СУ "Св. Климент Охридски" Катедра "Физикохимия"

доц д-р Стоян Гуцов

Зол-гелните технологии като метод за получаване на наноматериали

- 1. Керамични материали
- 2. Зол-гелни технологии
- 3. Нанопорьозни суперизолациони материали
- 4. Хибридни оптични материали
- 5. Материали за UV филтри и защитни покрития

www.chem.uni-sofia.bg/depart/pchem/main/SPGroup.htm

GUTZOV

Керамични материали

Porzellan in Braunschweig, 2006

Sol-gel chemistry offers a possibility for the ambient preparation of optical materials like xerogels or layers doped with rare earth ions. In the same way a wide range of useful ceramic materials like Al_2O_3 , ZrO_2 , SnO_2 , SiO_2 , Al_2O_3 can be easily prepared.

Gels are solids confining a solvent in a three-dimensional network. The solvent may be enclosed as quasi-liquid in a pore system. In this state, the gels are called hydrogels (water as solvent) or alcogels (alcohol as solvent) etc. If the network has nano-dimensions or is index-matched, the gel looks transparent. If the solvent is removed without destruction of the network, the resulting body is called a xerogel ("dry gel"). If the pores then are filled simply with air, it is an aerogel.

The advantages of sol-gel technologies are low synthesis temperatures, possibilities for preparation of rare chemical compositions, formation of transparent materials or aerogels depending on the drying conditions. Sol-gel technologies, however, need long duration times of each preparation step as well as individual preparation procedures for each material.

Sol-Gel Science, C. J. Brinker, G. W. Scherer, Academic Press, 1990.

$Si(OEt)_4 + 4H_2O \rightarrow Si(OH)_4 sol + EtOH \rightarrow SiO_2.nH_2Ogel$

Оксидни материали по зол-гел метода:

лаб. 543, кат. Физикохимия (проект ВУХ 08/05)

M. Bredol, S. Gutzov, Effect of Germanium codoping on the luminescence of Terbium doped silica xerogels, Opt. Mater 20 (2002) 233-239.

Нанопори и нанофази в зол-гелни материали

$TEOS + H_2O + 0.5 M Al(NO_3)_3 \qquad SiO_2 + 0.5 M Al(NO_3)_3$ Aging & index matching of doped gels (0.05-0.5 Sm/Si)

$$+ H_2 O =$$

Неорганични SiO2 материали с оптично активни компоненти: Tb, Sm, Ho. Контрол на прозрачността чрез получаване на микро- и нанофази на дотиращия оксид. Контрол на размерността чрез катализатори.

Sm/Si = 0.01

SiO2

S. Gutzov , C. Berger , M. Bredol , C. L. Lengauer, Preparation and Optical Properties of Holmium Doped Silica Xerogels, J. Mater. Sci. Letters 21 (2002) 1105-1107.

Ho – nitrate nanophase formation in silica at Ho > 10%

Термична стабилност – зависи от дотирането, наличието на нано – и микрофази, пори

TG/FTIR анализ на гел съдържащ 0.05 Sm/Si

NETZSCH TG 209 *F1* coupled with FTIR Bruker TENSOR 27

TG/FTIR анализ на гел съдържащ 0.05 Sm/Si., Фирма NETZSCH, Germany, Dr. E. Füglein

14 юни 2012 г.

Нанопорьозни суперизолациони материали

$$\dot{Q} = -\lambda \cdot A \cdot \frac{T_2 - T_1}{\Delta x}$$

Cabot Granulated Nanogels

• One of the best insulation materials in the world produced at subcritical drying. Nano size pores (20 - 40nm), hydrophobic network.

Supercritical Drying

The solvent in a wet gel is replaced by
a supercritical fluid, and then
depressurize it to obtain a dried gel.
Surface tension of the supercritical fluid
is nearly zero, so the weak structure in
the wet gel is maintained.

Fluid	T _c (°C)	P _c (MPa)
Water H ₂ O	374.1	22.04
Carbon dioxide CO2	31.0	7.37
Freon 116 (CF ₃) ₂	19.7	2.97
Acetone (CH ₃) ₂ O	235.0	4.66
Nitrous oxide N ₂ O	36.4	7.24
Methanol CH ₃ OH	239.4	8.09
Ethanol C ₂ H ₅ OH	243.0	6.3

Table Critical Points of Various Fluids

Critical point of a fluid is usually high pressure and sometimes high temperature. So SCD should be avoided as far as possible.

Optimization of materials, required for efficient heat machine operation (case materials).

SUMMARY: Aerogel granules posses perfect insulation properties, they have to be incorporated into a panel for effective case insulation.

Хибридни оптични материали

ЛУМИНЕСЦЕНТНИ СВОЙСТВА НА КОМПЛЕКСИ НА Лантанидни йони

G. Ahmed, B. Koleva, S. Gutzov, I. Petkov, *J Incl. Phenom. Macro.* (2007), DOI: 10.1007/s10847-007-9309-0.

Luminescence of hybride materials doped with coumarin and Sm³⁺: G. Ahmed, B. Koleva, S. Gutzov, I. Petkov, *J Incl. Phenom. Macro.* (2007), DOI: 10.1007/s10847-007-9309-0.

Луминесценция на гелове, дотирани с етил 2-(7-хидрокси-кумарин-4-ил) ацетат

Измерване на спектри в режим трансмисия и дифузно отражение

кварцови кювети 200 – 900 пт

$$f = 4.32 \cdot 10^{-9} \cdot \frac{A_{\text{int}}(\tilde{v})}{c \cdot d}$$

интегрираща сфера Labsphere PSA-PE-20 200 – 900 nm

 $F(R) = \frac{K}{S} = \frac{(1-R)^2}{2R}$

Разработване на нови държатели с различни геометрии и размери на базата на полицетал Polipom POM ®, съвместими с интегриращата сфера модел Labsphere PSA-PE-20

Дифузно - отражателен спектър на холмиев оксид, покрит с предметно стъкло Съпоставка между дифузно отражателни спектри на холмиев оксид, измерен директно (1) и с покритие от кварцово стъкло (2).

900

Получаване на ZrO₂ по зол-гелна технология

Without protection

Acetic acid (AA)

- 1 Гелове, синтезирани с ацетилацетон като модифициращ агент
- 2 Гелове получени с оцетна киселина като протектиращ лиганд
- 3 Гелове получени без протекция на алкоксида

UV/VIS РЕФЛЕКСИОННА СПЕКТРОСКОПИЯ

UV/Vis спектри на отражение на циркониеви зол-гел материали. За референтен спектър е използван KCl

1 – Гел, получен без протекция на началния прекурсор;

2-Гел, протектиран с оцетна киселина като протектиращ лиганд;

3,4,5- Гелове получени с оцетна киселина като модифициращ лиганд.

ОПТИЧНА ШИРИНА НА ЗАБРАНЕНАТА ЗОНА

- 1 гел синтезиран с ацетиалацетон $Eg=2.97\pm0.45 eVr=0.97$
- 2 гел с оцетна киселина Eg=4.41±0.185eV r = 0.99
- 3 бърза хидролиза на прекурсора $Eg=4.84\pm0.29eV$ r=0.99

Дотиране на SiO₂ с Eu[ntac]₃[PPhenDCN]

Хибридни микро – и нанопрахове: SiO2 и ZrO₂ получен по зол-гел метода с [Eu(phen)₂](NO₃)₃

Квантов добив

QY= брой емитирани фотони / брой абсорбирани фотони

$$QY_{samp} = QY_{Ref} \frac{Int_{samp} \cdot Abs_{Ref}}{Int_{Ref} \cdot Abs_{samp}} \cdot 100\%$$

Проба	описание	$\lambda_{exc,}$ nm	QY, %	n _{Eu} /n _{Si} ;
				n _{Eu} /n _{Zr}
[Eu(ntac) ₃][PPhenDCN]	Багрило	396	10.8 ± 1.8	-
SiO ₂ :Eu[(ntac) ₃ (pphenDCN)]	Импрегнирана	400	17.4 ± 1.74	3.18.10-4
$ZrO_2:[Eu(phen)_2](NO_3)_3$	Дотирана зол-гел	350	48.2 ± 4.8	9·10 ⁻³
$SiO_2 0.05Eu + phen$	Функционализиране	352	39.57 ± 3.9	5.10-2

В аморфни неорганични системи при тези условия QY≈1-2%

Материали за UV – филтри и защитни покрития SiO₂:Sm³⁺

UV/Vis спектри на гелове, модифицирани с различно количество Sm³⁺, и гел без модифициране.

Зависимост на абсорбцията на от концентрацията

Рентгеноструктурен анализ на гелове дотирани със самарий

Рентгенограма на гелове, дотирани с различно количество Sm.

Нанокристална фаза от $Sm(H_2O)_6(NO_3)_3$ в гел, съдържащ 20 и повече молни % Sm.

Calculations vs. measurements

Preparation of SiO₂:Sm³⁺

UV/Vis diffuse reflectance spectra of Sm doped silica gels

Our results suggest that acid gelation conditions increase the UV – absorption intensity of doped silica gels. Application: powder coatings for UV - protection

Absorption spectra vs. time: calculation of the rate of densification of gels from UV/Vis – data

$$A_{\rm int}(\widetilde{\nu}) = \int A(\widetilde{\nu}) d\widetilde{\nu} = \mathcal{E}_{\rm int} \cdot C \cdot d \qquad \longrightarrow \qquad A_{\rm int}(\widetilde{\nu})_t = \mathcal{E}_{\rm int} \cdot \nu \cdot t + A_{\rm int}(\widetilde{\nu})_{t_0}$$

 $v \approx 1.77 \pm 0.25 \text{ mmol/cm}^{-2} \cdot h.$

Благодарности

- Нина Данчова, Гюляй Ахмед, Жаклин Мисирян, Стефка Станчева, Петя Стоянова, Станимир Стоянов (СУ-ФХФ)
- E. Füglein (NETSCH GmbH), M. Bredol (FH Münster), T. Schmidt (TIGER Coatings AG).
- НФНИ проекти ВУХ 08/05, ТК 02/26
- FP7 EFFiHEAT, FP7 BeyondEverest