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If your experiment needs 

statistics, you should 

have done a better 

experiment Ernest 

Rutherford (1871 – 1937)

 

The easy way to avoid problems…

Never repeat a measurement: there is a serious risk that you 

will not find the same result…

But we are not here to recommend this kind of approach!



In 1977, recognizing the lack of international consensus on the expression of 

uncertainty in measurement, the world's highest authority in metrology, the Comité

International des Poids et Mesures (CIPM), requested the Bureau International des 

Poids et Mesures (BIPM) to address the problem in conjunction with the national

standards laboratories and to make a recommendation.

Evaluation of uncertainties in measurement

• Creation of a working group (CIPM 1977)

• Questionnaire to national metrology laboratories (February 1978)

• Report BIPM 80-3

• Recommendation INC-1 1980 « expression of experimental 

uncertainties »

• Approbation of INC-1 in 1981 by CIPM

• First publication of the GUM in 1993

• 1995 edition after minor corrections



BIPM: Bureau International des Poids et 

Mesures

IEC: International Electrotechnical 

Commission

IFCC: International Federation of Clinical 

Chemistry

ISO: International Organization for 

Standardization

IUPAC: International Union of Pure and 

Applied Chemistry

IUPAP: International Union of Pure and 

Applied Physics

OlML: International Organization of Legal 
Metrology



Uncertainties in physics

Example of the interest to correctly 

evaluate the uncertainties

Raiola et al. 2007* : decrease of the half-life 

or alpha radionuclides at low temperature. 

Experimental observation: decrease of the 

half-life of 210Po of (6,3 ± 1,4) % from 300 K 

to 12 K. 

New experiment at LNE-LNHB in 2009, 

with exhaustive evaluation of 

uncertainties. Conclusion: no significant 

effect!

The measurement uncertainties of the Raiola experiment were under evaluated, and 

some bias were not taken into account, leading to a wrong scientific conclusion… and 

a wrong theory to explain this phenomenon.

* F. Raiola et al., Physical Journal A—Hadrons and Nuclei, 32 (2007), pp. 51–53



• Universal: the method should be applicable to all kinds of 

measurements and to all types of input data used in measurements.

The actual quantity used to express uncertainty should be:

• Unique (nothing like systematic and random uncertainty)

• Internally consistent: it should be directly derivable from the 

components that contribute to it, as well as independent of how 

these components are grouped and of the decomposition of the 

components into subcomponents

• Transferable: it should be possible to use directly the uncertainty 

evaluated for one result as a component in evaluating the 
uncertainty of another measurement in which the first result is used.

The ideal method for evaluating and expressing the 
uncertainty of the result of a measurement should be:



Concepts and definitions

The result of a measurement is a random variable…

… and must be processed accordingly

Error and uncertainty are very different concepts

Error: measured quantity value minus a reference quantity value. As 

the reference quantity value (true value) is unknown, the error is 

generally unknown…

If a measurement error (bias) is suspected, it must be corrected… but this 

does not completely suppress the doubt about the result

Uncertainty: non-negative parameter characterizing the dispersion

of the quantity values being attributed to a measurand, based on the 

information used

The word “uncertainty” means doubt, and thus in its broadest sense “uncertainty 

of measurement” means doubt about the validity of the result of a measurement.



Random variable

A random variable, or stochastic variable can be described 

informally as a variable whose values depend on outcomes of 

a random phenomenon.

A random variable has a probability distribution, which 

specifies the probability of its range. A probability density 

function can be defined for continuous random variables

Possible values

probability



Example of probability distribution: 
uniform discrete random variable

probability

1   2   3   4   5   6  value

*   *   *   *   *   *1/6

Playing dice



probability

1   2   3   4   5   6  value

*   *   *   *   1/6

*

*

lead

Other example: the loaded dice

If you change the physics, the probability distribution can change



Other discrete random variable, the 
Poisson distribution
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Poisson distribution

probability distribution that characterizes discrete events occurring 

independently of one another in time 



NOT Poisson distribution:

• Simultaneous emission of radiation by mother and 

daughter decay products 

→ dependent increments

• Cascade of gamma emission, delayed or not

→ simultaneous : clustering of events

• → delayed states : dependent increments

• Source decay over a long period (~T1/2)

→ not stationary, ‘activity’ (event rate) diminishes 



Non-random count loss
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Difference of Poisson distributed random 
variables

The Skellam distribution is the 

discrete probability distribution

of the difference N1 − N2 of two 

random variables N1 and N2

having Poisson distributions 

with expected values μ1 and μ2

where I k(z) is the modified Bessel function of the first kind.

Any linear combination of two Skellam-distributed variables are again Skellam-distributed. 



Other example: uniform distribution
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Other example: triangular distribution
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Example of continuous random variable, 
Gaussian (Normal) distribution
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P(x) is the probability to get the value x of a Gaussian random 

variable of expected value M and standard deviation s



Normal Distribution

95%

68%

99.7%

FWHM=2.35 s



Central Limit Theorem (CLT)

The distribution of an average 

will (almost always) tend to be “NORMAL”

as the sample size increases, regardless of the 

distribution from which the average is taken 



The uncertainty of a measurement result expresses the 
reliability of that result or the confidence that we have in it


A measurement result is incomplete without a statement of the 
corresponding measurement uncertainty

Let’s go back to uncertainties

Reminder:



• Define the measurand (this is not a trivial task)

• Identify the input quantities and parameters used in the measurement 
process (experimental data, coefficients, parameter of influence)

• Explicit the relationship between the input quantities and the 
measurement result

• Evaluate the uncertainties of each input quantity, in terms of standard 
deviations, and evaluate the covariances between the input quantities

• Propagate the variances and covariances to obtain the standard 
combined uncertainty

• If necessary, expand the uncertainty with a given coverage factor

• Report the measurement result with the associated uncertainty

Steps in uncertainty evaluation



Definition of the measurand

• The measurand is the quantity intended to be measured. 

Before measuring, give a precise and exhaustive definition 

of the measurand

• Include in the definition the quantities and parameters 

which could influence the measurement result

• Think about the use of the measurement result in order to 

avoid any ambiguity on the definition of the measurand



Input quantities

Experimental data:

•Counting rate, mass, volume, peak surface…

Parameters of influence:

•Temperature, pressure, humidity…

Coefficients:

•Correction factors, calibration factors, detection efficiency…

Standards :

•Activity, mass, time…

Theoretical data:

•Emission intensities, decay probabilities, half-life…



Relation between the input quantities 
and the measurement result

),...,( 21 nxxxfy =

y is the measurement result and the xi are the input quantities



Evaluation of the uncertainties of the input quantities

Each input quantity must be considered as a random variable with a 

mean value and a standard deviation

The GUM gives two ways to evaluate the input quantities uncertainties:

Type A evaluation method: evaluation of the experimental standard 

deviation by statistical methods (e.g. by repetition of the measurement)

Type B evaluation method: evaluation of the standard deviation of the 

input quantity from hypothesis on the statistical distribution of this 

quantity or by any other information

Warning: type A and B concerns the evaluation methods and not the uncertainties



Type A evaluation method

• Repetition of the measurement (sampling of the distribution)

• Calculation of the mean value

• Calculation of the experimental standard deviation

• Calculation of the standard deviation of the mean

If the measurement is repeated in the same conditions, the standard 

deviation of the mean is a good estimator of the uncertainty



Best estimator of the average value
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Standard deviation of the mean
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Estimator of the dispersion of the mean
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The experimental standard deviation quantifies the 

dispersion of the random variable

When increasing the number of samples, the standard 

deviation does not change too much, but is known with better 

precision…

The standard deviation of the mean quantifies the dispersion 

of the evaluated mean (which is also a random variable) 

When increasing the number of samples, the standard 

deviation of the mean decreases as the square root of the 

number of samples (because the mean values is known with 

better precision)

Should we consider the standard deviation 
or the standard deviation of the mean?
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Example: measurement of the surface 
contamination of a field Bq/cm2

0,004 0,010 0,004 0,010 0,010 0,003 0,001 0,004 0,009 0,007

0,009 0,004 0,004 0,005 86,485 0,007 0,008 0,001 0,002 0,003

0,005 0,004 0,007 0,009 0,005 0,007 0,002 0,002 0,000 0,001

0,002 0,007 53,528 0,004 0,004 0,006 0,001 0,009 0,005 0,010

0,008 0,005 0,009 0,003 0,003 0,006 23,475 0,009 0,000 0,002

0,003 0,008 0,010 0,008 0,006 0,001 0,004 0,003 0,004 0,001

0,007 88,543 0,008 114,640 0,009 0,003 0,001 0,009 0,002 0,004

0,004 0,010 0,001 0,006 0,008 0,002 0,004 0,007 0,010 0,001

0,005 0,000 0,004 0,005 0,006 0,009 0,010 0,006 0,010 0,002

0,009 0,010 0,009 0,006 0,002 0,006 0,005 0,008 0,009 0,009

Low contamination with hot spots



Mean activity (100 measurement points) : 

Experimental standard deviation

Standard deviation of the mean
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Evaluation of the results



Definition 1 : mean surface activity (mean activity when sampling 1 cm2 of soil) 

A=5,57 Bq/cm2

Definition 2 : mean surface activity (average activity of the soil) A= 5,57 Bq/cm2

Uncertainty: non-negative parameter characterizing the dispersion

of the quantity values being attributed to a measurand, based on the 

information used

Uncertainty 1 : experimental standard deviation: 25,76 Bq/cm2, gives 

information about the dispersion of surface activity when sampling 1 cm2 of soil

Uncertainty 2 : standard deviation of the mean: 2,58 Bq/cm2, gives 

information about the dispersion of the average surface activity of the field

Lets go back to the definition of the measurand

What is the best approach?



• Both approaches are correct but:

• If you are looking for the mean surface contamination, use 

uncertainty definition 2

• But, if someone measures the activity contamination and 

find a hot spot (e.g. 114,64 Bq/cm2). This is 42 standard 

deviations away from the mean! 

Withdrawing a outlier is risky: it could led to underestimate a cause of 
fluctuation, so to underestimate the uncertainty. 
Besides, it could prevent you to discover a new phenomenon…

It depends on what you are looking for



Type B evaluation methods

3

a
u =

6

a
u =

Hypothesis on the probability density function (pdf) of the 

input quantity in order to derive the mean value and the 

standard deviation

Example: if the input quantity is in the [M-a,M+a] interval

• Uniform pdf:

• Triangular pdf:

• Gaussian pdf (with 95,5 % confidence interval):

Evaluation “as a rule of thumb” is a type B method!
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Covariances

• Experimental covariance type A evaluation method

•But covariance can also be estimated (type B evaluation)

Examples : 

• related nuclear and atomic data: PK et wK

• coincidence between detectors

• Calibration of gamma detectors using radionuclides with 

several gamma emissions
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Law of propagation of variances

Hypothesis: 

• f is continuous and can be expanded in Taylor series

• Development limited to the 1st order

• Small fluctuations of each input quantity
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When the input quantities xi are not correlated, covariances = 0
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The combined standard uncertainty uc(y) is an estimator of 

the dispersion of the measurand y

Combined standard uncertainty



Instead of being calculated from the function f, sensitivity 

coefficients ∂f/∂xi are sometimes determined experimentally: 

one measures the change in y produced by a change in a 

particular xi while holding the remaining input quantities 

constant. 

In this case, the knowledge of the function f is accordingly 

reduced to an empirical first-order Taylor series expansion 

based on the measured sensitivity coefficients.

Sometimes, the law of propagation of variances cannot be used: 

hypothesis not fulfilled (large fluctuations, non continuous function, non 

derivable function, discontinuities…)

Instead a Monte Carlo approach can be used



Examples of propagation of variances

(simple cases without covariances) 

Sum or difference of terms

y = x1 + x2 + x3

variance: ( )u y u x u x u xc
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Power

y=xp

Relative variance
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y=ex
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Expanded uncertainty

Although the standard combined uncertainty can be universally used to 

express the uncertainty of a measurement result, in some commercial, 

industrial, and regulatory applications, and when health and safety are 

concerned, it is often necessary to give a measure of uncertainty that 

defines an interval about the measurement result that may be

expected to encompass a large fraction of the distribution of values that 

could reasonably be attributed to the measurand. 

The expanded uncertainty, U, is obtained by multiplying the 

combined standard uncertainty uc(y) by a coverage factor k:

U=k uc(y)

In general, k will be in the range 2 to 3. 

However, for special applications k may be outside this range.



Expanded uncertainty

U can be is interpreted as defining an interval about the 

measurement result that encompasses a large fraction p of 

the probability distribution characterized by that result and 

its combined standard uncertainty, and p is the coverage 

probability or level of confidence of the interval.

More detailed calculations necessitate the knowledge of the 

pdf of the measurand, and the number of degrees of 

freedom

Warning: the pdf of the mean of a random variable can be different that 

the pdf of the random variable.

Example : 

• Poisson distribution: the pdf of the evaluated mean is a Gaussian 

distribution

• Gaussian distribution: the pdf of the mean is a Student distribution 

(with n degrees of freedom) 



Number of degrees of freedom

Type A evaluation method from n samples: 
n=n-1

Type B evaluation method: no general answer

If the pdf of the measurand is supposed to be Gaussian:
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Effective number of degrees of freedom

Welch-Satterthwaite formula :
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The estimated standard uncertainty is a random variable… 

and thus has an uncertainty!

For a type A evaluation method, if the measurand is 

supposed to be Gaussian, the relative uncertainty of the 

uncertainty is a function of the number of repetitions:

Number of repetitions Relative uncertainty of 

the uncertainty (%)

2

3

4

5

10

20

30

50

76

52

42

36

24

16

13

10

Uncertainty of the uncertainty



Consequences

We can assume that for a very good measurement, the 

relative uncertainty of the uncertainty is seldom less than 

25%, so:

•Round up the uncertainty to a maximum of 2 significant 

digits

• Keep in mind that the uncertainty of the uncertainty also 

concerns all the uses of the uncertainty, e.g. for the boundary 

of intervals and for the decision threshold and detection 

limits. E.g. what is the point to use a Student factor with 3 

significant digits?



Rounding up

Seldom justified to quote uncertainties to more

than two significant figures

Practice:

If 1st significant digit is a 1 or 2, quote two figures, 

otherwise, quote one figure:

10, 11, 12…….28, 29, 3, 4, 5, 6, 7, 8, 9

Always round UP (if rounding down decreases 

uncertainty by more than 5%)

e.g. 0.308 → 0.3 but 0.318 → 0.4



Reporting results

• A = 104,7 Bq/g with a combined standard 

uncertainty of 1,5 Bq/g

• A=104,7(15) Bq/g

• A=(104,7 ± 3,0) Bq/g, k=2

For an expanded uncertainty, it is mandatory to 

give the coverage factor k



Good usage of the GUM

Although the GUM provides a framework for assessing 

uncertainty, it cannot substitute for critical thinking, 

intellectual honesty and professional skill. The evaluation of 

uncertainty is neither a routine task nor a purely 

mathematical one; it depends on detailed knowledge of the 

nature of the measurand and of the measurement. 

The quality and utility of the uncertainty quoted for the result 

of a measurement therefore ultimately depend on the 

understanding, critical analysis, and integrity of those who 

contribute to the assignment of its value.

GUM, 3.4.8



Evolution of the GUM

Cf. https://www.bipm.org/en/publications/guides/gum.html



Practical example in 

radionuclide metrology

Standardization of a 103Pd 

solution



103Pd used in brachytherapy 
(used to treat prostate cancer)

• Indirect measurement needed (in hospitals) :
• Ionisation chambers (dose calibrators)

Need of primary standardization and calibration factors

• Standardization :
• Calorimetry (not destructive)

• Liquid Scintillation Counting (destructive)



103Pd simplified decay scheme

103Pd

103Rhm

39.8 keV ce.

103Rh 

56 min

99.9 %



The TDCR method in short
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The TDCR method (cont.)
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Using this free parameter , calculate the detection efficiency in double 

coincidences:

So the energy spectrum absorbed by the LS-cocktail must be calculated…



TDCR method algorithm in practice

Minimization of:

By downhill simplex algorithm
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XL

Auger L

XK

XK

XL

Auger L

XL

XL

Auger L

Auger L

Auger KLL

XL

Auger L

Auger KLX

Auger KXY

Electron capture K

XL

Auger L

Electron capture L

Electron capture M,N

Pd-103 disintegration

XL

Auger L

XK

XK

XL

Auger L

XL

XL

Auger L

Auger L

Auger KLL

XL

Auger L

Auger KLX

Auger KXY

Electron conversion K

XL

Auger L

Electron conversion L

Electron conversion M,N

gamma-ray

Rh-103 desexcitation

Calculation of the energy spectrum

+



K XK  Absorbed XL/Auger 

L 
K (Compton+photoelectrique)+XL/AL PK*wK*RK*PK/PKtot 

    

Escape XL/Auger 

L 

XL/AL PK*wK*(1-RK)*PK/PKtot 

 

    

 XK  Absorbed  K (Compton+photoelectrique) PK*wK*RK*PK/PKtot 

    

Escape  none PK*wK*(1-RK)*PK/PKtot 

 

    

 Auger 

KLL 

 XL/Auger L XL/Auger 

L 

AKLL+XL/AL+XL/AL PK*(1-wK)* PKLL/PKtot 

     

 Auger 

KLX 

 XL/Auger L  AKLX+ XL/AL PK*(1-wK)* PKLX/PKtot 

     

 Auger 

KXY 

   AKXY PK*(1-wK)* PKXY/PKtot 

     

L XL/Auger 

L 

   XL/AL PL 

     

M, 

N 

      none 1-(PK+PL) 

 

Energy released probability

Calculation of the energy spectrum (ec.)



103Pd decay data (LNHB evaluation, 2002)

Parameter 
Average 

value 

Standard 

uncertainty  Parameter 
Average 

value 

Standard 

uncertainty 

PK 0.8584 0.0014  M,N 0 0 

PL 0.1140 0.0011  Xk relative intensity 0.8283 0.0056 

PM,N 0.0232 0.0005  Auger KLL relative 

intensity 

0.686 0.023 

K 

conversion 

probability 

0.0919 0.0028  Auger KLX relative 

intensity 

0.2841 0.0084 

L conversion 

probability 

0.732 0.022  Auger KXY relative 

intensity 

0.0295 0.0028 

M 

conversion 

probability 

0.1750 0.0053  Xk energy 20.17 

keV 

0.1 

ecK  energy 16.53 keV 0.33  XK energy 22.87 

keV 

0.95 

ecL energy 36.54 keV 0.73  Auger KLL energy 16.69 

keV 

0.33 

ecMN 

energy 

39.34 keV 0.79  Auger KLX energy 19.67 

keV 

0.39 

 



X-ray spectrometry

Rh LX (2,3 – 3,4 keV)

Rh Xk = 20,2 keV

Rh Xk’1 = 22,7 keV

Rh Xk’2 = 23,2 keV

Gamma = 39,8 keV



Dominant decay data parameters:

• PK, PL, PM,N (energy available after ec.)

• wK (probability of absorption)

• K, L, M,N (energy available after ec.)

Assumptions:

• Auger and conversion electrons totally absorbed

• XL totally absorbed 

• XK energy transfer calculated using a Monte Carlo model

Calculation of the energy absorbed by the 

LS-cocktail



Monte Carlo simulation of X absorption
Penelope (Salvat et al.)

Aluminium

Plastic

Air

Glass

LS cocktail



LS-cocktails atomic composition
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Uncertainty evaluation method (GUM)

1. Model the measurement

(get the transfer function between input quantities and 

measurement result)

2. Evaluate standard uncertainties of input quantities

(experimental data, parameters, etc.) and covariances between 

input quantities

3. Combine the standard uncertainties and covariances
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Standard uncertainties on 103Pd input parameters

Experimental :

• Double coincidences : D
• Triple coincidences : T
• TDCR : T/D
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Standard uncertainties on 103Pd input parameters

D RCTD PK PL PM wK wL AKLL/AK AKLX/AK AKXY/AK Ka/K PecK PecL PecM

D exp calc 0 0 0 0 0 0 0 0 0 0 0 0

RCTD exp 0 0 0 0 0 0 0 0 0 0 0 0

PK 2,0E-06 -6,0E-07 -6,0E-07 0 0 0 0 0 0 0 0 0

PL 1,2E-06 -6,0E-07 0 0 0 0 0 0 0 0 0

PM 3,00E-07 0 0 0 0 0 0 0 0 0

wK 1,6E-05 0 0 0 0 0 0 0 0

wL 1,4E-06 0 0 0 0 0 0 0

AKLL/AK 5,3E-04 1,0E-04 1,0E-04 0 0 0 0

AKLX/AK 7,0E-05 1,0E-04 0 0 0 0

AKXY/AK 8,0E-06 0 0 0 0

Ka/K 3,0E-05 0 0 0

PecK 2,8E-03 5,0E-03 5,0E-03

PecL 2,2E-02 5,0E-03

PecM 5,2E-03

Covariance matrix



Measurement function 

How to combine the standard uncertainties ?

• Numerical evaluation of the partial derivatives

• Monte Carlo simulation

D

T

kB coefficient
Black box :

calculation 

algorithm

(numerical)

Activity

Absorbed

Energy

Spectrum 



Example of numerical calculation of derivatives

h

xhxxFxhxxF

x

xxxF nini

i

n

2

),...,,...,(),.....,(),..,,( 1,121
−−+

=




• If F : relative error on the evaluation of F around xi

• If the choice of h is optimum
•Then : the relative error on the derivative is about (F)

2/3

The number of evaluations of F for each derivative calculation is  6 to 12 with 
the algorithm used (Numerical recipes, Press et al.)



Monte Carlo simulation

result 1

transfer function

synthetic data set 1

result 2

transfer function

synthetic data set 2

result 3

transfer function

synthetic data set 3

result n

transfer function

synthetic data set n

random  number generator

Pd-103 Input data set

average, standard deviation

stat distribution law

Calculation of average and standard deviation
Average = result of measurement
Standard deviation = standard uncertainty



The Monte Carlo method is described in the supplement 1 of the GUM



How to prepare input dataset?

Experimental data: AB, BC, AC, T 

Measurement repetition m times, we get m values of (AB, BC, AC, T) 

1st method

• calculation of means MAB, MBC, MAC, MT and experimental standard 

deviations sAB, sBC, sAC et sT and covariances

• If we suppose that the values are Gaussian distributed we use a 

Gaussian random generator to get fluctuation sets of these data

2nd method (bootstrap) : 

• random choice of a data set (ABx, BCx, ACx, Tx)

•

• repetition n times of this random choice (AB1, BC1, AC1, T1), (AB2, 

BC2, AC2, T2),… 



Theoretical or calculated data: kB, dE/dx, atomic and 

nuclear parameters

• For each data, if we know the mean value M, and the standard 

deviation s, calculation of a Gaussian distributed random number G(M,s)

• If we know the possible range of the data [a, b], calculation of a uniform 

random number between a and b: U[a,b]

• If we have good reasons to consider other pdf of the data, use a proper 

random generator with this pdf…

How to prepare input dataset?



Practical use
(Monte Carlo does not prevent you to think about what 

you are doing)…)

If the calculation of the measurement function is lenghthy, you can 

quickly do a sensitivity evaluation of what parameters are dominants 

in the uncertainty

Example, parameter  : 
Do 2 calculations with min and max , all other parameters kept 

constant. If the variation of the measurement function is negligible 

(versus the target uncertainty), you can exclude this parameter from 

the Monte Carlo procedure.



Possible tools

•Random numbers generators

•Fitting algorithms

•Etc.

•Advantages: the programs are 

explicit, so you know exactly what 

you are doing

•Drawback: this needs more efforts 

than using a ready-to-use library…



Detection efficiency, 103Pd

D=1.2757 (39)

Gaussian distribution of the input quantities
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D=1.2756  0.0019

Detection efficiency, 103Pd

Uniform distribution of the input quantities
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Other useful tool: the NIST uncertainty machine

https://uncertainty.nist.gov/



Comment on the pdf of the input quantities

Criteria:

• on physical basis

• at best (maximum of entropy, rule of thumb)

For 103Pd there are two dominant input quantities, so:

• uniform distributions will give a triangular distribution (convolution of two 

uniform distributions)

• Gaussian distributions will give a Gaussian dsitribution

Thus the pdf of the result also depends on the pdf of the input quantities… 

or illustrate the central limit theorem



Conclusions

In case of complicated measurement (e.g. 103Pd) the Monte Carlo 

method is the best (or even only) way to evaluate uncertainties. This 

approach is well documented in the supplement 1 of the GUM. 

Advantages:

• The numerical methods to use are generally simple and straightforward 

• The input quantities could have big fluctuations

• The measurement function can be non-linear, non derivable, etc.

• This method is universal and can also be applied for any measurement

But:

• The delicate problem is still the evaluation of the variances and 

covariances of the input quantities. Sometimes simplifying hypothesis 

are necessary…

• The pdf of the result depends on the pdf considered for the input 

quantities. 



Last but important final comment

Generally, uncertainties are evaluated and not strictly calculated. 

Empirical approaches and guess estimates cannot always be avoided and 

uncertainty evaluation is not only a question of statistics but rely on the 

knowledge of the measurement procedure and models.

It is generally accepted that a measurement with a relative uncertainty of the 

uncertainty of about 25% to 30% is a very good measurement. 

This should suggest humility in uncertainty evaluation and even allow to use 

some simplifications and shortcuts. 

The uncertainty is just an expression of the doubt we have on a 

measurement. It is important to evaluate it in a proper way, to explicit the 

evaluation procedure in order to be understood by others. This is why the 

GUM is useful.


