

СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО ХИМИЯ И ФАРМАЦИЯ Катедра Неорганична химия

Мартин Кръстев Недялков

ИЗСЛЕДВАНЕ НА ВЛИЯНИЕТО НА ЛАНТАНОИДНИТЕ ЙОНИ ВЪРХУ НЯКОИ ФИЗИЧНИ СВОЙСТВА НА ВОЛФРАМАТИ ОТ ТИПА MW₂O₈ (M= Zr, Hf)

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертация за присъждане на образователната и научна степен "доктор" професионално направление 4.2 Химически науки (Неорганична химия)

София, 2023

Дисертацията съдържа 75 страници, включени са 41 фигури, 1 схема, 4 таблици. Цитирани са 78 литературни източника. Част от резултатите на дисертационния труд са публикувани в две научни публикации. Дисертацията е обсъдена и насочена за защита на заседание на Катедрения съвет на катедрата по Неорганична химия към Факултета по химия и фармация на СУ "Св. Климент Охридски", състоял се на 30.01.2023 г.

Научни ръководители: проф. д-р Мария Миланова, доц. д-р Мартин Цветков

Защитата на дисертационния труд ще се състои на 2023 г. от часа в зала..... на Факултета по химия и фармация, Софийски университет, бул. Дж. Баучер №1.

СЪДЪРЖАНИЕ

Увод	4
I. Синтетична процедура	7
II. Твърди разтвори на основа на ZrW2O8, модифициран с Eu ³⁺ и Tb ³⁺	8
II.1. Фазова еднородност на пробите	9
II.2. Фазов преход α -ZrW ₂ O ₈ $\rightarrow \beta$ -ZrW ₂ O ₈	13
II.3.Степен на подреденост на WO ₄ -тетраедри в зависимост от температурата	14
II.4. Коефициенти на термично разширение (КТР)	15
II.5. Изменение на параметъра на елементарната клетка	17
II.6. Енергия на забранената зона	17
II. 7. Изводи	18
III. Твърди разтвори Hf1-xLnxW2O8 (Ln = Eu, Tm, Lu)	19
III.1. Охарактеризиране на α -HfW ₂ O ₈ и β -HfW ₂ O ₈ чрез рентгенофазов анализ	19
III.2. Разтворимост на лантаноидните йони в $Hf_{1-x}Ln_xW_2O_{8-x/2}$	20
III.3. Охарактеризиране чрез Раманова и ИЧ спектроскопия	21
III.4. Морфология на пробите, охарактеризирани чрез SEM и TEM	24
III.5. Фазов преход, обратимост, коефициенти на термично разширение на	26
чистия HfW_2O_8 и на твърдите разтвори $Hf_{1-x}Ln_xW_2O_{8-x/2}$	
III.6. UV-Vis абсорбция на твърдите разтвори. Енергия на забранената зона	31
III.7. Изводи	33
IV. ИЗВОДИ И ЗАКЛЮЧЕНИЯ	33
V. ЦИТИРАНА ЛИТЕРАТУРА	35
VI. ПУБЛИКАЦИИ И УЧАСТИЯ В КОНФЕРЕНЦИИ	36
VI.1. Публикации, свързани с дисертационния труд	36
VI.2. Доклади по темата на дисертационния труд, представени на научни	
форуми	36

УВОД

През последните две десетилетия материалите с отрицателен коефициент на температурно разширение ce превърнаха В интензивно изследвана област. Първоначалното откриване на материали, показващи отрицателен коефициент на температурно разширение в голям температурен диапазон, съчетано с изясняване на механизма, определящ това необичайно свойство, е последвано от прогнози, че тези материали ще намерят приложение в различни композитни материали. Тези прогнози правят материалите с отрицателен коефициент на термично разширение привлекателни за науката и практиката. В същото време в съвременните приложения на материалите се изискват много специфични свойства, сред които проводимост, магнитни и оптични свойства, твърдост, пластичност и др., а това от своя страна може да затрудни направата им с нулево или близко до нулата термично разширение. В такива случаи използването на композити е алтернатива, която може да позволи запазване на свойствата на желания материал, като се подобряват нежеланите свойства и се придобиват нови. Материалите с отрицателно термично разширение могат теоретично да се използват за намаляване или компенсиране на разширяването чрез получаване на композити с контролирано термично разширение.

Потенциалните **приложения на материалите** с отрицателен коефициент на температурно разширение в композити с контролирано термично разширение варират от покрития за оптични влакна и електроника до пломби за зъби. При разширяване на пътни настилки, железопътни коловози, мостове или тънки слоеве, несъответствията в термичното разширение на компонентите на обектите са предизвикателство при конструирането им. Прецизното позициониране е от решаващо значение за електронни устройства, а нанотехнологиите повишават контрола, необходим за тяхното функциониране.

Получаването на висококачествени композити поставя редица предизвикателства. Съществуват ограничения за приложението на различните материали като едно от тях е свързано с използването на преходни метали, което увеличава себестойността на материалите. Установени са проблеми, засягащи стабилността на материалите в условията на обработката им, както и несъвместимост с други композитни компоненти. Тези предизвикателства се превръщат в области на активно изследване и усилията са насочени към откриването на нови материали, подобряване свойствата на съществуващите, модифициране с цел постигане на

4

съвместимост и създаване на условия за обработка и образуване на хомогенни композити.

Изследванията върху модифицирането на материали с лантаноидни йони с цел подобряване на техните свойства е една от научните насоки, по които се работи в последните години в Лабораторията по химия на редкоземните елементи. Проведените в последните години изследвания върху модифицирането на титанов диоксид, цинкникелови шпинели, както и на смесено-метални оксиди с перовскитна структура, категорично показват влиянието на лантаноидните йони върху свойствата на модифицираните материали. Работата върху модифицирането на циркониев и хафниев волфрамат с някои лантаноидни йони може да се разглежда като продължение на тези изследвания. От друга страна, литературният преглед показа, че именно модифицирането на тези волфрамати е един от начините да се контролират техните свойства и да се понижи техният отрицателен коефициент на температурно разширение и по този начин да се улесни потенциалното им приложение, например в композитни материали. Хидротермалният метод за синтез на тези съединения, индивидуални и модифицирани с лантаноидни йони, е приложен в съчетание с инструментални методи за охарактеризиране и установяване на измененията във физичните им свойства.

Част от изследванията по дисертационния труд са проведени в рамките на Договор № ДМ19/5 от 20.12.2017 г., финансиран от Фонд "Научни изследвания".

Литературният преглед в областта на дисертационното изследване показа:

(*i*) Значимостта на циркониевия и хафниевия волфрамат и техните свойства за практическото им приложение при получаване на материали с незначително термично разширение или нисък отрицателен КТР.

(*ii*) Измененията на основни характеристики и свойства на тези съединения, а именно на параметъра на елементарната клетка, температурата на фазовия преход, коефициента на термично разширение, като резултат от модифициране с различни йони.

(*iii*) Ограничени изследвания върху модифицирането на циркониевия и хафниевия волфрамат, главно с малък брой три- и четири- зарядни йони, поради трудности при подбора на йони за заместване на четиризарядните йони (Zr⁴⁺/Hf⁴⁺) и шест-зарядния (W⁶⁺) йон.

(iv) Ограничени изследвания върху модифицирането на циркониевия и хафниевия волфрамат с лантаноидни йони.

(v) Значително по-интензивни изследвания на циркониевия волфрамат и поограничени изследвания на хафниевия волфрамат, като различия в поведението на двата волфрамата са установени главно при изследвания върху влиянието на налягането върху свойствата им.

(vi) Изследванията, свързани с коефициента на термично разширение на модифицирани хафниев и циркониев волфрамат, получени по хидротермален метод, са ограничени или липсват такива.

Литературният преглед и оценката на прилаганите в литературата методи за синтез показаха предимствата на хидротермалния метод за синтез и модифициране на изследваните волфрамати, а именно възможности за контрол на дозиране на модифициращия йон, характерни за мокрите методи, а от друга страна възможност за калциниране на пробите при значително по-ниска температура от твърдофазния синтез.

На основа на литературния преглед беше поставена **целта** на дисертационния труд, а именно да се установят измененията на структурата и някои физични свойства на циркониев и хафниев волфрамат, MW_2O_8 (M = Zr, Hf) в резултат на модифицирането им с лантаноидни йони.

За постигане на тази цел са поставени и изпълнени следните задачи:

1.Синтез на прахови образци от ZrW_2O_8 и HfW_2O_8 , чисти и модифицирани с лантаноидни йони (Ln = Eu, Tb, Tm, Lu) чрез хидротермален метод.

2. Охарактеризиране на получените проби чрез набор от инструментални методи, сред които високотемпературна прахова рентгенова дифракция, Раманова спектроскопия, трансмисионна електронна микроскопия, сканираща електронна микроскопия, инфрачервена спектроскопия, УВ/Вис абсорбционна спектроскопия

3. Определяне на коефициентите на термично разширение и температурата на фазовия преход чрез високотемпературна прахова рентгенова дифракция.

За модифицирането са подбрани йони с близки йонни радиуси, представители на средните и тежките лантаноиди, именно европий, тербий, тулий и лютеций. Чрез подбора на методите за охарактеризиране се цели да се изяви най-пълно влиянието на лантаноидните йони върху свойствата на циркониевия и хафниевия волфрамат.

6

I. Синтетична процедура за получаване на чисти и модифицирани с лантаноидни йони циркониев и хафниев волфрамат

Приложен е хидротермален метод, като процедурата е показана на Схема 1. Използвани са соли на циркония ZrOCl₂·8H₂O/хафния HfOCl₂·8H₂O и волфрама Na₂WO₄·2H₂O, разтворени в дейонизирана вода. Разтворът се разбърква при 60 °C за 30 min на водна баня. Добавя се 6 M солна киселина, разбърква се допълнително за 2 h при 60 °C. Добавя се бутилов алкохол за осигуряване на по-нисък парен натиск. Прехвърля се в автоклав тип "бомба", покрит отвътре с тефлон, където при разбъркване престоява при температура 180 °C за 15 h. Налягането не се контролира. Получава се междинен продукт MW₂O₇(OH)Cl·2H₂O, който се измива с дейонизирана вода и се суши при 50 °C. Циркониевият /хафниевият волфрамат се получава чрез калциниране на междинния продукт MW₂O₇(OH)Cl·2H₂O при 600 °C за 1 h [1].

Синтетичната процедура е модификация на процедурата, предложена от Liao и съавтори [2]. Промените засягат (*i*) условията на загряването в автоклава, а именно температурата и продължителността: загряването беше проведено при по-висока температура, но за по-кратко време (180 °C, 15 h, вместо 130 °C, 24 h [2]), (*ii*) калцинирането. След филтруване, промиване и сушене, калцинирането на пробите беше проведено при температура 600 °C за 1 h, вместо за 30 min според [2]. Промяната на процедурата се наложи поради установеното при първоначалните експерименти несъответствие между наши и литературни данни, получени по една и съща процедура.

Синтезирането на модифицираните проби следва същата схема като лантаноидните нитрати се добавят към изходния разтвор.

Схема 1. Синтетична процедура за получаване на циркониев и хафниев волфрамат – чисти и модифицирани с лантаноидни йони

II. Твърди разтвори на основа на ZrW₂O₈, модифициран с Eu³⁺ и Tb³⁺ **II.1**. Фазова еднородност на пробите

Получените чрез високотемпературна рентгенова дифракция рентгенограми за чист ZrW_2O_8 са снети в интервала от 25 до 250 °C и показват фазова еднородност. (Фиг. 1). Eu³⁺- и Tb³⁺-модифицираните проби ZrW_2O_8 показват добра кристалност и рефлекси,

съвпадащи с известните в литературата за ZrW₂O₈ при 25 °C (Фиг. 2, 3). Те са също фазовоеднородни, без допълнителни фази, съдържащи W или Zr. Рефлексите в рентгенограмата при 39,28 и 45,67 20 са типични за Pt (111) и (002) и се дължат на платиновата подложка, използвана по време на измерванията.

Фигура 1. Рентгенограми на ZrW_2O_8 , снети в интервала 25-250 °C

II.2. Фазов преход α -ZrW₂O₈ \rightarrow β -ZrW₂O₈

Фазовият преход α -ZrW₂O₈ $\rightarrow \beta$ -ZrW₂O₈ се проследява чрез промяна в интензитета на рефлексите (110) и (310). Тези рефлекси са характерни за нискотемпературната α -ZrW₂O₈ фаза, но не за високотемпературната β -ZrW₂O₈. Прекъснатите линии/елипсите (Фиг. 1-3) показват, че с повишаване на температурата интензитетът на тези рефлекси намалява и изчезва напълно над температурата на фазовия преход. Проследява се промяната именно на споменатите рефлекси (110) и (310), тъй като те са най-интензивни. Има и други рефлекси, които се изменят с температурата, но те са с незначителен интензитет.

Фигура 2. Рентгенограми на ZrW₂O₈, модифициран с 1 mol % тербий, 25 – 250 °C

Фигура 3. Рентгенограми на ZrW₂O₈, модифициран с 3 mol % тербий, 25 – 250 °C

Проследяването на рефлекс (310) при високотемпературните рентгенограми показва, че модифицирането на ZrW₂O₈ с Eu³⁺ причинява повишаване на температурата

на фазовия преход (Фиг. 4). За чистия ZrW_2O_8 тази температура е 453 К (180 °C), докато за модифицирания с Eu^{3+} е очевидно по-висока. Отсъствието на рефлекс (310) в дифракционната картина на немодифицирания волфрамат при 180 °C (453 K) е доказателство за пълно превръщане в β-ZrW₂O₈ фаза (Фиг. 1, 4, 5). В дифрактограмите на модифицирания с 1 и 2 mol % Eu³⁺ при тази температура ясно се вижда рефлекс (310), което означава непълен преход (Фиг. 4).

Фигура 4. Влияние на Eu^{3+} върху температурата на фазовия преход: рентгенограми на ZrW₂O₈, чист и модифициран с 1 и 2 mol % Eu^{3+} при 453 K, Zr_{1-x}Eu_xW₂O_{8-x/2}, x=0,01, 0,02.

Високотемпературните рентгенограми на модифицираните с 1 и 3 % Tb³⁺ проби показват, че модифициращият агент не оказва влияние върху температурата на фазовия преход (Фиг. 5). Това се установява чрез проследяване на рефлекс (310), който при 180 °C (453 K) липсва при немодифицираната проба, т.е. наличие на пълен фазов преход, като модифицираните с Tb³⁺ проби са практически аналогични на чистия ZrW_2O_8 .

Фигура 5. Влияние на Tb^{3+} върху температурата на фазовия преход: рентгенограми на ZrW_2O_8 , чист и модифициран с 1 и 3 mol % Tb^{3+} , при 453 K, $Zr_{1-x}Tb_xW_2O_{8-x/2}$, x=0,01, 0,03

Различното влияние на Eu^{3+} и Tb^{3+} върху температурата на фазовия преход на модифицираните проби вероятно не се дължи на разликата в йонните радиуси, тъй като тя е незначителна, съответно 94,7 и 92,3 pm. Може да се предполага евентуално частично превръщане на Tb^{3+} до Tb^{4+} в условията на получаването на модифицираните проби. Радиусът на Tb^{4+} , 76 pm, е значително по-малък от радиуса на Tb^{3+} , 92,3 pm, но затова пък по-близък до радиуса на Zr^{4+} , 72 pm. Това означава по-слабо влияние или отсъствие на влияние върху температурата на фазовия преход при частично заместване на Zr^{4+} с близкия по размер Tb^{4+} . (Стойностите на йонните радиуси са дадени за октаедрична координация на йона, к.ч. 6, според [3]). Температурата на калциниране на пробите, 600 °C, не е достатъчна за превръщане на Tb^{3+} до Tb^{4+} , но подобно частично превръщане е наблюдавано при хидротермален синтез на метал-органични рамки чрез загряване при 140 °C за 72 h [4].

Фазов преход с пълното обратно превръщане на α -ZrW₂O₈ $\rightleftharpoons \beta$ -ZrW₂O₈ фаза след охлаждане обратно до 25 °C е показан на фигура 6. Представена е разликата в структурата на α -ZrW₂O₈ и β -ZrW₂O₈ фазите. Нискотемпературната α -ZrW₂O₈ фаза е изградена от ZrO₆ октаедри и WO₄ тетраедри, свързани чрез кислородни атоми. Всеки WO₄ тетраедър споделя по три кислорода със съседни октаедри. Във високотемпературната β -ZrW₂O₈ фаза два кристалографски различаващи се WO₄ тетраедъра споделят три свързани О атома. Преходът α -ZrW₂O₈ фаза $\rightarrow \beta$ -ZrW₂O₈ фаза наричан "подреден – неподреден" или "порядък – безпорядък" фазов преход зависи от ориентацията на WO₄ - тетраедрите.

Фигура 6. Обратимост на фазовия преход α -ZrW₂O₈ \rightleftharpoons β -ZrW₂O₈; рентгенограми за ZrW₂O₈ при 25 и 250 °C и след охлаждане до 25 °C [П1, Д1, Д2]

II.3. Степен на подреденост на WO4-тетраедри в зависимост от температурата

Параметърът η'т е предложен, за да се оцени степента на подреденост на WO₄ тетраедрите в зависимост от температурата [1]. Изчислява се чрез интегрирания интензитет на рефлекс (310) (изчезва над температурата на фазовия преход) спрямо (210) (не се променя) по формулата:

$$\eta_T' = \sqrt{\frac{\left\lfloor \left(\frac{I310}{I210}\right) \right\rfloor_T}{\left\lceil \left(\frac{I310}{I210}\right)_{HfW2O8} \right\rceil_{298K}}},$$

Фигура 7. Влияние на температурата и на модифициращия агент Eu^{3+} върху безпорядъка на WO₄ – тетраедрите за $Zr_{1-x}Eu_xW_2O_{8-x/2}$ x= 0,01, 0,02, 0,05.

С нарастване на съдържанието на модифициращия Eu³⁺ приближаването на параметъра η'_T към нула, тоест към пълен безпорядък, се отмества към по-високите температури (Фиг. 7). Температурата, при която параметърът η'_T се приближава към нула и става равен на нула, $\eta'_T = 0$, се дава като температура на фазовия преход и може да се определи чрез екстраполиране $\eta'_T = 0$ [1]. Така са получени стойности 171, 183, 187, 188 °C (444, 456, 460, 461 K) съответно за чистия ZrW₂O₈ и за модифицирания с 1 %, 2 % и 5% Eu.

Наблюдаваната от нас зависимост на нарастване на температурата на фазовия преход с нарастване на съдържанието на модифициращия Eu^{3+} йон е различна от резултатите, публикувани в литературата [1]. Вероятна причина за различието е непълната кристализация на пробите. Наблюдава се малък среден размер на кристалитите, както се вижда от данните в Таблица 1. Кристалитите продължават да нарастват по време на измерванията в интервала 25 – 250 °C, съответно от 24 до 28 nm за пробата с 1 mol % Eu^{3+} и от 20 до 29 nm за пробата с 2 mol % Eu^{3+} . Тази вторична прекристализация вероятно води до допълнително пренареждане на тетраедрите от WO₄ и като резултат се наблюдава изместване на кривата към по-висока температура.

II.4. Коефициенти на термично разширение (КТР)

Коефициентите на термично разширение (КТР), изчислени за интервала 25–100 °C (α-ZrW₂O₈ фаза) и 200–250 °C (β-ZrW₂O₈ фаза) са представени в Таблица 1.

Изчисленията са направени по класическата формула за линейно топлинно разширение: $\alpha = \frac{(a_{T2} - a_{T1})}{a_{T1} \cdot \Delta T}$, където α е коефициентът на линейно разширение, a_{T1} и a_{T2}

са параметрите на елементарната клетка при ниската и висока температура, ∆Т е температурната разлика. При коментари и сравнения на КТР за различните модификации имаме предвид абсолютната, а не алгебричната стойност на КТР.

		ZrW2O8	ZrW2O8 1 mol % Eu	ZrW2O8 2 mol % Eu	ZrW2O8 1 mol % Tb	ZrW2O8 3 mol %Tb
Размер на	25 °C	26	24	20	28	30
пт	250 °C	31	28	29	29	31
10-61Z-1	25 °C	-10,8	-7,4	-9,3	-6,5	-7,3
$KIP, \times 10^{\circ}K^{\circ}$	250 °C	-5,4	-3,6	-2,8	-2,9	- 4,5
Параметър	25 °C	9,15700(9)	9,15499(2)	9,15281(8)	9,15154(24)	9,14928(46)
на	100 °C	9,14956(5)	9,14997(7)	9,14639(6)	9,14557(33)	9,14430(45)
елементарна	200 °C	9,13174(3)	9,13172(11)	9,13322(4)	9,13274(41)	9,13291(39)
та клетка, Å	250 °C	9,12925(10)	9,13009(7)	9,13192(12)	9,13140(40)	9,13087(39)

Таблица 1. Влияние на Ln^{3+} , Ln = Eu, Tb

Резултатите за КТР показват (*i*) Получените стойности за КТР за α- и β - ZrW₂O₈ са повисоки от цитираните в литературата ($-10,2 \times 10^{-6}$ K⁻¹, 30 - 120 °C [5]) (-9,1 × 10^{-6} K⁻¹ / -5,0 × 10^{-6} K⁻¹ [6] при различна процедура за синтез. (*ii*) Абсолютната стойност на КТР за двете модификации на твърдите разтвори Zr_{1-x}Ln_xW₂O_{8-x/2} намалява както спрямо стойността на ZrW₂O₈, така и в посока европий – тербий при x = 0,01 т.е. модифицирането с Ln³⁺ ограничава отрицателното разширение (свиването) на кристалната структура, вероятно поради частично заместване на Zr⁴⁺ с Eu³⁺/Tb³⁺.

II.5. Изменение на параметъра на елементарната клетка

Изменението на параметъра на елементарната клетка, предизвикано от съдържанието на Eu³⁺ и Tb³⁺ и от температурата, е представено на Фиг. 8 и 9.

Фигура 8. Изменение на параметъра на елементарната клетка с нарастване на съдържанието на Eu^{3+} и с температурата за $Zr_{1-x}Eu_xW_2O_{8-x/2}$ x=0,01,0,02,0,05.

Фигура 9. Изменение на параметъра на елементарната клетка с нарастване на съдържанието на Tb(III) и с температурата за $Zr_{1-x}Tb_xW_2O_{8-x/2}$ x = 0,01, 0,03

Модифицирането с Eu³⁺ и Tb³⁺ причинява намаляване на параметъра на елементарната клетка (Таблица 1). Това може да се обясни с частична замяна на Zr⁴⁺ с Eu³⁺/Tb³⁺, което води до твърд разтвор от типа Zr_{1-x}Ln_xW₂O_{8-x/2}. Параметърът на елементарната клетка намалява и като функция на температурата, което може да се очаква, поради отрицателния коефициент на топлинно разширение (KTP) за ZrW₂O₈. Слабото нарастване на параметъра на елементарната клетка при модифицираните проби спрямо чистия ZrW₂O₈, което е наблюдавано при 200-250 °C, е свързано с по-малката абсолютна стойност на KTP.

II.6. Енергия на забранената зона

Волфраматите са полупроводници с енергия на забранената зона в интервала 2,1-4,8 eV за волфрамати с формула AWO₄ [7,8]. Ширината на забранената зона за двойни волфрамати от типа AgLn(WO₄)₂ показва стойности между 3,48 до 4,00 eV за всички Ln³⁺. включително Y^{3+} , и е указание за непряк разрешен преход [9], стойността за ZrW_2O_8 за непряк преход е 2,84 eV [10]. Енергията на забранената зона за получените проби е изчислена на базата на UV/Vis спектри, които са представени на Фиг. 10, като се приема, че се извършва директен тип преход. За немодифицирания ZrW₂O₈ е получена стойност 3,95 eV, докато за пробите, модифицирани с 1 и 2 mol % Eu³⁺, енергията на забранената зона е по-голяма, практически еднаква, 4,33 eV. За пробата с 5 mol % Eu³⁺ енергията на забранената зона нараства до 4,45 eV т.е. стойностите нарастват с увеличаване на съдържанието на модифициращия Eu³⁺, като най-високата стойност е получена при найвисоко съдържание. Позицията на модифициращия Eu³⁺ в кристалната решетка не е установена. Като се отчете промяната в параметъра на кристалната решетка, от общи съображения може да се предположи както присъствие в кристалната решетка, така и върху повърхността на пробата. Възможна причина за влиянието на Eu³⁺ върху разширяването на енергията на забранената зона е намаленият среден размер на кристалитите. Известно е, че присъствието на Ln³⁺ може да потиска скоростта на растеж на кристалитите [11]. Чистият ZrW₂O₈ има среден размер на кристалите 26 nm (Таблица 1), а пробата, модифицирана с 5 mol % Eu^{3+} , 19 nm. По-малкият размер на кристалитите предполага квантови ефекти, които разширяват забранената зона [12].

Фигура 10. Стойности на енергията на забранената зона, получени на основа на UV/Vis спектри за Zr_{1-x}Eu_xW₂O_{8-x/2} x= 0,01, 0,02, 0,05.

II.7. Изводи

1. Получени са кристални проби от фазово еднородни твърди разтвори $Zr_{1-x}Ln_xW_2O_{8-x/2}$, Ln = Eu^{3+} (x=0,01, 0,02, 0,05) и Tb³⁺ (x=0,01, 0,03).

 Потвърден е фазовият преход α-ZrW₂O₈ → β-ZrW₂O₈ чрез проследяване на промяната на рефлексите (110) и (310) в рентгенограмата с повишаване на температурата.

3. Установено е различно влияние на Eu³⁺ и Tb³⁺ върху температурата на фазовия преход на твърдите разтвори, съответно повишаване при Eu³⁺ и без изменение при Tb³⁺ проби. Може да се предположи, че поради частично превръщане на Tb³⁺ до Tb⁴⁺ в условията на синтез, последвано от частично заместване на Zr⁴⁺ с близкия по размер Tb⁴⁺, температурата на фазовия преход не се променя.

4. Получени са стойности за температурата на фазовия преход за ZrW_2O_8 и за $Zr_{1-x}Eu_xW_2O_{8-x/2}$, Ln = Eu^{3+} (x=0,01, 0,02, 0,05), които са по-високи в сравнение с литературните данни, вероятно поради вторична прекристализация, причиняваща пренареждане на WO₄ тетраедри.

5. Присъствието на Eu³⁺/Tb³⁺ в кристалната структура на ZrW₂O₈ води до намаляване на параметъра на елементарната клетка, на абсолютната стойност на КТР за ниско- и високотемпературната модификация.

6. Установено е разширяване на забранената зона с увеличаване на съдържанието на модифициращия Eu³⁺.

<u>III. Твърди разтвори $Hf_{1-x}Ln_xW_2O_8$ (Ln = Eu, Tm, Lu) [П2, Д4]</u>

III.1. Охарактеризиране на α-HfW2O8 и β-HfW2O8 чрез рентгенофазов анализ

За да се оцени структурата на получените твърди разтвори, са необходими структурите на α -HfW₂O₈ и β -HfW₂O₈. В наличната ICSD база данни не се съдържат «.cif файлове» на α -HfW₂O₈ или β -HfW₂O₈, затова, за да представим структурата на α -HfW₂O₈, използвахме .cif файла за α-ZrW₂O₈ модификацията (ICSD PDF #50-1868), която е изоструктурна на α -HfW₂O₈. Що се отнася до β -HfW₂O₈, беше използван .cif файлът на структурата ZrW_{0.977}Mo_{1.023}O₈ (ICSD PDF #01-070-6112), която е изоструктурна на β- ZrW_2O_8 [13]. Дифрактограмите на нискотемпературната α -HfW₂O₈ И високотемпературната β-HfW₂O₈ модификация, синтезирани по хидротермалния метод, заедно със споменатите ICSD данни, са показани на Фиг. 11. Означени са двата рефлекса, най-чувствителни към промяната, рефлексите (110) и (310), присъстващи/отсъстващи в двете модификации.

За решаване на структурата на β-HfW₂O₈ (и съответните твърди разтвори) бяха използвани изходни структурни параметри, предложени от Kumeswari и съавтори при решаване на структурата на ZrW_{0.977}Mo_{1.023}O₈ [13]. Изходните структурни параметри за нашите образци след модификация са предствени в Таблица 2.

Атом	X	У	Z	U _{iso}	Заселеност
Hf1	0.0000	0.0000	0.0000	0.0184	1-x
Ln1	0.0000	0.0000	0.0000	0.0184	х (0.01 или 0.05)
W1	0.3381	0.3381	0.3381	0.0238	0.5
W2	0.6034	0.6034	0.6034	0.0238	0.5
01	0.2090	0.4326	0.4440	0.0333	1
O3	0.5	0.5	0.5	0.0438	1
04	0.2326	0.2326	0.2326	0.0476	1

Таблица 2. Изходни структурни параметри

При решаване на структурата бяха използвани следните ограничения: сборът от заселеностите в Hf- позиция е равен на общия сбор йони, внесени по време на синтез. Позицията на O3 не беше свободна за вариране, поради разположението на този йон в кристалографския център на симетрия.

Фигура 11. Сравнение на рентгенограми на синтезираните α -HfW₂O₈ и β -HfW₂O₈ (горе), с рентгенограми от база данни в ICSD за α -ZrW₂O₈ (долу), ZrW_{0.977}Mo_{1.023}O₈ (в средата)

III.2. Разтворимост на лантаноидните йони в Hf1-xLnxW2O8-x/2

Чрез въвеждане на Ln³⁺ йони в структурата на HfW₂O₈ се генерират свободни кислородни ваканции като общата формула на получените твърди разтвори може да се даде с формулата Hf_{1-x}Ln_xW₂O_{8-x/2}. Общоприето е, че получените по този начин кислородни ваканции се считат за присъщи, но не са измерени точно. Важно е да се отбележи, че по време на моделирането с Ритвелд-анализ, заетостта на всички О атоми бе варирана, но поради много ниската концентрация на тези дефекти, не бяха установени големи отклонения. Рентгенограмите на пробите Hf_{1-x}Eu_xW₂O_{8-x/2}, 0,01 \leq x \leq 0,15 са записани при 25 °C и показват кристална структура и рефлекси, характерни за HfW₂O₈ (Фиг. 12).

Рефлексите, наблюдавани в пробите на $Hf_{1-x}Eu_xW_2O_{8-x/2}$ с x = 0,09 до x = 0,15, показват образуването на вторична WO₃ - фаза. Въз основа на това може да се каже, че получените проби от $Hf_{1-x}Ln_xW_2O_{8-x/2}$ са фазово еднородни до x = 0,07 (7 mol %), както е показано от праховите рентгенограми на $Hf_{1-x}Eu_xW_2O_{8-x/2}$. Като се има предвид това,

по-нататъшните изследвания фокусирахме върху твърдите разтвори $Hf_{1-x}Ln_x W_2O_{8-x/2}$, с x = 0,01 и 0,05. Твърди разтвори на модифициран с лютеций хафниев волфрамат $Hf_{1-x}Lu_x W_2O_{8-x/2}$ са получени при x=0,02 и 0,04 чрез твърдофазен синтез [14].

Фигура 12. Рентгенограми на твърди разтвори от вида $Hf_{1-x}Eu_xW_2O_{8-x/2}, 0,01 \le x \le 0,15,$ снети при 25°С

III.3. Охарактеризиране чрез Раманова и ИЧ спектроскопия

Рамановата спектроскопия е ефективен и чувствителен метод за проследяване на промените в позицията и връзките между атомите на W и O в кристалната решетка [15]. Раманови спектри бяха снети за чистия α -HfW₂O₈ и твърдите разтвори Hf_{1-x}Ln_xW₂O_{8-x/2}, при x = 0,01 и 0,05. Структурата на α -HfW₂O₈ се разглежда като мрежа от WO₄ октаедри и тетраедри, споделящи общи върхове -кислородни атоми, а Рамановите трептения на волфраматите могат да са решетъчни, транслационни, вибрационни и вътрешни трептения на WO₄ в диапазона 100 – 1100 сm⁻¹ [16, 17]. В Рамановия спектър на чистия α -HfW₂O₈ се наблюдават ивици в диапазона 400–100 и 1040 – 700 сm⁻¹ (Фиг. 13, а, б).

Фигура 13. Раманови спектри на HW₂O₈ и Hf_{1-x}Ln_xW₂O_{8-x/2}, (а) x = 0,01 и (б) x = 0,05 Цветните прекъснати линии показват отмествания на съответните ивици спрямо тези в чистия волфрамат в резултат на модифицирането.

Въз основа на литературни данни [18] ивиците при 1026, 999, 921, 896 и 859 сm⁻¹ бяха приписани на симетричните валентни трептения на WO₄; тези при 796, 746 на асиметрични валентни трептения на WO₄ (modi v_{as}); при 373 на асиметрично деформационно трептене; при 346, 323, и 297 сm⁻¹ на симетрични деформационни трептения. Ивиците при 199 и 125 сm⁻¹ се считат за произлизащи от решетъчни трептения (Фиг. 13, а, б).

В Рамановите спектри на получените твърди разтвори $Hf_{1-x}Ln_xW_2O_{8-x/2}$ се наблюдава изместване на ивиците към по-високи честоти (Фиг. 13, а, б). Това изместване засяга ивиците, приписани на вибрации на W-O-W връзките (WO₄) на HfW_2O_8 , а именно 796 сm⁻¹ (най-интензивната) и 746 сm⁻¹ (по-слабо интензивна). Двете ивици са изместени с около 18 сm⁻¹, към 812–813 и 764–765 cm⁻¹, съответно, в твърдите разтвори $Hf_{1-x}Ln_xW_2O_{8-x/2}$ за x = 0,01 и x = 0,05 (Фигура 13, а, б). Освен това, нова ивица при 721, 723, 724 сm⁻¹ беше установена в спектрите на $Hf_{0.95}Ln_{0.05}W_2O_{7.975}$, съответно за Eu, Tm и

Lu. В същото време, изместването на ивицата при 1026 cm⁻¹ за чистия α -HfW₂O₈ с около 18 cm⁻¹ към 1043 cm⁻¹ при твърдите разтвори Hf_{0.99}Ln_{0.01}W₂O_{7.995} и Hf_{0.95}Ln_{0.05}W₂O_{7.975} е ясно доказателство за влиянието на Ln³⁺ върху кристалната структура.

Лантаноидните йони влияят върху Рамановите спектри на твърдите разтвори $Hf_{1-x}Ln_xW_2O_{8-x/2}$ чрез частично заместване на Hf^{4+} с Ln^{3+} в октаедъра HfO_6 , което се отразява върху дължината на връзката Hf-O-W, върху подредеността/завъртането на WO_4 – тетраедрите, а следователно и върху валентните трептения на връзките W-O-W. Допускаме, че влиянието се определя както от йонния радиус на лантаноидния йон, така и от атомната маса. Атомната маса влияе чрез ефективната маса m според формулата за честотата на трептене $v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$. Формулата дава честотата на трептенията за двуатомна молекула, където κ е силовата константа, m е ефективната маса ($m_1 \times m_2/m_1 + m_2$), а m_1 и m_2 са масите на атомите в разглежданата двуатомна молекула [19]. Тъй като в Hf-O-W частично се замества само Hf, то привеждаме разглеждането към двуатомна молекула и отчитаме атомните маси на хафний (или заместващия го лантаноиден йон) и на кислородния атом.

Частичното заместване на Hf^{4+} с по-големия по размери, но с по-малка атомна маса лантаноиден йон, Eu^{3+} (ефективната маса *m* във формулата за честотата 14,48/14,68 за Hf), води до промяна на интензитета на ивицата при 1043 cm⁻¹ в сравнение с Tm³⁺ и Lu^{3+} при $Hf_{0.95}Ln_{0.05}W_2O_{7.975}$. Относно интензитета на ивицата при 1043 cm⁻¹, наблюдава се подобие на Рамановия спектър на HfW_2O_8 с този на $Hf_{0.95}Lu_{0.05}W_2O_{7.975}$, където Lu^{3+} е с най-малък радиус от изследваните, най-близък до този на Hf^{4+} , и с атомна маса, най-близка до тази на Hf^{4+} (ефективната маса *m* във формулата за честотата 14,66 за Lu /14,68 за Hf) (Фиг. 13, б).

В допълнение, пробите са охарактеризирани и с инфрачервена спектроскопия, снети са спектри в диапазона от 4000–400 сm⁻¹ с ивици, доказващи наличието на влага. В информативния диапазон от 1100–400 сm⁻¹ ивиците на абсорбция от 941, 917, 882, 832, 809, 777 и 761 сm⁻¹ са отбелязани с пунктирани линии (Фиг. 14).

Фигура 14. FT–IR спектри на пробите в диапазона 1100-400 cm⁻¹

Ивиците са отнесени към симетричните (941, 917, 882 и 832 cm⁻¹) и асиметричните (809, 777 и 761 cm⁻¹) валентни трептения на W-O-W в WO₄-тетраедрите [18]. Асиметричните и симетрични деформационни трептения, както и решетъчните трептения, се наблюдават под 400 cm^{-1} , но те не бяха регистрирани с използвания FT-IR апарат. Влиянието на Ln^{3+} се вижда в спектъра на $Hf_{0.95}Lu_{0.05}W_2O_{7.975}$ при уширяването на ивицата при 761 cm^{-1} , което макар и слабо, е забележимо и в спектрите на другите Hf_{0.95}Ln_{0.05}W₂O_{7.975}.

III.4. Морфология пробите, охарактеризирани електронна на чрез микроскопия (SEM и TEM)

Чрез СЕМ игловидни кристали се наблюдават както при HfW₂O₈ (Фигура 15, а), така и при твърдите разтвори Hf_{0.99}Eu_{0.01}W₂O_{7.995} и Hf_{0.95}Eu_{0.05}W₂O_{7.975} (Фиг. 15, b,c). т.е. не се изявява влияение на Ln³⁺ върху морфологията.

Фигура 15. SEM снимки на (а) HfW₂O₈, (b) Hf_{0.99}Eu_{0.01}W₂O_{7.995} и (c) Hf_{0.95}Eu_{0.05}W₂O_{7.975}

Игловидни микрокристали, аналогични на наблюдаваните чрез SEM, са наблюдавани и чрез TEM за α -HfW₂O₈ и получените твърди разтвори. Микрокристалите са добре оформени и с висока кристалност за Hf_{0.99}Tm_{0.01}W₂O_{7.995} (Фиг. 16, а). Дължината на микрокристалите варира в диапазона от 2 до 5 µm.

Фигура 16. ТЕМ снимки: (а) микрокристали на $Hf_{0.99}Tm_{0.01}W_2O_{7.995}$ с добре дефинирани ръбове, (b) $Hf_{0.99}Lu_{0.01}W_2O_{7.995}$, (c) $Hf_{0.99}Eu_{0.01}W_2O_{7.995}$ и (d) $Hf_{0.95}Eu_{0.05}W_2O_{7.975}$, показващи вътрешната кристална структура с характерно междуплоскостно разстояние.

Подредбата в кристалната решетка е висока с добре изразени кристални равнини и междуплоскостни разстояния за твърдите разтвори $Hf_{0.99}Lu_{0.01}W_2O_{7.995}$, $Hf_{0.99}Eu_{0.01}W_2O_{7.995}$ и $Hf_{0.95}Eu_{0.05}W_2O_{7.975}$ е показана на Фиг. 16 b–d.

Вижда се кристалната равнина в посоката, съответстваща на най-високия дифракционен пик в кубичната структура на α-HfW₂O₈. Междуплоскостните разстояния на пробите Hf_{0.95}Eu_{0.05}W₂O_{7.975} и Hf_{0.99}Lu_{0.01}W₂O_{7.995} (220) и (221) показват нарастващи

стойности за $Hf_{0.95}Eu_{0.05}W_2O_{7.975}$, което е резултат от по-големия йонен радиус на Eu^{3+} (94,7 pm Eu^{3+} , 86,1 pm Lu^{3+} [3]).

III.5. Фазов преход, обратимост, коефициенти на термично разширение за чистия HfW2O8 и за твърдите разтвори Hf1-xLnxW2O8-x/2

III.5.1. Фазов преход α -HfW₂O₈ \rightleftharpoons β -HfW₂O₈ фаза и неговата обратимост

Рентгеновите дифрактограми за чистия HfW_2O_8 са снети в температурния интервал 25/250/25 °C, където се вижда обратимият преход α- $HfW_2O_8 \rightleftharpoons \beta$ - HfW_2O_8 (Фиг. 17). Рефлексът при 16,9 ° 20 само намалява интензитета си, докато този при 31 ° 20 намалява и изчезва с повишаване на температурата (обозначено със стрелки на Фиг. 17). Докато последните два рефлекса са типични за α- HfW_2O_8 , тяхното изчезване при 250 °C е знак за завършен фазов преход α- $HfW_2O_8 \rightarrow \beta$ - HfW_2O_8 . След охлаждане до 25 °C тези рефлекси могат да бъдат открити отново като доказателство за обратимостта на прехода (Фиг. 17).

Фигура 17. Рентгенограми на чист HfW_2O_8 , снети при 25/250/25 °C (отдолу нагоре), показващи обратимостта на прехода α - $HfW_2O_8 \rightleftharpoons \beta$ - HfW_2O_8 . Отбелязани са рефлексите при 16,9 и 31,1 20

III.5.2. Параметри на елементарната клетка и коефициенти на термично разширение (КТР)

Параметрите на елементарната клетка за чист HfW_2O_8 и $Hf_{1-x}Ln_xW_2O_{8-x/2}$, x = 0,01 и 0,05, заедно с коефициентите на термично разширение, изчислени в интервала 25–100 °C (α -HfW₂O₈) и 200–250 °C (β -HfW₂O₈) и 25–250 °C, са представени в Таблица 3.

	T⁰C	HfW ₂ O ₈	Hf _{1-x} Eu _x W ₂ O _{8-x/2}		Hf _{1-x} Tm _x W ₂ O _{8-x/2}		$Hf_{1-x}Lu_xW_2O_{8-x/2}$	
			x = 0,01	x = 0,05	x = 0,01	x = 0,05	x = 0,01	x = 0,05
Параметър	25	9.1244(2)	9.1246(3)	9.1245(1)	9.1245(1)	9.1245(1)	9.1244(1)	9.1243(1)
на елемен	100	9.1174(1)	9.1179(1)	9.1177(1)	9.1171(1)	9.1170(1)	9.1173(1)	9.1172(1)
тарната	200	9.1055(1)	9.1058(2)	9.1057(1)	9.1050(3)	9.1049(1)	9.1049(1)	9.1048(1)
клетка, Å	250	9.1050(1)	9.1051(1)	9.1053(2)	9.1044(1)	9.1046(1)	9.1044(1)	9.1045(2)
	25-100	-10.22	-9.79	-9.94	-10.81	-10.96	-10.38	-10.36
КТР, ×10 ⁻⁶ К ⁻¹	200- 250	-1.10	-1.54	-0.87	-1.32	-0.66	-1.10	-0.66
	25-250	-9.45	-9.49	-9.35	-9.79	-9.69	-9.74	-9.64

Таблица 3. Параметри на елементарната клетка и стойности на КТР за чист HfW_2O_8 и $Hf_{1-x}Ln_xW_2O_{8-x/2}$ (x = 0,01 и 0,05)

Като се има предвид, че HfW₂O₈ има изотропен коефициент на отрицателно термично разширение, ние използвахме класическата формула за линейно разширение (вместо обемно разширение) [20].

Може да се види, че параметърът на кубичната елементарна клетка за чистия HfW₂O₈ намалява с повишаването на температурата от 25 до 250 °C, което доказва, че клетката се свива и демонстрира отрицателния коефициент на топлинно разширение. Същата тенденция се наблюдава и за параметъра на елементарната клетка на твърдите разтвори Hf_{0.99}Ln_{0.01}W₂O_{7.995} и Hf_{0.95}Ln_{0.05}W₂O_{7.975} при повишаване на температурата (Таблица 4). Повишаването на съдържанието на Ln^{3+} от x = 0,01 до 0,05 слабо влияе върху параметъра на елементарната клетка, като се наблюдава слабо намаление при нискотемпературната α -Hf_{1-x}Ln_xW₂O_{8-x/2} (25 °C) и слабо vвеличение за високотемпературната модификация β-Hf_{1-x}Ln_xW₂O_{8-x/2} (250 °C), и в двата случая в границите на грешката. В сравнение с чистия HfW₂O₈ се забелязва слабо увеличение на параметъра на кубичната елементарна клетка на $Hf_{1-x}Ln_xW_2O_{8-x/2}$, особено за пробите, съдържащи Eu^{3+} (Таблица 3), в резултат на по-големия йонен радиус на Eu^{3+} .

Изчислените коефициенти на термично разширение са съответно $-10,22 \times 10^{-6}$ и $-1,10 \times 10^{-6}$ K⁻¹ за чистите фази α-HfW₂O₈ и β-HfW₂O₈ (Таблица 3). Те се различават от литературните данни, -9 и -6×10^{-6} K⁻¹ [21], твърде вероятно в резултат на различния метод, използван за синтез.

Данните за КТР за HfW₂O₈ се различават и от тези за ZrW₂O₈ (Таблица 1, II.4, стр. 14). При температурата под фазовия преход стойностите са -10,8 и -10,22 × 10⁻⁶ K⁻¹, за ZrW₂O₈ и HfW₂O₈, съответно. Над температурата на фазовия преход при високотемпературните модификации, тенденцията се запазва, но вече при значително поголяма разлика, - 5,4 и -1,10 × 10⁻⁶ K⁻¹ за ZrW₂O₈ и HfW₂O₈, съответно. Логично е повишаването на температурата над 250 °C да причини допълнително свиване, но с намаляваща абсолютна стойност на КТР поради свиване на обема. Незначителното свиване на хафниевия волфрамат при високата температура (250 °C) може да се дължи на: (*i*) разлика в *свободния обем*: при 250 °C обемът на елементарната клетка на ZrW₂O₈ е ~ 761, докато при HfW₂O₈ е 755 Å³; (*ii*) разлика в *дължината на връзките*: 2,0718 за Zr-O, и 2,0660 Å за Hf-O, съответно (наши кристалографски изчисления). Може да се очаква, че при напречните вибрации M-O-M по-късата връзка Hf-O е по-инертна, разстоянието между металните атоми в Hf-O-W по-слабо се повлиява и като резултат по-слабо завъртане на тетраедъра в структурата на хафниевия волфрамат.

(*iii*) разлика в *атомната маса*: Трептенията на атомите в решетката се влияят от атомната маса. При двуатомна молекула честотата на трептенията се дава с формулата:

 $v = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ (по-голяма честота за Zr-O, по-малка за Hf-O). Амплитудата на трептенето при Zr-O -W ще бъде по- малка, връзката ще се скъсява по-малко (т.е. остава по-дълга), за разлика от Hf-O -W, където честотата на трептене ще е по-малка, но с по-голяма амплитуда на трептенията. Това вероятно води до по-слабо завъртане на тетраедъра в структурата на хафниевия волфрамат.

Най-вероятно наблюдаваното незначително свиване при HfW_2O_8 е резултат от едновременното влияние на споменатите фактори, но е възможно да има други фактори, като например методи на синтез, тяхната възпроизводимост, особено като се има пред вид установената разлика между нашите и литературните данни, но така също и между литературните данни от различни източници.

 $Moduфициращите Ln^{3+}$ йони влияят върху абсолютната стойност на КТР както за α -Hf_{1-x}Ln_xW₂O_{8-x/2}, така и за β -Hf_{1-x}Ln_xW₂O_{8-x/2}.

При нискотемпературната α -Hf_{1-x}Ln_xW₂O_{8-x/2} модификация (25–100 °C) се наблюдава (*i*) нарастване на абсолютната стойност на КТР с нарастване на съдържанието на Ln³⁺ спрямо КТР за α -HfW₂O₈ при съдържащите Tm³⁺ и Lu³⁺ твърди разтвори, както при x = 0,01, така и при x = 0,05, вероятно поради по-малкия размер на йоните, частично заместващи Hf⁴⁺, и по-големия свободен обем и възможност за движение на WO₄ – тетраедъра; (*ii*) по-ниска абсолютна стойност на КТР спрямо α -HfW₂O₈ при Ln = Eu³⁺, поради по-малка разтворимост в кристалната структура на по-големия Eu³⁺.

При абсолютните стойности на КТР за β -Hf_{1-x}Ln_xW₂O_{8-x/2} (200–250 °C) се наблюдава (*i*) понижаване на КТР с намаляване на йонния радиус в посока Eu – Tm – Lu, както за x = 0,01, така и за x = 0,05; (*ii*) по-ниски стойности при x = 0,05, както в сравнение с тези за x = 0,01, така и за β -HfW₂O₈. Вероятно най-малкият от изследваните йони, Lu³⁺, е по-добре разтворим в кристалната структура (по-близък йонен радиус с Hf⁴⁺: Hf⁴⁺ 72, Eu³⁺ 94,7, Tm³⁺ 88,0, Lu³⁺ 86,1 pm, CN 6 [3]), което означава по-добро включване в кристалната структура при x = 0,05. Ако се има пред вид атомната маса като фактор (както при сравнението на KTP за ZrW₂O₈ и HfW₂O₈), то стойността на атомната маса на Lu, макар и по-малка, е най-близка до тази на хафний, т.е при частично заместване може да се очаква аналогично на Hf⁴⁺ поведение.

Високотемпературните рентгенограми на $Hf_{1-x}Ln_xW_2O_{8-x/2}$ (x = 0,01; Ln = Eu, Lu) показват, че температурата 140 °C е критична температура за фазовия преход, т.е. рефлексът при 31 ° 20, типичен за α -HfW₂O₈, изчезва, което е индикация за пълно превръщане (Фиг. 18 а, б).

Фигура 18. Рентгенограми, снети при висока температура, за $Hf_{1-x}Ln_xW_2O_{8-x/2}$, x = 0,01; Ln: (a) Eu, (б) Lu; 140 °C е критичната температура на фазовия преход

III.5.3. Фазов преход от подреденост към неподреденост при $Hf_{1-x}Ln_xW_2O_{8-x/2}$ (x = 0,01; 0,05) и ролята на Ln^{3+}

В структурата на нискотемпературната α -HfW₂O₈ и високотемпературната β -HfW₂O₈ модификация HfO₆ - октаедрите са свързани с WO₄ - тетраедрите като споделят общи кислородни атоми (върхове). В α -HfW₂O₈-модификацията всеки WO₄ тетраедър споделя три от своите кислородни атома със съседните октаедри, докато при високотемпературната β -HfW₂O₈ модификация два WO₄ споделят три O атома. Кристалните структури на нискотемпературната α -Hf_{1-x}Ln_xW₂O_{8-x/2} и високотемпературната β -Hf_{1-x}Ln_xW₂O_{8-x/2} модификация са показани на Фиг. 19, където наполовина запълненият WO₄ тетраедър в β -Hf_{1-x}Ln_xW₂O_{8-x/2}, е представен с по-тъмен цвят (сив).

Фигура 19. Кристални структури (a) α -Hf_{1-x}Ln_xW₂O_{8-x/2} и (b) β -Hf_{1-x}Ln_xW₂O_{8-x/2}. Жълтите и сивите тетраедри в β -Hf_{1-x}Ln_xW₂O_{8-x/2} представляват наполовина запълнените WO₄

Ориентациите на WO₄ - тетраедрите определят прехода от α -HfW₂O₈ $\rightarrow \beta$ -HfW₂O₈, който е фазов преход от порядък към безпорядък или подреденост към неподреденост [22]. Степента на подреденост на WO₄-тетраедрите е в пряка зависимост от температурата и може да се оцени чрез параметъра η'_T [1].

$$\eta_T' = \sqrt{\frac{\left[\left(\frac{I310}{I210}\right)\right]_T}{\left[\left(\frac{I310}{I210}\right)_{HfW2O8}\right]_{298K}}},$$

Както може да се види на Фиг. 20, относителният параметър при стайна температура значително намалява, когато се въведе Eu^{3+} в системата, което води до повисока степен на завъртане на WO₄ тетраедрите в Hf_{0.99}Eu_{0.01}W₂O_{7.995}. Ефектът на Tm³⁺ и Lu³⁺ в твърдите разтвори Hf_{0.99}Ln_{0.01}W₂O_{7.995} е по-слабо изразен и може да се обясни със степента на разтворимост. По-тежкият Ln³⁺ е много по-разтворим в системата, поради по-близкия йонен радиус до радиуса на Hf⁴⁺ (Lu³⁺ 86,1, Tm³⁺ 88,0, Eu³⁺ 94,7, Hf⁴⁺ 72 pm, при координационно число 6 [3]). При твърдите разтвори Hf_{0.95}Ln_{0.05}W₂O_{7.975} най-добре разтворимият сред изследваните йони, Lu³⁺, влияе най-силно върху степента на гетраедъра, вероятно поради най-значимо включване в кристалната структура при по-голямото съдържание, x= 0,05.

Фигура 20. Влияние на температурата и количеството на Ln(III) в твърдите разтвори $Hf_{1-x}Ln_xW_2O_{8-x/2}$ (x = 0,01 и 0,05) върху неподредеността на WO₄ тетраедрите

III.6. UV-Vis абсорбция на твърдите разтвори. Енергия на забранената зона

Абсорбцията в UV-Vis интервала (200 – 450 nm) показва максимум при около 250 nm за всички изследвани проби. Наблюдаваната слаба абсорбция при около 400 nm при $Hf_{1-x}Tm_xW_2O_{8-x/2}$ (x = 0,01 и 0,05) (Фиг. 21, а) не се забелязва при другите проби. Много вероятно е ивиците между 250 и 350 nm да съществуват поради силния пренос на заряд от лиганд към метал, наблюдаван както в леко изкривени моноволфраматни структури, така и в поливолфраматите [23].

Фигура 21. (a) UV-Vis спектри и (б) енергия на забранената зона

Изчисленията на енергията на забранената зона бяха извършени въз основа на UV-Vis данни (Фиг. 21, а, б) и представени в Таблица 4. Данните за UV-Vis бяха анализирани, като се определи връзката между оптичната ширина на забранената зона, коефициента на абсорбция и енергията (hv) на падащия фотон за оптично поглъщане близо до ръба. Изчисленията са извършени от измерените криви чрез напасвания, съгласно формулата на Таук $\varepsilon hv = A(hv - Eg)^n$ [24], където A е константа, независима от hv, Eg е ширината на забранената зона, ε е молен екстинкционен коефициент и n зависи от вида на прехода. Използван е познатият подход за определяне на Eg от пресечната точка на $(\varepsilon hv)^{1/n}$, спрямо hv по оста x, като n е 1/2 и 2 за преки и непреки преходи, съответно.

N⁰	Проба	Eg, eV		
1	HfW_2O_8	2,87		
2	Hf _{0.99} Eu _{0.01} W ₂ O _{7,995}	3,02		
3	$Hf_{0.95}Eu_{0.05}W_2O_{7.975}$	2,92		
4	$Hf_{0.99}Tm_{0.01}W_2O_{7.995}$	3,10		
5	$Hf_{0.95}Tm_{0.05}W_2O_{7.975}$	2,78		
6	$Hf_{0.99}Lu_{0.01}W_2O_{7.995}$	3,12		
7	Hf _{0.95} Lu _{0.05} W ₂ O _{7.975}	2,78		

Таблица 4. Енергия на забранената зона за HfW2O8 и твърдите разтвори, eV

Стойността на енергията на забранената зона на чистия α-HfW₂O₈ е 2,87 eV, получена чрез уравнението на Таук, добре съответства на стойността, наблюдавана за чист α-ZrW₂O₈, 2,84 eV за пряк преход [9]. Стойностите на твърдите разтвори за всички проби от типа Hf_{0.99}Ln_{0.01}W₂O_{7.995}, x = 0,01 нарастват в диапазона от 3,02, 3,10 и 3,12 eV, съответно за Ln = Eu³⁺, Tm³⁺ и Lu³⁺. Това може да се дължи на намаляването на големината на кристалитите, поради наличието на Ln³⁺ [10]. Интересното е, че понататъшното включване на Ln³⁺ за Hf_{0.95}Ln_{0.05}W₂O_{7.975}, x = 0,05, води до значително стесняване на забранената зона, особено за Tm³⁺ и Lu³⁺ (2,78 eV). Най-вероятно това е поради по-голямата степен на завъртане на полиедрите от WO₄ като резултат от позначимо включване на по - малките по размер йони в HfO₆ – октаедъра при заместване на Hf⁴⁺. Подобен ефект, породен от индуцирана аморфизация, причинена от действието на високо налягане, е наблюдаван от Muthu и съавтори [7].

III.7. Изводи

1. Решена е структурата на полиморфната модификация β -HfW₂O₈, което позволи да се реши и структурата на високотемпературните модификации на получените твърди разтвори Hf_{1-x}Ln_xW₂O₈ (Ln = Eu, Tm, Lu).

2. Потвърдено е протичането на фазовия преход α -HfW₂O₈ $\rightarrow \beta$ -HfW₂O₈ чрез проследяване на промяната на рефлексите (110) и (310) в рентгенограмите с повишаване на температурата.

3. Установените разлики в абсолютните стойности на KTP за ZrW_2O_8 и HfW₂O₈, по-големи при високотемпературните модификации, могат да се дължат на разлики в атомните маси, свободния обем, дължината на връзката.

4. На основа на високотемпературните рентгенограми на твърдите разтвори Hf_{1-x}Ln_xW₂O_{8-x/2} (x = 0,01; Ln = Eu, Lu) е установена температурата на фазовия преход.

5. Установена е разлика при влиянието на лантаноидните йони върху (*i*) стойностите на енергията на забранената зона за $Hf_{1-x}Ln_xW_2O_8$ (Ln = Eu, Tm, Lu); (*ii*) коефициентите на термично разширение, при които $Hf_{1-x}Lu_xW_2O_8$ (Lu³⁺ е с най-малкия йонен радиус от изследваните лантаноиди, с атомна маса най-близка до хафний) показва най-близки стойности до β -HfW₂O₈.

IV. ИЗВОДИ И ЗАКЛЮЧЕНИЯ

1. Чрез хидротермален метод са модифицирани ZrW_2O_8 и HfW₂O₈ и получени твърди разтвори $M_{1-x}Ln_xW_2O_8$ (M = Zr, Hf; Ln = Eu, Tb, Tm, Lu), за които е установено

влиянието на модифициращите лантаноидни йони върху (*i*) параметъра на елементарната клетка, (*ii*) температурата на фазовия преход, (*iii*) коефициента на термично разширение, (*iv*) енергията на забранената зона, (*v*) валентните трептения на W-O-W в Рамановите спектри. Сравнително ниската стойност на граничното съдържание на модифициращия лантаноиден йон, x = 0,07 за твърдите разтвори Hf_{1-x}Ln_xW₂O₈ (Ln = Eu, Tm, Lu), би могло се дължи и на използвания метод на синтез.

2. Използването на налични данни за изоструктурни съединения, както и литературни данни за изходни структурни параметри, позволи чрез решаване на структурата на полиморфната модификация β-HfW₂O₈ да се реши и структурата на високотемпературните модификации на получените твърди разтвори.

3.Получените стойности за КТР за нискотемпературните модификации α -ZrW₂O₈ и α -HfW₂O₈ са много близки, докато стойностите за високотемпературните модификации β -ZrW₂O₈ и β -HfW₂O₈ значително се различават, като ниската абсолютна стойност за β -HfW₂O₈ се отличава значително и от литературните данни, което може да се дължи и на метода на получаване. Наблюдаваното незначително свиване при β -HfW₂O₈ в сравнение с β -ZrW₂O₈ може да е резултат от разлика (*i*) в атомната маса Zr/Hf, (*ii*) в дължината на връзките Zr-O/Hf-O, (*iii*) в свободния обем на кристалната решетка, но е възможно влияние и на други фактори, като методи на синтез, тяхната възпроизводимост, особено като се има пред вид установената разлика между нашите и литературните данни, но също и между литературните данни от различни източници.

4. Изследваните свойства на получените твърди разтвори на основа на циркониев и хафниев волфрамат $M_{1-x}Ln_xW_2O_8$ (M = Zr, Hf; Ln = Eu, Tb, Tm, Lu) се определят в голяма степен от подредеността на WO₄ - тетраедрите, върху която влияние оказва както вторичната прекристализация, така и температурата и частичното заместване на Zr^{4+}/Hf^{4+} с Ln^{3+} в MO_6 – октаедъра. По-големите по размер Ln^{3+} йони причиняват по-значимо изкривяване/неподреденост на WO₄ при ниско съдържание на модифициращия йон, x = 0,01, докато по-малките по размер йони, близки до размера на Zr^{4+}/Hf^{4+} , поради по-добрата си разтворимост в кристалната структура, оказват по-силно влияние при повисокото съдържание на модифициращия йон x = 0,05.

Изследванията, проведени в рамките на дисертационния труд, разширяват познанията за свойствата на циркониевия и хафниевия волфрамат и изявяват различия в свойствата на твърди разтвори, синтезирани на основа на циркониевия и на хафниевия

волфрамат. Независимо от ограничената разтворимост на лантаноидните йони в твърдите разтвори, изследванията потвърждават възможността за контролиране на някои свойства на циркониевия и хафниевия волфрамат чрез модифициране с лантаноидни йони.

<u>V. ЦИТИРАНА ЛИТЕРАТУРА</u>

- 1. H.-H. Li, et al. J. Solid State Chem., 180, 2007, 852
- 2. J. Liao, et al. Materials Research Bulletin, 70, 2015, 7
- 3. R. D. Shannon. Acta Crystallogr., A, 32, 1976, 751
- 4. Ch.-Y. Wang, et al. Polyhedron, 159, 2019, 298
- 5. C. Georgi, H. Kern. Ceram. Int., 35(2), 2009, 755
- 6 C. Lind, Materials, 5(12), 2012, 1125.
- 7. R. Lacomba-Perales, et al. EuroPhys. Letters, 83, 2008, 37002
- 8. D. V. S. Muthu, et al. Solid State Commun., 122 (1-2), 2002, 25.
- 9. P. Godlewska, et al. J. Alloys Compd., 745, 2018, 779.
- 10. L. Ouyang, et al. Phys. Rev. B 65, 2002, 113110.
- 11. J. S. Church, et al. Appl. Catal., 101, 1993, 105
- 12. D. L. Ferreira, et al. J. Chem. Phys., 147, 2017, 154102
- 13. U. Kameswari, et al. Int. J. Inorg. Mater. 2, 2000, 333
- 14. Y. Yamamura, et al. J. Phys. Chem. B 111, 2007, 10118
- 15. K. Thummavichai, et al. R. Soc. Open Sci. 5, 2018, 171932
- 16. Y. Yamamura, et al. Phys. Rev. B 66, 2002, 014301
- 17. J. D. Jorgensen, et al. J. Appl. Phys. 89, 2001, 3184-3188
- 18. B. Chen, et al. Phys. Rev. B 64, 2001, 214111
- 19. P. Atkins, J. de Paula, Physical Chemistry, Thermodynamics, Structure, and Change, Freeman & Co, 2014
- 20. E. D. Encheva, et al. Bulg. Chem. Comm. Spec. Issue F 50, 2018, 143
- 21. J. D. Jorgensen, et al. Phys. Rev. B 59, 1999, 215
- 22. T. Hashimoto, et al. Solid State Commun. 116, 2000, 129
- 23. E. I. Ross-Medgaarden, et al. Phys. Chem. C, 111, 2007, 15089
- 24. J. Tauc, et al. J. Phys. Status Solidi B 15, 1966, 627-637

<u>VI. ПУБЛИКАЦИИ И ДОКЛАДИ НА НАУЧНИ ФОРУМИ</u>

VI.1. Публикации, свързани с дисертационния труд

II1. E. D. Encheva, **M. K. Nedyalkov**, M. P. Tsvetkov, M.M. Milanova, The influence of the modification of zirconium tungstate with Eu(III) on the $\alpha \rightarrow \beta$ phase transition temperature and optical band gap, Bulg. Chem. Comm., 50 (Special Issue F), 2018, 143-149

II2. M. Tsvetkov, **M. Nedyalkov**, E. Valcheva, M. Milanova, Characterization of Tungstates of the Type Hf1–xLnxW2O8–x/2 (Ln = Eu, Tm, Lu) Synthesized Using the Hydrothermal Method, Crystals, 2022, 12(3), 327, https://doi.org/10.3390/cryst12030327.

Публикация, не включена в дисертационния труд

M. Tsvetkov, J. Zaharieva, G. Issa, Z. Cherkezova-Zheleva, **M. Nedyalkov**, D. Paneva, T. Tsoncheva, M. Milanova, Cobalt ferrite modified with Hf(IV), as catalyst for oxidation of ethyl acetate, Catalysis Today, 357, 2020, 541-546, DOI: 10.1016/j.cattod.2019.06.007

VII.2. Доклади на научни форуми

Д1. Мартин Недялков, Е. Енчева, М. Цветков, М. Миланова: "The influence of the modifying Eu(III) on the $\alpha \rightarrow \beta$ phase transition temperature of zirconium tungstate". Постерен доклад: VII-th National Crystallographic Symposium NCS2018 with international participation, 03-05.10 2018, София, България

Д2.Мартин Недялков, Е. Енчева, М. Цветков, М. Миланова, на тема: "Влияние на модифицирането на циркониев волфрамат с Eu(III) върху α → β фазовия преход". Устен доклад: Научна сесия 2018 "Вечер на химията", Факултет по химия и фармация, 23.11. 2018 г., София, България

ДЗ..Мартин Недялков, М. Цветков, М. Миланова, на тема: "Установяване на температурата на α → β фазовия преход на циркониев волфрамат, модифициран с Tb(III) йони". Устен доклад: XVIII Национална конференция по химия за студенти и докторанти. 15-17.05. 2019, София, България

Д4. **Martin Nedyalkov**, M. Tsvetkov, M. Milanova "Tungstates of the Type Hf1-xLnxW2O8, (Ln = Eu, Tm, Lu) studied by High Temperature X-Ray Diffraction". Постерен доклад: 5th ENEFM2019, International International congress on Energy Efficiency and Energy related materials, 22-28.10.2019, Oludeniz, Turkey.