sampling rate even for 1/12th of the shortest recorded intervals.

An illustration of the numerical solution for a subject can be
seen in Fig. 3, where the bottom right plot shows x1 in a typical
situation at the opening rounds of the game. During these first
70 s the participant played four rounds, beginning with screen
eyeballing and responding accordingly to the four levels of arousal,
three times to each in random order. Initially, Supplier C was
chosen and apparently misbehaved because x1 returned to Jbase
instead of jumping to Jbase+δJ∆+. A positive J∆− appeared in Eq. (7)
for x2 (not shown in a 70 s plot). Much the same happened in the
second round, approximately between the 20th and 30th second,
but this time eyeballing took a bit longer. Only in the third round x1
jumped up due to a surplus delivery of omnium bonum, reflected
by J∆+ in Eq. (6).

4.1. Three-factor decision rule

Here we show how the READ neural model was employed to
predict choices of suppliers by the participant. Clearly, the current
offers and the past experiences in the game were the two major
drivers of each decision. They had to be suitably operationalized
and combined in a unified decision rule. We developed a three-
factor rule consisting of the following elements: F1: momentary
reaction to the four omnium bonum offers; F2: past experiences
with the suppliers accumulated in the customer’s long-termmem-
ory; F3: emotion, remembered after the last deal with a particular
supplier regardless of how far in the past it happened. Factors F1
and F2 were directly based on READ components and interactions,
while F3 was the result of an independent econometric study. Thus,
the decision rule took this form:

D = d1F1 + d2F2 + d3F3 (25)
K = max (D) . (26)

In Eq. (25), Fi =


F (A)
i , F (B)

i , F (C)
i , F (D)

i

T
is a vector of real numbers

between 0 and 1 computed as discussed below, and i = 1, 2, 3. The
three factors were weighted by positive constants d1, d2, d3.

Wepostulated thatK , the predicted choice of supplier,would be
the one with the maximum value among the four scalars in vector
D. The three constants were constrained as follows: d1 ∈ (0, 1);
d2 ∈ (0, 1 − d1); and d3 = 1 − d1 − d2. These limitations ensured
that each weight could vary within the open interval (0, 1) at the
expense of the other two. Now let us discuss the three factors in
more detail.

Factor #1: STM and dynamic neural balances in response to
economic options

Following Mengov et al. (2008), we model the first factor – par-
ticipant reaction to the current offers – with a function of neuron
activations x7 and x8, as these integrate the twomost important in-
fluences: (1) emotional responses [x5]+ and [x6]+ to the omnium
bonum quantities, and (2) the input from emotional memories z7k
and z8k, reflecting past experiences. Eqs. (15)–(16) illustrate this
position clearly. However, Mengov et al. (2008) dealt with only
two suppliers and couldmodel the selection process as a choice be-
tween the status quo and a change.With four options in the present
study this is not possible. In addition, the decision procedure now
had to accommodate the eyeballing phase with three glances at
each offer. This was achieved by defining the following quantities:

xl7 =

x7


t lA


, x7


t lB


, x7


t lC


, x7


t lD

T
(27)

xl8 =

x8


t lA


, x8


t lB


, x8


t lC


, x8


t lD

T
, (28)
l = 1, . . . , n, where l is index for the values of x7 and x8 during the
last of three consecutive exposures of the dipole to each offer in each
round. Here n = 20 is the number of rounds. In other words, xl7, x

l
8

are vectors containing x7 and x8 activations in the last four of the
12 periods of eyeballing in the lth round. It is assumed that around
the last 1/3rd of interval T1 the subject already has an established
opinion about the options.

Therewas, however, an additional complication to be taken into
account. In simulations, it happened that due to exhausted neuro-
transmitter in the on-channel, the feedback loops x7 → x1 and
x8 → x2 sometimes propelled the offers to the off-channel, where
it was x6 (and not x5) that got activated; the off-channel reacted
to the best option (the largest amount of omnium bonum on of-
fer) with the relatively smallest signal among the four, in effect
treating it as the least unacceptable; similarly, the worst option
provoked the biggest response, making it the most unacceptable.
Apparently, this phenomenon is not only psychologically plausi-
ble but is also easy to understand technically, when one considers
that x6 depends on (−x3) as per Eq. (14), and in equilibrium x3 is
proportional to x1 as seen from Eq. (11).

Therefore, it was necessary to construct a criterion that would
be channel-invariant.We solved the problem by implementing the
following simple algebraic operations. First, xl8 was inverted so that
in the position of its largest element, in the new vector x̂l8 was
placed the new smallest element, and vice versa:

x̂l8 = µl
8 − xl8 (29)

In Eq. (29), µl
8 is a vector of four real numbers, all equal to the

largest element, max

xl8


, of the activity vector xl8. The obtained

x̂l8 represents the ‘off-channel point of view’ on the options and
is compatible with xl7 in the sense that both have their largest,
second-largest, etc. elements in the same positions. Eq. (30) shows
how both were summed and divided by two to obtain their aver-
age, x̄l7,8, which is one form of the needed channel-invariant rep-
resentation:

x̄l7,8 =

xl7 + x̂l8


/2. (30)

Finally, to place all F1 elements between 0 and 1, vector x̄l7,8 was
normed by dividing its elements by the largest among them:

F1 = x̄l7,8/max

x̄l7,8


. (31)

Operations (29)–(31) were certainly not the only way to neutral-
ize the channel-alternating effect. Perhaps a more ‘neuronal’ and
sophisticated approach could have been implemented, in contrast
to the present algebraic one. Yet, what was done was simple and
robust—two qualities needed for the computationally intensive
stochastic optimization, to be described in Section 4.2.
Factor #2: Emotional long-termmemories and economic reputa-
tions

The decision function (25) required that all past experiences
with a supplier – positive and negative – be united in a single quan-
tity to represent its market reputation. One way of characterizing
a supplier k’s reputation was this:

F2 = 1/

1 + exp


−zl7k/z

l
8k


, (32)

with k = A, B, C,D. Eq. (32) ensures that the widely varying ratio
zl7k/z

l
8k of positive and negative aspects of the reputation stays con-

strained between 0 and 1 as can be seen in the simulationwith real
data in Fig. 3, top left plot. Alternative approaches involved other
functions of the LTMratios, their logarithmic transformations, their
scaled logistic transformations, LTM differences as arguments of
logistic or other nonlinear functions, etc. Eventually, Eq. (32) was
selected as the best compromise between simplicity and adequacy
for the task.
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Factor #3: Remembered particular consumer satisfaction
The two factors discussed already dealt with (i) current emo-

tion and (ii) reputation, or emotional memory, the latter being a
kind of time-average over all interactions with a supplier. How-
ever, neither (i) nor (ii) covered a particular type of memory re-
garding customer satisfaction, which was about what the subject
remembered from their last interaction with a supplier, no matter
how far in the previous rounds this had happened. An econometric
study revealed the importance of this variable and here we had it
as a decision factor in its own right. It is, therefore:

F3 = Ψ t−1
last (33)

Here, Ψ is a vector of a participant’s self-assessed emotions of dis-
appointment or satisfaction. The superscript in the rhs of Eq. (33)
indicates that F3 keeps track of every emotion from the first to the
penultimate round, t − 1, which was experienced after a supplier
delivery. For example, if the game is now in its round #13, Sup-
plier Amay have been chosen for the last time in the second round
when it made the participant Very disappointed (−3), Supplier B
in the 12th whereby the participant felt More satisfied than disap-
pointed (+1), Supplier C in the 7th when the participant was Dis-
appointed (−1), and Supplier D in the 11th when the participant
felt Extremely disappointed (−4). It is the values of the disappoint-
ment–satisfaction scale in these rounds that comprise the current
content of Ψ t−1

last . Again, all values were rescaled from [−4, 4] to
[0, 1].

Apparently the three factors are related, but each carries an as-
pect of information that is distinct from the other two. Using them
together as independent variables in regression equations would
of course be problematic; however, the hybrid neural model poses
no such restriction. In fact, it is well known that simple heuristic
rules perform no worse than regression techniques precisely be-
cause they do not demand lack of correlation among the input fac-
tors (Gigerenzer, Todd, & The ABC Research Group, 1999).

4.2. Calibration of the model

Because this study sought to identify the degree in which
people acted intuitively as accounted for by the hybrid neural
model, it was person-by-person behaviour that had to be analysed.
Be the model successful in predicting a participant’s decisions,
then that person must have chosen suppliers in the simplest
affective–intuitive way without any strategizing—otherwise the
model would have failed. Testing this proposition practically
meant having the equations calibrated with approximately half of
a participant’s data, and then assessing model performance with
the other half. Naturally, the records used for calibration had to be
chronologically first, while those for testing had to cover the later
rounds, a fact that brought in some additional complications.

As the game unfolded, participants could not only form opin-
ions about suppliers and generally adjust themselves to the cir-
cumstances, but could also begin to act routinely and even become
bored. To counter that, as already explained, the experimental de-
sign offered constantly increasing quantities of omnium bonum
in half of the treatments, and a scheme with growth followed by
downturn in the other half. However, both these schemes implied
an evolving course of events introducing differences between the
calibration and test samples. Thus theREAD-basedmodelwas chal-
lenged to the limit of its capabilities and naturally, its predictions
of unknown data could not be as good as with a stationary process.

For each participant a model was calibrated with simulated
annealing—a method for stochastic optimization. The objective
was to make the model emulate the real decisions taken and
customer satisfactions declared. Optimal values were sought for
constants M, b1, b2, c1, c2,G, L, h1 in the READ Eqs. (6)–(24) and
constants d1, d2, d3 in the decision rule defined by Eq. (25). Because
our setting contained twenty rounds, we took the first twelve for
calibration and left the remaining eight for testing.

Each time a solution to the hybrid model equations was com-
puted, the READ constants were generated as uniformly dis-
tributed random numbers fromwithin certain intervals. Therefore
all the solutions were independent realizations of the simulated
annealing optimization process. The boundaries of most of these
intervals were initially determined as roughly ±50% around the
values, used in the numerical simulations in (Grossberg & Schma-
juk, 1987). With experience, more promising intervals were iden-
tified. After each 20 random solutions, the intervals were shrunk
by η = 0.0001 which ensured that, e.g., after 10,000 iterations
the intervals became about 36.79% of their initial size. (Indeed,
(1 − 0.0001)10,000 = 0.3679.) Whenever a new best solution in
terms of the objective function (defined below) was found, it re-
placed the previous solution as determinant of the constants’ inter-
vals. For example, if ĉ1 was the new value of c1 for which the new
best solutionwas achieved, the new lower and upper bounds of the
interval for that constant would become cL(new)

1 = η(ĉ1 − cL(old)1 ),
and cU(new)

1 = η(cU(old)
1 − ĉ1) respectively. This rule has the effect

of reducing the interval in proportion of the proximity of the new
best value to the border—the greater the proximity, the smaller the
reduction. As discussed in Section 4.1., constants d1, d2, d3 were
chosen by a slightly different scheme, whereby the new intervals
for d1 were obtained in theway described on the example of c1, but
the intervals for d2 had lower and upper bounds zero and (1 − d1)
respectively, while d3 was always d3 = 1 − d1 − d2.

In a previous study, Mengov et al. (2008) implemented an ob-
jective function, optimized with respect to both emotional self-
assessments and supplier choices, each carrying the same weight.
Here we adopted a different approach because the present exper-
iment involved more nonstationarity, which had to be addressed
explicitly. This was achieved by defining an objective function that
favoured the calibration rounds immediately preceding the test
sample records. In particular, simulated annealing maximized this
objective function:

J =

m1
i=1

Ii + γ

m2
i=1

Im1+i + R (Ψ(tDS), o(tDS)) . (34)

In Eq. (34), Ii is an indicator equal to 1 if in round i the model chose
a supplier in the sense of Eq. (26) exactly as the participant, and 0
otherwise. The first summation is over the initialm1 rounds, while
the second is over the next m2 rounds in the calibration sample.
After some experimenting it was established that a good division
comprised m1 = 8 and m2 = 4, which left for test sample the last
eight from the entire sequence of twenty.

The nonstationarity of the process was mitigated by enhancing
the impact on J of the final m2 calibration rounds, whose correct
predictions were weighted more (γ > 1) than the initial m1. Co-
efficient γ was chosen heuristically but not arbitrarily—it had to
ensure a good balance between the two calibration subsets. Be-
cause of the crucial position of the second subset, it was decided
that a combination of its all four correct choices contributing to
J , together with totally incorrect choices in the first eight rounds
would be valuedmore than another combination of all correct first
eight plus only half correct among the next four. This amounted
to 0 + 4γ > 8 + 2γ , which meant that the smallest prime num-
ber to satisfy the inequality was γ = 5. This design implied that
combinations of the same number of correct choices were treated
differently depending on their configuration in the two calibration
subsets and, say, four successes might occasionally be preferred to
ten, as in the above example.

Which of two solutions with identical number of guesses
in the two calibration subsets should be preferred? That an-
swer is given by the third term in Eq. (34): the correlation
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Fig. 4. Empirical error curves for the calibration sample (solid line) and the test sample (dotted line). On the y-axis is shown the prediction error in a zero-to-one scale with
‘zero’ meaning correctly guessed 12 calibration choices, and ‘one’—not a single success. The x-axis gives the number of times objective function J achieved a newmaximum
during calibration with simulated annealing. At all such points, the obtainedmodel parameter values were used to compute also the test sample error, whereby ‘zero’ stands
for eight guesses. Although the panels show the new J maxima at equal distances, in practice every two neighbouring points were separated by several to several thousand
computations of J . The two top plots show how excessive calibration may degrade model performance with test data. The bottom left plot shows a participant predicted
with error of about 10%. More precisely, the correct guesses from 6th to 13th improvement of J were 91.67% for the calibration sample, and were 87.50% in the 7th, 8th,
9th, 10th, and 13th improvement for the test sample. The bottom right plot presents another person whose test sample choices were estimated correctly only 25% (error of
0.75), which is equivalent to a random guess.
R (Ψ(tDS), o(tDS)) between all self-assessed customer emotions

Ψ(tDS) =


Ψ (t(1)DS ), . . . , Ψ (t(m)

DS )
T

and their model-predicted

counterparts o(tDS) =


ol(t

(1)
DS ), . . . , ol(t

(m)
DS )

T
at the actual self-

reported moments tDS . Subscript DS indicates that tDS are the mo-
ments when the subject reported her/his disappointment (D) or
satisfaction (S) with a mouse click. Here m = m1 + m2 = 12. As
we explained in Section 2, quantities ol(t) are the READ-predicted
satisfaction o1 = [x5]+ and disappointment o2 = [x6]+. In o(tDS)
all o2 values are takenwith negative signs. Now, if two different so-
lutions during the simulated annealing procedure yield two iden-
tical choice predictions in the 12 calibration rounds, correlation R
tips the balance in favour of the one that better accounts for the
participant’s emotions. Thus, the objective function of Eq. (34) se-
lects solutions fitting the calibration datawith increasing precision
both with regard to choices and emotions. Using the latter for tie-
breaking also prevents falling in traps of local error minima during
the simulated annealing stochastic optimization.

5. Results and discussion

5.1. Solutions of the model

In this section we discuss the numerical solutions to the hybrid
neural model. Each participant’s calibration data were used to
fit the model in a simulated annealing process of 5000–10,000
solutions. Characteristically, all runs of the algorithm virtually
always yielded the same levels of prediction for a given person.
For example, if somebody’s choices were predicted 50% correctly
in the calibration sample and 38% in the test sample these figures
were arrived at repeatedly, with very few exceptions, at the end of
every new run. For most subjects, the task was computed at least
twice, while for those producing either very poor or very precise
forecasting the number of runs was extended to about ten. This
was done to check the stability of the results, but as stated, turned
out to be unnecessary.

While the outcomes were stable, the paths to them were not.
Fig. 4 shows typical realizations of the procedure on the example of
four subjects and indicates the degree of variability in the learning
process.

It was expected thatmore calibration effort, or number of times
the model is computed, would lead to higher prediction accuracy
in the calibration sample, andwould be accompanied by a bow-like
performance in the test sample. Exactly that happened, as can be
seen in the two top panels of Fig. 4. The four plots also suggest that
people’s predictability depended on the person being predicted.
The top left plot shows a gradually diminishing forecasting error
in calibration due to more computational effort, alongside a test
sample not giving in—its prediction was successful initially only
25% and later rose to 37.5% (error falling from 0.750 to 0.625). The
plot on the right, in contrast, tells the story of a quickly achieved
test sample error of only 25%, soon lost due to excessive fine-tuning
with the calibration sample. The remarkable thing here was that
somebody’s choices of one among four options could be guessed
with 75% accuracy.

Even more impressive was the success with the person rep-
resented in the bottom left plot of Fig. 4. There, with the 6th
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Table 2
Prediction rates of supplier choices obtained with different methods in pre-test.

Prediction method Prediction rate
Calibration sample: First 12 rounds (n = 340) Test sample: Last 8 rounds (n = 272)

No method (pure guessing) 0.25a 0.25a

Multinomial logit model 1 0.5618 0.3713
Multinomial logit model 2 0.4794 0.3787
Fuzzy ARTMAP neural network 0.9971 0.4228
READ neural network, 0.5619b 0.4262b

Person-by-person (0.1945) (0.1837)
Here n is number of observations. The logit model equations used independent variables such as customer satisfaction/disappointment
from the current and two immediately preceding rounds. Therefore, only data from rounds ## 3–12, or 340 from all 408 records were
available to assess logit model performance in the calibration sample. All methods’ prediction of calibration data are reported for those
340 observations only.

a Theoretical estimate.
b Averages over 34 participants. Standard deviations are given in parentheses.
improvement of the objective function the model guessed eleven
out of twelve calibration choices (91.67%), and with the 7th im-
provement went on to achieve 87.50% success (seven out of eight)
with the test sample. That result was repeated in the next three
improvements of J , and again in the 13th and last improvement.

That was not the highest achievement with test data: one per-
son out of 131 was predicted 100% correctly in their test sam-
ple, with prediction success of 91.67% in the calibration sample.
Two people were predicted 87.50% correctly in their test sample
with respectively 83.33% and 100% correct predictions in their cal-
ibration sample. A close inspection of these three people’s data
revealed no apparent anomaly in their behaviour, like staying ab-
solutely loyal to one supplier, or adopting someother deterministic
pattern of choices.

There were some cases, in which the test sample was better
predicted than the calibration one, but these were exceptional and
as a rule it was the other way round. In fact, the bottom-right plot
of Fig. 4 gives the extremeopposite example,with no improvement
in test sample prediction beyond 25%, regardless of the calibration
effort and achievement.

The success shown in the bottom left plot of Fig. 4 needs some
further discussion. Even if the prediction instability of the first six
improvements of J can be regarded as natural, the issue arises why
the test sample error was erratic again in the 11th, 12th, and 13th
improvements. A combination of two factors explains the effect.
First, the number of parameters to be optimized simultaneously –
eleven –was too large, and second, the nature of the computational
procedure itself contributed to the problem, as follows.

Some studies (Marder & Taylor, 2011; Prinz, Bucher, & Marder,
2004) have shown that both neural network models and single
neuronmodels with evenmoderate number of parameters exhibit
a particular kind of instability: indistinguishablemodel behaviours
can arise frommultiple sets of parameter values. A stochastic opti-
mizationmethod such as simulated annealing, in which every new
solution is based on random generation of uniformly distributed
parameter values within certain boundaries, is instability genera-
tor par excellence.

Because of all that it was impossible to find one ‘true’ set of
parameter values. Coming back to the bottom left plot in Fig. 4,
all five best solutions are equally good candidates for prediction
of that person’s choices, should there be any game rounds beyond
twenty.Moreover, all of themwouldmost likely produce very good
further forecasts at least until the process nonstationarity makes
them less relevant. Within this computational framework, we
speak about predictability of human decisions in the next section.

Another consequence of the existence of a multitude of param-
eter sets is that it is usually not possible to conduct a meaning-
ful statistical analysis on only a subset of parameters—they change
in sync with the others, all of them mutually compensating each
other. For example, our study could not establish which of the
three decision factors in Eq. (25)wasmost influential, because their
weights d1, d2, d3 were optimized simultaneously alongside eight
other constants.

All the same, Fig. 4 clearly shows that prediction of economic
choices is possible at the level of the individual and, moreover, it
can be remarkably precise. How often this may happen is the topic
of the next section.

5.2. Predictability of human economic choice

We compared a number of methods for choice prediction.
Table 2 shows their achievementswith data fromapre-testwith 34
subjects from a pilot study with economic parameters (quantities
of offered and delivered omnium bonum) exactly as in the main
study with 131 subjects.

What sets the READ model apart from the others is that it uses
only 12 records to calibrate, and then is tested on eight subsequent
records, all 20 from one and the same person. The results for
these 34 people are then averaged and reported in the last row
of Table 2. The standard deviations for this person-by-person
prediction are quite large, apparently due to people’s different
degree of predictability—a fact demonstrated already in Fig. 4.

In particular, one person’s test sample choices were forecasted
with 0.0% success, whilewith two other people themodel achieved
only 12.5%. It went below 25% (pure guessing) because what it had
learned during calibration later turned out to be counterproductive
in testing due to the nonstationarity of human behaviour. Simply
put, these subjects changed their choice strategies dramatically
throughout the game’s 20 rounds.

In contrast to READ, all other models in Table 2 use the entire
pool of 340 records to calibrate, and are tested on another 272
records. Now person-by-person prediction cannot take place—it
makes no sense to forecast somebody’s eight consecutive choices
using data from other people.

The state-of-the-art method for predicting economic choice
among more than two options is multinomial logistic regression
(Gujarati, 2011). It uses empirical data to compute the probability
of each option, and themost probable is declaredwinner. Indepen-
dent variables are selected exactly as in classical linear regression.
Applying this method to our data achieved predictability of ap-
proximately 0.48 in the calibration sample and0.38 in the test sam-
ple (Table 2, Multinomial Logit Model 2). Amore complicated Logit
Model 1 did better in calibration, but lost some ability to general-
ize as seen from its test sample result. Then, a more sophisticated
tool such as Fuzzy ARTMAPwent above 0.99 and 0.42 respectively.
Again it must be stressed that Table 2 presents results, achieved in
two quite differentways: one is classical statistical inference based
on hundreds of records (Logit models and Fuzzy ARTMAP), while
the other (READ-based model) is a theory-guided attempt at fore-
casting from only a handful of observations. In other words, in our
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Table 3
Prediction success of the hybrid neural model with the test sample.

Pilot study without economic
aggregates (n = 80)

Design without economic
aggregates (n = 63)

Design with economic
aggregates (n = 68)

p-value, F-test of Association,
with/without economic aggregates

Share of participants with ≥ 75% 8.75% 7.94% 4.41% 0.2036
Correctly predicted choices (7) (5) (3)
Share of participants with ≥ 62.5% 25.00% 15.87% 14.71% 0.1881
Correctly predicted choices (20) (10) (10)
Share of participants with ≤ 25% 30.00% 33.33% 44.12% 0.0049
Correctly predicted choices (24) (21) (30)

The number of participants is denoted by n. In parentheses below the percentages is given the actual number of subjects. The pilot study consisted of five treatments with
variations in their economic parameters. Nonparametric F-test compared differences between percentages with or without economic aggregates (omnium bonum total
production, and production forecast), but not between those two and the pilot study.
particular task the Grossberg–Schmajuk model needed 12 records
to achieve the same average forecasting accuracy as othermethods
reached with at least 340.

Aswas already established, people in the omnium bonum game
were amenable to forecasting in various degrees and therefore
could be arranged in a continuum with regard to their choice pre-
dictability. In this section, we discuss the most interesting facts
about their distribution and suggest what could explain the avail-
able observations. Table 3 gives some essential figures about the
test sample – last eight rounds – in a number of variants of the ex-
perimental design.

To better understand the capabilities of the model, several
treatments were employed. Our pilot study was conducted with a
total of 80 subjects and five design variations that helped establish
the optimal economic parameters, later used in the main study.
Table 3, column ‘Pilot study. . . ’, gives average numbers over these
pre-tests and shows their similarity to those obtained from the
actual experiment.

Recalling the main purpose of the READ-based model—to ac-
count for rudimentary intuitive thinking, it made sense testing it
also with a slightly more complicated economic problem. To this
end we devised a new design by putting two more pieces of infor-
mation on the screen right above the four suppliers. The first was
‘‘Total production of omnium bonum in the last round’’ and simply
gave the sumof the four potential deliveries. The secondwas a fore-
cast in percentage points about the omnium bonum production
change in the current round. Because virtually all subjectswere un-
dergraduates or graduates who had taken at least a couple of eco-
nomics courses, they could easily recognize the former variable as
something a lot like a country’s gross domestic product (GDP) or
the world production of commodities such as oil, ores, corn, etc.,
and the latter variable as a standard economic forecast about GDP
growth. While these cues were totally irrelevant for the game out-
come, they could trigger associations with economic concepts and
theories, which in turn could provoke strategic thinking and lead
the subject far away fromprimitive–intuitive thinking. In Section 3
we outlined an experimental procedure, which sought to avoid any
allusions to real economic systems. In contrast, here we deliber-
ately introduced such a factor in order to examine in a controlled
way how task complication would affect choice predictability.

A less likely hypothesis was that on average, subjects might
become overwhelmed by that information and would act more
intuitively than those seeing only supplier offers and deliveries.
However, the opposite seemed more plausible. The data in Table 3
are clearly in favour of the strategic thinking hypothesis: people
who participated in a treatment with economic aggregates (om-
nium bonum total production in the current round, and a forecast
about production change in the next round) turned out to be less
predictable by themodel. Fisher’s exact test of association (last col-
umn in Table 3), a conservative nonparametric test, approached
significance for the differences between the shares of successfully
predicted participants (above 75% or 62.5%), and was highly sig-
nificant for those with whom the model failed. In particular, the
difference between approximately 8% and about 4% of very well
predicted subjects (Table 3, first row) could not be statistically sig-
nificant simply because those were only a handful of people.

In general, the hybrid neural model predicted extremely well
the economic choices of 15 people out of 211, achieved solid results
with many more, and was overall useful for about two thirds
of them all. Those people for whom it worked apparently must
have adopted a very simple approachwith virtually no strategizing
or expert economic thinking because these two modes were far
beyond themodel’s scope. Precisely that kind of decisionmaking is
what both popular culture and contemporary science call intuitive.
Of course the scientific discourse has elaborated a lot on the notion
of intuition and has identified a variety of phenomena that could be
denoted by it (cf. Kahneman, 2011; Reyna & Brainerd, 2008). The
present study deals with maybe the simplest and most primitive
form of intuitive thinking about economic choice.

It is probably not surprising that a READ-based model had lim-
ited success with forecasting what agents did in a relatively com-
plex economic game. From a different perspective, it is all themore
remarkable that a computational model consisting almost entirely
of equations for neurons and neurotransmitters, and utilizing be-
havioural data unrelated to neurobiology, could perform so well
with so many people.

As we saw, the more economic information one received, the
more one was inclined to think strategically; complicating the
game invited participants to act less intuitively and be less pre-
dictable. The rate of successful model prediction correlated neg-
atively (R = −0.26) with the amount of accumulated omnium
bonum in the treatments without economic aggregates (total pro-
duction and growth forecast). It was even more so (R = −0.36) in
the treatments with aggregates, suggesting that themore intuition
(of the simple type) one used in the game, the less successful one
was economically.

Asmentioned in Section 3, all 131 participants in the core study
had to answer open questions about their strategies. Analysing
formally these qualitative data is a challenge for a further study,
yet some observations can still be outlined here. First, our expec-
tation that subjects who acted intuitively might declare that ex-
plicitly was justified to some degree. Comments like, ‘‘I took my
decisions mostly by intuition’’, with variations, were not uncom-
mon, though they were not widespread either. However, essen-
tially the same phrases were sometimes used also by people with
whom the model failed! In fact, the empirical material was not at
all straightforward to interpret.

Reading through people’s answers led to the observations sum-
marized in Table 4. It shows what were the main strategies identi-
fied in the debriefing andwhatwas the distribution among themof
the well- and poorly-predicted subjects by the neural model. The
first finding is that both groups’ distributions share a lot of similar-
ities. Plenty of those well predicted had developed their strategic
thinking gradually, but so had donemany among those poorly pre-
dicted. The situation is similar with the subjects who were quick
to form a strategy, and also with those whowere influenced by the
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Table 4
Most widely used strategies and model prediction success.

Type of strategy Number of subjects with at least
62.5% correctly predicted test
sample choices (Total of 20 subjects)

Number of subjects whose test sample
choices were correctly predicted 25%
or less (Total of 51 subjects)

Number of subjects % of 20 Number of subjects % of 51

Loyalty to one particular supplier 2 10.00 0 0.00
Developed strategy gradually and updated it throughout the game 6 30.00 20 39.00
Developed stable strategy very early in the game (before 3rd–4th round) 4 20.00 11 21.57
Decisions were influenced by the last one or two deliveries 3 15.00 5 9.80
Decisions were influenced by the gap between the last offer and actual delivery 3 15.00 5 9.80
Always chose the highest or second highest offer 5 25.00 3 5.88
Avoided the extreme (highest and lowest) offers 2 10.00 15 29.41
Choices were made randomly 1 5.00 2 3.92

From the 131 participants, only those 20 well-predicted and those 51 poorly-predicted are presented. Some subjects’ reports were very elaborate and contributed to more
than one category, while others were too brief and could not be included in any. The table does not include idiosyncratic strategies such as, ‘‘I deliberately exaggerated my
disappointment to induce more favourable treatment’’.
actual omnium bonum deliveries. Both groups were not loyal to
any particular supplier; both did not choose at random, etc. A hint
at significant difference offered the category ‘‘Always chose the
highest or second highest offer’’. Twenty five percent of the well-
predicted subjects ascribed to it, while this was so far less than 6%
of those for whom themodel failed. A possible explanationmay be
that the two highest-offering suppliers were indeed those who on
average delivered the largest quantities of omnium bonum (Fig. 1).
Naturally, they left the most positive emotional memories in the
participants, which is exactly the basis of READ success.

In general, Table 4 shows that the debriefing questions, elabo-
rate and numerous as theywere, could not uncover a clear discrim-
inating factor, explainingwhy the READneuralmodel succeeded or
failed. One hypothesis why that happened is that ourmodel is rele-
vant for a most primitive or elementary level of cognition, which is
quite difficult to access with questions about self-assessed strate-
gic thinking.

In addition, reading through the subjects’ answers left the im-
pression that the game had sometimes provoked thoughts unre-
lated to its content. Naturally, this was most often the case with
participants in treatments with economic aggregates. Apart from
that, two or three people had developed the idea that they could
influence the behaviour of their suppliers, although the instruction
did in no way suggest such an opportunity. One person confessed
having deliberately and systematically exaggerated her customer
disappointment by one or two degrees hoping to induce more ad-
vantageous omnium bonum deliveries.

6. Conclusions

Here we showed how a hybrid READ-based neural model was
able to predict with great precision the choices of a significant mi-
nority of the participants in an experiment. Overall, the method
proved its usefulness for about two thirds of all subjects. An impor-
tant novelty of this study was that economic behaviour was anal-
ysed on a person-by-person basis.

It was remarkable that a model rooted in mathematical neu-
roscience was useful in predicting economic choices. This was
possible because the model consisted of a neural circuitry un-
derlying those cognitive–emotional interactions, which form the
basis of what contemporary science considers a simple form of
intuition.

The exact figures of the model performance are related to a
concrete lab market with four suppliers of a good, and would have
been different for a larger set. It was known (Mengov et al., 2008)
that with only two economic options READ can achieve impressive
forecasting heights. The current study seems to have reached the
boundaries of that circuit’s capabilities which probably makes it
unnecessary to design more complicated experiments around it.
We showed that more difficult economic tasks call for application
of more sophisticated neural networks.

At present, neuroscience has not yet reached the level of
detail, allowing rigorous modelling of brain circuits and identi-
fying a single most appropriate structure for cases such as our
experiment. The model used here was only one of three possible
variants outlined in Grossberg and Schmajuk (1987). Moreover,
Gaudiano, Surmeli, and Wilson (1994) have spotted a striking re-
semblance of a neural architecture by Raymond, Baxter, Buono-
mano, and Byrne (1992) to READ which is both functional and
structural. That network could potentially have served our pur-
poses equallywell. Itmight be expected thatwithmore knowledge
in the future, research efforts like this one will become more pre-
cise, and identifying the best neural network will be a more clear-
cut exercise.

Our experiment shares many characteristics with real markets,
in which companies with different business practices compete to
attract and retain customers, while the private individual must
take decisions under substantial uncertainty andhas little or no op-
portunity to influence their behaviour. One important feature that
real markets and this study have in common is that in both, agents
are heterogeneous in the sense that they perceive differently what
is at stake. When choices are considered important, much effort
and strategic thinking is involved, while ordinary situations are
tackled more intuitively.

The study presented here puts the economic agents in a new
perspective as they may now be seen as reacting differently to
the same options due to their different attitudes towards the
importance of what is to be gained or lost. Alongside the existing
dimensions of agent heterogeneity would be added a new one,
incorporating the strategic vs. intuitive thinking continuum. This
aspect is related to, but is at the same time different from the
classical view of economics, positing that two agents in the same
situation choose differently due to their different risk attitudes as
expressed by the concavity/convexity of their utility functions. For
many economists the question is, ‘‘How risk-averse, i.e., how afraid
is the agent in the face of a risky prospect?’’ The present study
outlined a different question, which is: ‘‘Is the choice important
enough for strategic thinking to get involved, or would simple
intuition be sufficient?’’

Yet another dimension is added by the fact that psychology
seems to have identified at least two different phenomena un-
der the umbrella of ‘‘intuition’’. One is the most rudimentary in-
tuition, produced by System I (Type I process) according to many
dual-process theories, while the other is the gist-based intuition,
characteristic of adults and experts, as formulated by fuzzy trace
theory. All scientists, familiar with the Grossberg–Schmajuk the-
ory would probably not be surprised if in the future, gated dipole
models turned out to be useful in studies of both types of intuition.
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The one envisaged by fuzzy trace theory would probably demand
a more complex neural network around the dipole.

New questions with economic relevance may arise out of this
theoretical framework: ‘‘When a choice is important enough, is
the agent expert enough to address it with her quick gist-based
intuition, or must she resort to slower deliberative thinking? And
even if she is extremely competent and erudite, perhaps the
situation is too unusual and complicated, and therefore demands
more than just intuition?’’

Finally, studies such as this one may help economic analysis in
the effort to devise realistic models of large-scale agent-based sys-
tems. There, primitive–intuitive agentswill coexistwith gist-based
intuitive agents; at the same time, more rational agents will be
guided by a variety of strategies. Grossberg’s theoretical method
of combining and recombining three basic differential equations
to build complex models offers a research paradigm, which seems
to be very useful for such endeavours. In addition, it fits com-
fortably in Von Neumann and Morgenstern (1944) view that sci-
ence needs ‘‘. . .methods. . .which could be extended further and fur-
ther ’’. Introducing neuropsychological knowledge in behavioural
economicsmay become another powerful way to discover how so-
cioeconomic systems function.
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