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The easy way to avoid problems...

If your experiment needs
statistics, you should
have done a better

experiment Ernest
Rutherford (1871 — 1937)

Never repeat a measurement: there is a serious risk that you
will not find the same result...

But we are not here to recommend this kind of approach!



Evaluation of uncertainties in measurement

In 1977, recognizing the lack of international consensus on the expression of
uncertainty in measurement, the world's highest authority in metrology, the Comité
International des Poids et Mesures (CIPM), requested the Bureau International des
Poids et Mesures (BIPM) to address the problem in conjunction with the national
standards laboratories and to make a recommendation.

- Creation of a working group (CIPM 1977)

« Questionnaire to national metrology laboratories (February 1978)
* Report BIPM 80-3

 Recommendation INC-1 1980 « expression of experimental
uncertainties »

* Approbation of INC-1 in 1981 by CIPM

* First publication of the GUM in 1993

1995 edition after minor corrections



JCGM 100:2008

GUM 1995 with minor corrections

Evaluation of measurement
data — Guide to the expression
of uncertainty in measurement

Evaluation des données de mesure —
Guide pour Fexpression de Fincertitude de
mesure

BIPM: Bureau International des Poids et
Mesures

IEC: International Electrotechnical
Commission

IFCC: International Federation of Clinical
Chemistry

ISO: International Organization for
Standardization

IUPAC: International Union of Pure and
Applied Chemistry

IUPAP: International Union of Pure and
Applied Physics

OIML.: International Organization of Legal
Metrology




Uncertainties in physics

Example of the interest to correctly

evaluate the uncertainties rlo) Com
Raiola et al. 2007* : decrease of the half-life | ' | iiiod
. . Home Blog Multimedia Indepth Jobs Events
or alpha radionuclides at low temperature.
Experimental observation: decrease of the . Aoool sokilion to-waste dsposs]
half'llfe Of ZlOPO Of (6,3 i 1,4) % from 300 K if:; ;\g-rou;)h;);physmlsts in Germany claims to have discovered a
Sana way of speeding up radioactive decay that could render

to 12 K.

Appled Rediaton =n l=otop=s = | New experiment at LNE-LNHB in 2009,
il Proceedings of the 17th Intern;t‘:irc\::;:;nle;e;;ezc;r;;adionucllde Metrology and its T With eXh au Stive eval u ati O n Of
» _ uncertainties. Conclusion: no significant
On the variation of the “ "Po half-life at low temperature
effect!

S. Pierre d - B P Cassette, M. Loidl, T. Branger, D. Lacour, |. Le Garrérés, S. Morelli

CEA, LIST, Laboratoire National Henri Becguerel (LMNE-LNHE), F-91191 Gif-sur-Ywetie, Frances

Awsilable online 18 Movember 2009,

The measurement uncertainties of the Raiola experiment were under evaluated, and
some bias were not taken into account, leading to a wrong scientific conclusion... and

a wrong theory to explain this phenomenon.

* F. Raiola et al., Physical Journal A—Hadrons and Nuclei, 32 (2007), pp. 51-53



The ideal method for evaluating and expressing the
uncertainty of the result of a measurement should be:

« Universal: the method should be applicable to all kinds of
measurements and to all types of input data used in measurements.

The actual quantity used to express uncertainty should be:
* Unique (nothing like systematic and random uncertainty)

« Internally consistent: it should be directly derivable from the
components that contribute to it, as well as independent of how
these components are grouped and of the decomposition of the
components into subcomponents

« Transferable: it should be possible to use directly the uncertainty
evaluated for one result as a component in evaluating the
uncertainty of another measurement in which the first result is used.



Concepts and definitions

The result of a measurement is a random variable. ..
... and must be processed accordingly

Error and uncertainty are very different concepts

Error: measured quantity value minus a reference quantity value. As
the reference quantity value (true value) is unknown, the error is
generally unknown...

If a measurement error (bias) is suspected, it must be corrected... but this
does not completely suppress the doubt about the result

Uncertainty: non-negative parameter characterizing the dispersion
of the quantity values being attributed to a measurand, based on the
information used

The word “uncertainty” means doubt, and thus in its broadest sense “uncertainty
of measurement” means doubt about the validity of the result of a measurement.



Random variable

Arandom variable, or stochastic variable can be described
iInformally as a variable whose values depend on outcomes of
a random phenomenon.

A random variable has a probability distribution, which
specifies the probabillity of its range. A probability density
function can be defined for continuous random variables

A

probability

Y

Possible values



Example of probability distribution:
uniform discrete random variable

probability

1/6 *r F F F I

1 2 3 45 6 value

Playing dice



Other example: the loaded dice

lead

probability

1/6

1 2 3 4 5 6 value

If you change the physics, the probability distribution can change




Other discrete random variable, the
Poisson distribution

M?*xe™
X!

P(x,M) =

P(x,M) Is the probability to get the value x for an
expected value M

Standard deviation S =~/ M




Poisson distribution

probability distribution that characterizes discrete events occurring
Independently of one another in time

LS

Foisson distributions with different means




NOT Poisson distribution:

« Simultaneous emission of radiation by mother and
daughter decay products
— dependent increments

« Cascade of gamma emission, delayed or not
— simultaneous : clustering of events

— delayed states : dependent increments

« Source decay over along period (~T,5,)
— not stationary, ‘activity’ (event rate) diminishes



Non-random count loss

| e

pile-up, dead time

Emission statistics Counting statistics



Difference of Poisson distributed random

variables

AR RS AR AL A AR AR LR :
The Skellam distribution is the 530k s
Wi=2 Mo= ]
discrete probability distribution 025k Lengsndi
of the difference N, — N, of two 020 oy |
random variables N, and N, = & \\
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where | k(z) is the modified Bessel function of the first kind.

Any linear combination of two Skellam-distributed variables are again Skellam-distributed.



Other example: uniform distribution

P(x)




Other example: triangular distribution

P(x)




Example of continuous random variable,
Gaussian (Normal) distribution

(x=M)?

P(x) = e

SA\/ 27

P(x) Is the probability to get the value x of a Gaussian random
variable of expected value M and standard deviation s




Normal Distribution
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Central Limit Theorem (CLT)

The distribution of an average
will (almost always) tend to be “NORMAL”
as the sample size increases, regardless of the

distribution from which the average is taken



Let's go back to uncertainties

Reminder:

The uncertainty of a measurement result expresses the
reliability of that result or the confidence that we have in it

U

A measurement result is iIncomplete without a statement of the
corresponding measurement uncertainty




Steps In uncertainty evaluation

Define the measurand (this is not a trivial task)

|dentify the input quantities and parameters used in the measurement
process (experimental data, coefficients, parameter of influence)

Explicit the relationship between the input quantities and the
measurement result

Evaluate the uncertainties of each input quantity, in terms of standard
deviations, and evaluate the covariances between the input quantities

Propagate the variances and covariances to obtain the standard
combined uncertainty

If necessary, expand the uncertainty with a given coverage factor
Report the measurement result with the associated uncertainty



Definition of the measurand

. The measurand is the guantity intended to be measured.
Before measuring, give a precise and exhaustive definition
of the measurand

* Include in the definition the guantities and parameters
which could influence the measurement result

 Think about the use of the measurement result in order to
avoid any ambiguity on the definition of the measurand



Input quantities

Experimental data:
«Counting rate, mass, volume, peak surface...

Parameters of influence:
*Temperature, pressure, humidity...

Coefficients:
*Correction factors, calibration factors, detection efficiency...

Standards :
*Activity, mass, time...

Theoretical data:
*Emission intensities, decay probabilities, half-life...



Relation between the input quantities
and the measurement result

y=1(X,X%,,..X,)

y is the measurement result and the x; are the input quantities



Evaluation of the uncertainties of the input quantities

Each input quantity must be considered as a random variable with a
mean value and a standard deviation

The GUM gives two ways to evaluate the input quantities uncertainties:

Type A evaluation method: evaluation of the experimental standard
deviation by statistical methods (e.g. by repetition of the measurement)

Type B evaluation method: evaluation of the standard deviation of the

iInput quantity from hypothesis on the statistical distribution of this
guantity or by any other information

Warning: type A and B concerns the evaluation methods and not the uncertainties



Type A evaluation method

- Repetition of the measurement (sampling of the distribution)
« Calculation of the mean value
« Calculation of the experimental standard deviation

e Calculation of the standard deviation of the mean

If the measurement is repeated in the same conditions, the standard
deviation of the mean is a good estimator of the uncertainty



Average, mean value of the distribution

Expected value E(x) (first moment of the distribution)

E() =Y %P(x=x)

: 1
If all values have the same weight P(x,)= -
n 1 1 n
E(x) = Z X; 0 = —Z X; = arithmetic mean Best estimator of the average value
i=1 i=1

If the values have different weights

W. X.
; i N l

where W =

<, Uy

Weighted mean X =



Dispersion of the distribution

n samples with the same probability: x;, X5, X3, X4, ..., X,

Variance (2" moment of the distribution) Sf (X) = E[(x— E(X))Z]

1 < )
Sx :\/E;(Xi_M)

Variance = s? s = standard deviation = Vvariance



Standard deviation of the mean

Estimator of the dispersion of the mean



Covariance between guantities(estimated)

u (x,z) = o _1)Z(x —X)(z, - 2)



Should we consider the standard deviation
or the standard deviation of the mean?

The experimental standard deviation quantifies the
dispersion of the random variable

When increasing the number of samples, the standard
deviation does not change too much, but is known with better
precision...

The standard deviation of the mean quantifies the dispersion
of the evaluated mean (which is also a random variable)
When increasing the number of samples, the standard
deviation of the mean decreases as the square root of the
number of samples (because the mean values is known with
better precision)



Example: measurement of the surface
contamination of a field Bg/cm?

0,004 0,010 0,004 0,010 0,010 0,003 0,001 0,004 0,009 0,007
0,009 0,004 0,004 0,005 0,007 0,008 0,001 0,002 0,003
0,005 0,004 0,007 0,009 0,005 0,007 0,002 0,002 0,000 0,001
0,002 0,007 0,004 0,004 0,006 0,001 0,009 0,005 0,010
0,008 0,005 0,009 0,003 0,003 0,006 0,009 0,000 0,002
0,003 0,008 0,010 0,008 0,006 0,001 0,004 0,003 0,004 0,001
0,007 0,009 0,003 0,001 0,009 0,002 0,004
0,004 0,010 0,001 0,006 0,008 0,002 0,004 0,007 0,010 0,001
0,005 0,000 0,004 0,005 0,006 0,009 0,010 0,006 0,010 0,002
0,009 0,010 0,009 0,006 0,002 0,006 0,005 0,008 0,009 0,009

o)

Low contamination with hot spots




Evaluation of the results

Mean activity (100 measurement points) :

1 100

A = = 552Bg/cm?
10021AI a

Experimental standard deviation

1 100( ) )
S Al =2576Bq/cm
A V100-14 A~ d

Standard deviation of the mean

S, = = f(a ~Af =258Bq/cm’
A \100 e (100 1) &



Lets go back to the definition of the measurand

Definition 1 : mean surface activity (mean activity when sampling 1 cm? of soil)
A=5,57 Bg/cm?

Definition 2 : mean surface activity (average activity of the soil) A= 5,57 Bg/cm?

Uncertainty: non-negative parameter characterizing the dispersion
of the quantity values being attributed to a measurand, based on the
information used

Uncertainty 1 : experimental standard deviation: 25,76 Bg/cm?, gives
information about the dispersion of surface activity when sampling 1 cm? of soil

Uncertainty 2 : standard deviation of the mean: 2,58 Bg/cm2, gives
information about the dispersion of the average surface activity of the field

What is the best approach?



It depends on what you are looking for

- Both approaches are correct but:

- If you are looking for the mean surface contamination, use
uncertainty definition 2

 But, if someone measures the activity contamination and
find a hot spot (e.g. 114,64 Bg/cm?). This is 42 standard
deviations away from the mean!

Withdrawing a outlier is risky: it could led to underestimate a cause of
fluctuation, so to underestimate the uncertainty.
Besides, it could prevent you to discover a new phenomenon...



Type B evaluation methods

Hypothesis on the probability density function (pdf) of the
iInput quantity in order to derive the mean value and the
standard deviation

Example: if the input quantity is in the [M-a,M+a] interval

 Uniform pdf: U = i
J6
d
* Triangular pdf: U=—
J3
G ' df (with 95,5 % fid int ) u a
« Gaussian wi ,5 % confidence interval): = —
“’ NE

Evaluation “as a rule of thumb” is a type B method!



Covariances

. Experimental covariance type A evaluation method

Sx,y = \/LG:()ﬂ o X)(y| _Y—)

n-13
*But covariance can also be estimated (type B evaluation)

Examples :

» related nuclear and atomic data: P, et o,

* coincidence between detectors

» Calibration of gamma detectors using radionuclides with
several gamma emissions



Law of propagation of variances

y=T(X,X%X,,..X)

Hypothesis:

« f is continuous and can be expanded in Taylor series
» Development limited to the 1st order

« Small fluctuations of each input quantity

- [T )2 3 2 D

1I=1]= |+1 XJ

\ / |

Sensitivity coefficients covariances



Combined standard uncertainty

When the input quantities x; are not correlated, covariances = 0

Ug(y) = \/i giir u?(x;)

The combined standard uncertainty u.(y) is an estimator of
the dispersion of the measurand y



Instead of being calculated from the function f, sensitivity
coefficients df/oxi are sometimes determined experimentally:
one measures the change in y produced by a change in a
particular x; while holding the remaining input quantities
constant.

In this case, the knowledge of the function f is accordingly
reduced to an empirical first-order Taylor series expansion
based on the measured sensitivity coefficients.

Sometimes, the law of propagation of variances cannot be used:
hypothesis not fulfilled (large fluctuations, non continuous function, non
derivable function, discontinuities...)

Instead a Monte Carlo approach can be used



Examples of propagation of variances
(simple cases without covariances)

Sum or difference of terms

Yy =Xt X+ X3 5 5 5 5
variance: Ug(y) = u(xg) +u=(xp) + u=(x3)

Product or ratio

Y=X;Xo/X5 . 2 2 2
_ _ u(xy) Uu°(xy) u“(x
Relative variance: C(Zy) = (2 1), (22) + (23)
y X1 X2 X3
Factor
y=ax

variance: u®(y) = a% - u?(x)



Examples (continued)

Power
y:xp
Relative variance

Exponential
y=e*

Relative variance:

y:ea/X
relative variance

y2 =P 2
2
us(y
(2)=u2<x)
y




Expanded uncertainty

Although the standard combined uncertainty can be universally used to
express the uncertainty of a measurement result, in some commercial,
iIndustrial, and regulatory applications, and when health and safety are
concerned, it is often necessary to give a measure of uncertainty that
defines an interval about the measurement result that may be

expected to encompass a large fraction of the distribution of values that
could reasonably be attributed to the measurand.

The expanded uncertainty, U, is obtained by multiplying the
combined standard uncertainty u.(y) by a coverage factor k:

U=k u,(y)

In general, k will be in the range 2 to 3.
However, for special applications k may be outside this range.



Expanded uncertainty

U can be is interpreted as defining an interval about the
measurement result that encompasses a large fraction p of
the probabillity distribution characterized by that result and
Its combined standard uncertainty, and p is the coverage
probabillity or level of confidence of the interval.

More detailed calculations necessitate the knowledge of the
pdf of the measurand, and the number of degrees of
freedom

Warning: the pdf of the mean of a random variable can be different that
the pdf of the random variable.

Example :
 Poisson distribution: the pdf of the evaluated mean is a Gaussian

distribution
« Gaussian distribution: the pdf of the mean is a Student distribution

(with n degrees of freedom)



Number of degrees of freedom

Type A evaluation method from n samples:
v=n-1

Type B evaluation method: no general answer

If the pdf of the measurand is supposed to be Gaussian:

—2

J1oui(x) 1) Au(x)

N/

20wtk 2 uk)

/

Uncertainty of the uncertainty




Effective number of degrees of freedom

Welch-Satterthwaite formula :

u; (y)
iui“ (y)

=1 Vi

N
=1




Uncertainty of the uncertainty

The estimated standard uncertainty is a random variable...

and thus has an uncertainty!

For a type A evaluation method, if the measurand is
supposed to be Gaussian, the relative uncertainty of the
uncertainty is a function of the number of repetitions:

Number of repetitions Relative uncertainty of
the uncertainty (%)

76
52
42
36
24
20 16
30 13
50 10

—
S U A WN



Consequences

We can assume that for a very good measurement, the
relative uncertainty of the uncertainty is seldom less than
25%, so:

*Round up the uncertainty to a maximum of 2 significant
digits

« Keep in mind that the uncertainty of the uncertainty also
concerns all the uses of the uncertainty, e.g. for the boundary
of intervals and for the decision threshold and detection
limits. E.g. what is the point to use a Student factor with 3
significant digits?



Rounding up

= Seldom justified to quote uncertainties to more
than two significant figures

= Practice:

=|f 1st significant digitis a 1 or 2, quote two figures,
otherwise, quote one figure:

10, 11,12....... 28,29,3,4,5,6,7,8,9

= Always round UP (if rounding down decreases
uncertainty by more than 5%)

e.g. 0.308 - 0.3 but 0.318 - 0.4



Reporting results

« A=104,7 Bg/g with a combined standard
uncertainty of 1,5 Bqg/g

. A=104,7(15) Bg/g
. A=(104,7 % 3,0) Bg/g, k=2

For an expanded uncertainty, it Is mandatory to
give the coverage factor k




Good usage of the GUM

Although the GUM provides a framework for assessing
uncertainty, it cannot substitute for critical thinking,
Intellectual honesty and professional skill. The evaluation of
uncertainty Is neither a routine task nor a purely
mathematical one; it depends on detailed knowledge of the
nature of the measurand and of the measurement.

The quality and utility of the uncertainty quoted for the result
of a measurement therefore ultimately depend on the
understanding, critical analysis, and integrity of those who
contribute to the assignment of its value.

GUM, 3.4.8



Evolution of the GUM

Evaluation of measurement data — An introduction to the "Guide to the expression of
uncertainty in measurement” and related documents
JCGM 104:2009

Evaluation of measurement data - Supplement 1 to the "Guide to the expression of
uncertainty in measurement” — Propagation of distributions using a Monte Carlo method
JCGM 101:2008

Evaluation of measurement data - Supplement 2 to the "Guide to the expression of
uncertainty in measurement"” — Extension to any number of output quantities
JCGM 102:2011

Evaluation of measurement data — The role of measurement uncertainty in conformity
assessment
JCGM 106:2012

Guide to the expression of uncertainty in measurement — Part 6: Developing and using
measurement models

JCGM GUM-6:2020

Cf. https://www.bipm.org/en/publications/guides/gum.html




Practical example In
radionuclide metrology
Standardization of a 193Pd
solution



103pd used in brachytherapy

(used to treat prostate cancer)

* Indirect measurement needed (in hospitals) :

* lonisation chambers (dose calibrators)
Need of primary standardization and calibration factors

e Standardization :
« Calorimetry (not destructive)
 Liquid Scintillation Counting (destructive)



103pd simplified decay scheme

103 Pd

99.9 %
103 R h m

56 min
39.8 keV ce.

103Rh



The TDCR method in short

For an energy spectrum S(E) absorbed by the scintillator,
Find out the free parameter o for which :

Texp — jspectrumS(E)(l_e_n)BdE
Doy |, S(ENBA—€7) ~2(1~€")*)dE

with n:aIE dE
* 14k 95

dx



The TDCR method (cont.)

Using this free parameter «, calculate the detection efficiency in double
coincidences:

£y = SpectrumS(E)(fS(l—e‘”)z —2(1-e")*)dE
: n=af —25
wit — %)
1+deE

dx

So the energy spectrum absorbed by the LS-cocktail must be calculated...



TDCR method algorithm in practice

| .[ S(E)l-e™)1-e™)l-e™) dE A
RT — spectrum
R o S(E) e ™)™ )IE avec
R, J.spectrum S ( E )(1— e )(l—e™®)(1—e ") dE Ve AdE
- _ _ I =
RBC J‘spectrumS(E)(l_e nB)(l_e UC)dE 3 70 1+ kBCCli—i

RT . -[spectrum S ( E)(l_ e )(1_ e )(1_ e ) dE
RAC _ -‘-speCtrum S ( E) (1_ e )(1_ e_UCB )dE /

\

2 2 2
Minimization of: Texp . Tcalc 4 Texp . Tcalc 4 TEXIO . Tcalc
ABep AB BCep BC ACep AC

calc calc calc

By downhill simplex algorithm



Calculation of the energy spectrum

Pd-103 disintegration

— El

— El

ectron capture K
— XKa

\:XL
Auger L

— XKB
— Auger KLL

— XL

\:XL
Auger L

— Auger L

XL
Auger L
— Auger KLX

\:XL
Auger L

— Auger KXY
ectron capture L

— XL

— El

— Auger L
ectron capture M,N

Rh-103 desexcitation

— Electron conversion K

— XKo

\:XL
Auger L

— XK
— Auger KLL

— XL

\:XL
Auger L

— Auger L

XL
Auger L
— Auger KLX

\:XL
Auger L

— Auger KXY

— Electron conversion L

— XL

— Auger L

— Electron conversion M,N
— gamma-ray



K XK, Absorbed __ X /Auger
—[ L
Escape X /Auger _
L
- XKg————— Absorbed
L Escape
- Auger X /Auger L — XL/Auger]
KLL L
—Auger X /Auger L
KLX
| Auger
KXY
— L — XL/Auger
L

M,
N

Calculation of the energy spectrum (ec.)

Energy released

K. (Compton+photoelectrique)+X /A

XA

Ks (Compton+photoelectrique)
none

Axixt X /AL

AKXY

XA

none

probability
Px*ok*RK *PK /PKio

Pr* o *(1-RK,)*PK/PKot

PK*O)K*R KB*P KB/P Ktot
Pr*ox*(1-RK,)*PK o/PKiot

Pr*(1-0k)* Prii/Pkiot

Pc*(1-ok)™ Prix/Pxiot

PK*(l'(DK)* Prxy/Prkiot

PL

1-(Px+Py)




193Pd decay data (LNHB evaluation, 2002)

Average Standard Average | Standard
Parameter value uncertainty Parameter value |uncertainty
PK 0.8584 0.0014 @M,N 0 0
PL 0.1140 0.0011 Xka relative intensity | 0.8283 0.0056
PM,N 0.0232 0.0005 Auger KLL relative 0.686 0.023
intensity
K 0.0919 0.0028 Auger KLX relative | 0.2841 0.0084
conversion intensity
probability
L conversion 0.732 0.022 Auger KXY relative | 0.0295 0.0028
probability intensity
M 0.1750 0.0053 Xko energy 20.17 0.1
conversion keV
probability
ecK energy | 16.53 keV 0.33 XKp energy 22.87 0.95
keV
ecL energy | 36.54 keV 0.73 Auger KLL energy 16.69 0.33
keV
ecMN 39.34 keV 0.79 Auger KLX energy 19.67 0.39
energy keV




Counts per channel

X-ray spectrometry

103Pd

1e+006 1 -

100000 - +

10000 +

10004

100"

10

— Rh LX (2,3 — 3,4 keV)

— Rh Xka = 20,2 keV

Rh Xkp'1 = 22,7 keV

Rh Xkp'2 = 23,2 keV

— Gamma = 39,8 keV

10 15 20 25 30 35 40
Energy keV)



Calculation of the energy absorbed by the
LS-cocktall

Assumptions:

e Auger and conversion electrons totally absorbed
« X totally absorbed
» Xk energy transfer calculated using a Monte Carlo model

Dominant decay data parameters:

* Py, P, Pyn (Energy available after ec.)
» o, (probability of absorption)
oy, Oy, 0y (ENergy available after ec.)



Monte Carlo simulation of X absorption
Penelope (Salvat et al.)

Aluminium

Plastic

Air

Glass

LS cocktail




LS-cocktalls atomic composition

Elementary composition of the samples

ltis useful to have the elementary composition of the scintillator in order to calculate the electron linear energy transfer and photon-
interaction cross-sections.

ltis necessary to calculate the scintillator-water sample composition individually, using for example, the following compositions kindby
provided by J. Thomson, Perkin-Elmer (formerly Fackard Bioscience).

Stoechiometric composition and density of various Perkin-Elmer LS-cocktails (stoechiometric formula)
(source - J. Thomsaon, Perkin-Elmer, formerly Fackard Bioscience)

Element ‘ ‘ ‘ ‘ ‘ P ‘ S ‘ ‘ d agf;g;c ‘ “rs::ilsmxlar
| UlimaGold | 1681 | 2454 | 0040 | 152 | 011 | 002 | 002 | 098 [05459[25576
| UtimaGoldXR | 1811 | 2980 | 003 | 28 | 011 | 003 | 003 | 099 |05476297,98
| UtimaGold AB | 1867 | 2848 | 0010 | 253 | 001 | 000 | 000 | 098 |0548529347
| Ultima Gold LLT | 1857 | 2843 | 0010 | 256 | 001 | 000 | 000 | 098 |0548629268
| Insta-GelPlus | 1853 | 3093 | 0006 | 390 | 000 | 000 | 000 | 095 |05490(31571
| Hionic-Fluer | 1083 | 1877 | 0080 | 197 | 018 | 004 | 004 | 095 |05449/18887




Example of energy spectrum transferred to
the scintillator by X,

Probability per channel

1,0E+00

1,0E-01

1,0E-02

1,0E-03

1,0E-04

1,0E-05

1,0E-06
0,00 5,00 10,00 15,00 20,00 25,00

Energy (keV)




Uncertainty evaluation method (GUM)

1. Model the measurement
(get the transfer function between input quantities and

measurement result) y; — f(X3,X5,... %)

2. Evaluate standard uncertainties of input quantities
(experimental data, parameters, etc.) and covariances between
Input quantities

3. Combine the standard uncertainties and covariances

w2(y)= 3. PT’”Z(X') 23 3 7 a U

I=1j=i+1 X XJ




Standard uncertainties on 1%3Pd input parameters

Experimental : 1 n —. 2
i Sl?) = rziﬂ.(Di o D)

e Double coincidences : D
e Triple coincidences : T

e TDCR : T/D 3T2 LZ! (T, _f)z
n— =

Spr = ni_Zinl(Di _6)(Ti _f)
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Standard uncertainties on %3Pd input parameters

Covariance matrix

D RCTD PK PL PM wK wlL AKLL/AK AKLX/AK AKXY/AK Ka/K PecK |PecL PecM
D exp calc 0 0 0 0 0 0 0 0 0 0 0 0
RCTD exp 0 0 0 0 0 0 0 0 0 0 0 0
PK 2,0E-06 -6,0E-07 -6,0E-07 0 0 0 0 0 0 0 0 0
PL 1,2E-06 -6,0E-07 0 0 0 0 0 0 0 0 0
PM 3,00E-07 0 0 0 0 0 0 0 0 0
wK 1,6E-05 0 0 0 0 0 0 0 0
wL 1,4E-06 0 0 0 0 0 0 0
AKLL/AK 5,3E-04 1,0E-04 1,0E-04 0 0 0 0
AKLX/AK 7,0E-05 1,0E-04 0 0 0 0
AKXY/AK 8,0E-06 0 0 0 0
Ka/K 3,0E-05 0 0 0
PeckK 2,8E-03 5,0E-03 | 5,0E-03
PecL 2,2E-02 5,0E-03

PecM 5,2E-03



Measurement function

D
L
kB coefficient Black box :
calculation Activity
algorithm
(numerical)
Absorbed /
Energy
Spectrum

How to combine the standard uncertainties ?
* Numerical evaluation of the partial derivatives
« Monte Carlo simulation



Example of numerical calculation of derivatives

OF (X, Xy,.,%,)  FOX X +h.X) = F (X0 = hy X))
OX, B 2h

e If . relative error on the evaluation of F around x,

e |[f the choice of h is optimum
eThen : the relative error on the derivative is about (gF)z/3

The number of evaluations of F for each derivative calculation is 6 to 12 with
the algorithm used (Numerical recipes, Press et al.)



Monte Carlo simulation

Pd-103 Input data set

stat distribution law

average, standard deviation

random number generator

[

I

[

[

|

synthetic data set 1

synthetic data set 2

synthetic data set 3

synthetic data set n

transfer

function

transfer

function

result 1

result 2

transfer

function

transfer

function

result 3

result n

i

Calculation of average and standard deviation
Average = result of measurement
Standard deviation = standard uncertainty




JCGM.101:2008

Evaluation of measurement
data — Supplement 1 to the
“Guide to the expression of
uncertainty in measurement” —
Propagation of distributions
using a Monte Carlo method

Evaluation des données de mesure — Supplément 1 du
“Gulde pour I'expression de lincertitude de mesure® —
Propagation de distnbutionts par une méthode de Monte
Carlo

The Monte Carlo method is described in the supplement 1 of the GUM



How to prepare input dataset?

Experimental data: AB, BC,AC, T

Measurement repetition m times, we get m values of (AB, BC, AC, T)

1st method
» calculation of means Mjg, Mg, Mac, My and experimental standard
deviations S,g, Sgc, Sac €t St and covariances

* If we suppose that the values are Gaussian distributed we use a
Gaussian random generator to get fluctuation sets of these data

2"d method (bootstrap) :

» random choice of a data set (AB,, BC,, AC,, T,)

* repetition n times of this random choice (AB,, BC,, AC,, T,), (AB,,
BC,, AC,, T,),...



How to prepare input dataset?

Theoretical or calculated data: kB, dE/dx, atomic and
nuclear parameters

e For each data, if we know the mean value M, and the standard
deviation s, calculation of a Gaussian distributed random number G(M,s)

* If we know the possible range of the data [a, b], calculation of a uniform
random number between a and b: U[a,b]

* If we have good reasons to consider other pdf of the data, use a proper
random generator with this pdf...



Practical use

(Monte Carlo does not prevent you to think about what
you are doing)...)

If the calculation of the measurement function is lenghthy, you can
quickly do a sensitivity evaluation of what parameters are dominants
In the uncertainty

Example, parameter «:

Do 2 calculations with «,,,, and «,,,, , all other parameters kept
constant. If the variation of the measurement function is negligible
(versus the target uncertainty), you can exclude this parameter from

the Monte Carlo procedure.



Possible tools

*Random numbers generators
*Fitting algorithms
*Etc.

«Advantages: the programs are
explicit, so you know exactly what
you are doing

Drawback: this needs more efforts
than using a ready-to-use library...

NUMERICAL
RECIPES

The Art of Scientific Computing

Third Edition

William H. Press

Raymer Chair in Computer Sciences and Integrative Biology
The University of Texas at Austin

Saul A. Teukolisky
Hans A. Bethe Professor of Physics and Astrophysics
Cornell University
William T. Vetterling

Research Fellow and Director of Image Science
ZINK imaging, LLC

Brian P. Flannery

Science, Strategy and Programs Manager
Exxon Mobil Corporation

B8 CAMBRIDGE

%% UNIVERSITY PRESS




Detection efficiency, 193Pd

Gaussian distribution of the input quantities

Rendement de détection
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Detection efficiency, 193Pd

Uniform distribution of the input quantities

Rendement de détection
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Other useful tool: the NIST uncertainty machine

-

Introduction

The NIST Uncertainty Machine is a Web-based software application to evaluate the measurement uncertainty associated with

an output quantity defined by a8 measurement model of the form y = Fixg, ..., x,). Drop configuration file here ar click to upload

User's manual available here.
Load sxamples

1. Select Inputs & Choose Distributions
Mumber of input quantities: | 1 W

Mames of input quaniities:

%0

x0 Gaussian (Mean, StdDev) w0 1
Comelations
2. Choose Options
Number of realizations of the output quantity: | 1000000
Random number generator seed; | 98
Symmetrical cowerage intervals

3. Write the Definition of Output Quantity
Definition of output quantity (R expression):

xd

e

https://uncertainty.nist.gov/



Comment on the pdf of the input quantities

Criteria:
* on physical basis
« at best (maximum of entropy, rule of thumb)

For 193Pd there are two dominant input quantities, so:

« uniform distributions will give a triangular distribution (convolution of two
uniform distributions)

« Gaussian distributions will give a Gaussian dsitribution

Thus the pdf of the result also depends on the pdf of the input quantities...
or illustrate the central limit theorem



Conclusions

In case of complicated measurement (e.g. 193Pd) the Monte Carlo
method is the best (or even only) way to evaluate uncertainties. This
approach is well documented in the supplement 1 of the GUM.

Advantages:

 The numerical methods to use are generally simple and straightforward
 The input quantities could have big fluctuations

 The measurement function can be non-linear, non derivable, etc.

« This method is universal and can also be applied for any measurement

But:

The delicate problem is still the evaluation of the variances and

covariances of the input quantities. Sometimes simplifying hypothesis

are necessary...

« The pdf of the result depends on the pdf considered for the input
guantities.




Last but important final comment

Generally, uncertainties are evaluated and not strictly calculated.

Empirical approaches and guess estimates cannot always be avoided and
uncertainty evaluation is not only a question of statistics but rely on the
knowledge of the measurement procedure and models.

It is generally accepted that a measurement with a relative uncertainty of the
uncertainty of about 25% to 30% is a very good measurement.

This should suggest humility in uncertainty evaluation and even allow to use
some simplifications and shortcuts.

The uncertainty is just an expression of the doubt we have on a
measurement. It is important to evaluate it in a proper way, to explicit the
evaluation procedure in order to be understood by others. This is why the
GUM is useful.



