

REPORT

ON THE ACTIVITIES OF RESEARCH GROUP "NUCLEAR" FOR THE FIRST YEAR OF THE PROJECT "SUMMIT"

Assoc. prof. Krasimir Mitev (leading researcher), Assoc. prof. Kalin Gladnishki, Assoc. prof. Stefan Lalkovski, Prof. Dobromir Pressyanov, Assoc. prof. Mariyan Bogomilov, Assoc. prof. Venelin Kozhuharov, Assoc. prof. Ivelina Dimitrova, Assoc. prof. Strahil Georgiev, Senior assist. prof. Diana Kocheva, M. Sc. Vladislav Todorov, M.Sc. Kalina Dimitrova, M.Sc. Radoslav Simeonov

1st Annual Conference of the project SUMMIT, 23–24 April, Sofia, Bulgaria

Structure and research activities of the research group Nuclear

		Krasimir Mite Leading rese			
WP1 <u>Kalin Gladnishki</u> , R3	WP2 Stefan <u>Lalkovski</u> , R3	WP3 <u>Krasimir</u> Mitev, R3	WP4 Dobromir Pressyanov, R3	WP5 <u>Mariyan Bogomilov</u> , R3	
Diana <u>Kocheva</u> , R2	1 or 2 young researchers to be hired in the second year	Ivelina Dimitrova, R3 <u>Strahil Georgiev</u> , R2 <u>Vladislav Todorov</u> , R1		Venelin Kozhuharov, R3 Radoslav Simeonov, R1 K. Dimitrova, R1 (6 mo)	
Task 1.1 Measurement of lifetime of excited nuclear states	Task 2.1 Beam experiments and data analysis	Task 3.1 TDCR-gamma coincidence counting systems	Task 4.1 Innovative methods in dosimetry of radioactive noble gases	Task 5.1 Development of techniques for lepton detection and manipulation	
	Task 2.2 Beam experiments and data analysis	Task 3.2 Scintillator characterization and radon dynamics	Task 4.2 Measurements of RNG by innovative methods	Task 5.2 Precise study of physics processes with leptons and/or new light particles	

Research directions

Nuclear structure;

Nuclear data;

- > Radionuclide metrology and radiation measurements;
- Dosimetry, radiation protection and radioecology;
- Sub-nuclear and high energy physics and technology
 - neutrino physics
 - dark matter physics

Administrative

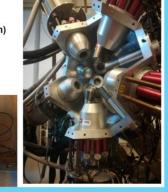
The first year of the SUMMIT project was completed successfully in a spirit of good collaboration between the members of the group Nuclear.
 All the administrative necessities were timely and fully completed, including those related to completing the research staff and performing the necessary laboratory relocations.

WP1: Nuclear Structure (Kalin Gladnishki)

Experiment proposals, accepted by the Scientific Council of ISOLDE.
 Transition probabilities of low-lying excited states in ²¹⁰Po and ²¹⁰Pb
 A Study of Seniority-2 Configurations in N =126 and 124 Isotonic Chains".

Proposals, accepted by the Scientific Council of the Nuclear Research Laboratory in Magurele, Romania.

Electromagnetic transition rates in the nucleus ^{132,134}₅₆Ba
 Magnetic moment of 4+ isomeric state in ²¹⁰Po
 "Search for X(3) symmetry in ¹⁹⁰Pt", accepted @ Cologne, Germany

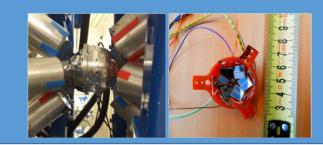

"Lifetime measurements in ²¹⁴Rn"

Fast-timing method

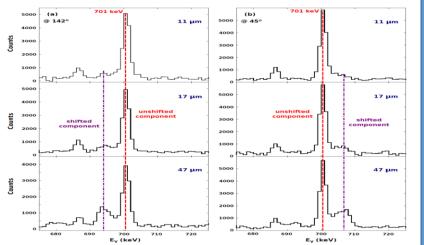
ROSPHERE (mixed configuration)
 - 10 2"x2" LaBr₃(Ce); ε=1.8%
 - 15 HPGe; ε=1.9%

+ particle detector

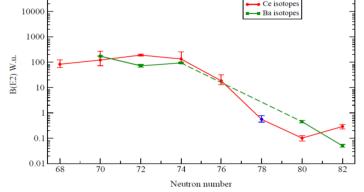
SORCERER or Si detector

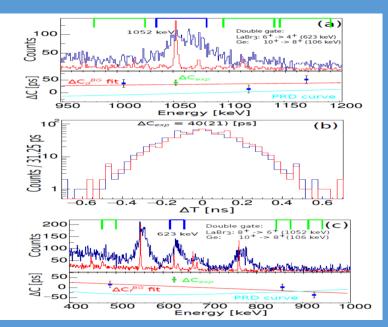


- \rightarrow Spectroscopy of the neutron-rich ¹⁵⁶Sm in 2n transfer
- Lifetime measurements in ²¹⁴Rn
- Lifetime measurements in the yrast band of ¹⁶²Er nuclei
- Correlations in 144,145 Ba by the Recoil Distance Doppler-shift Technique
- Probing the doubly magic shell closure at ¹³²Sn by Coulomb excitation of neutron-rich ^{130,134}Sn isotopes
- Single-particle structure, effective proton charge, and emerging collectivity around ¹³²Sn


During the first year of the project, several data sets from previous experiments were analyzed.

FN Tandem facility, University of Cologne


- Reaction: ²⁰⁴Pb(¹⁶O,¹⁴C)²⁰⁶Po, E_{beam}=84 MeV;
- Target: 0.6 mg/cm² ²⁰⁴Pb on 0.3 mg/cm² V backing foil;
- Stopper: 2.0 mg/cm² V foil;
- Experimental setup:
 - 5 HpGe detectors at 142 $^\circ$ and 6 HpGe detectors at 45 $^\circ;$
 - 6 solar cells (10mm \times 10mm) between 115 $^{\circ}$ and 165 $^{\circ};$
- Distances: 11, 13, 17, 21, 30 and 47 $\mu {\rm m};$



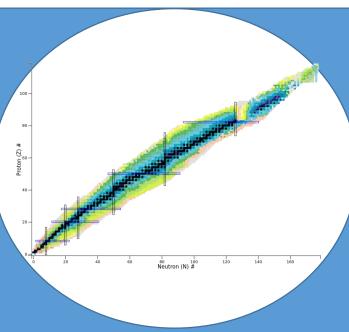
Study the structure of the low-lying states of ²⁰⁶Po
 Experimental study of the low-lying states of ²⁰⁵Bi
 Electromagnetic transition rates in the nucleus ¹³⁶Ce

Electromagnetic transition rates in the nucleus ¹³⁶Ce

WP2: Nuclear Data (Stefan Lalkovski)

Core ENSDF nuclear data evaluation activities

•A=107 Mass chains data compilation, evaluations and dissemination (mass chain evaluation is completed and ready for submission)


Data evaluations for monitoring applications

Nuclear data evaluations for CTBTO – Adopted decay data set for ¹⁴⁴Pr (the evaluation is completed and submitted for review; reviewer report returned to the evaluator)
 Two reviews of nuclear data evaluations for CTBTO (work in progress)

• Evaluations on data for medical applications

•¹¹⁷Sn nucleus data evaluation, comprising 22 data sets (the evalution is done and to be submitted for inclusion in ENSDF)

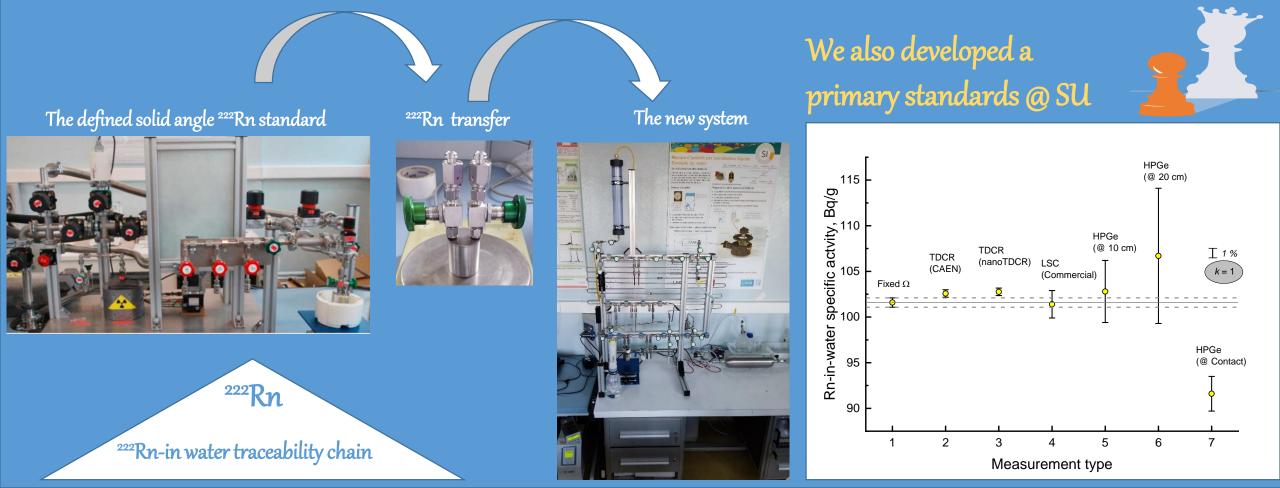
Article reviews for journals

Data analysis of prior experiments

¹⁴⁶Ce beta-decay with Gammasphere (*experiment, performed at Argonne National laboratory, USA.*) •⁹⁹Rh fast-timing data from RoSphere, *IFIN-HH* (*analysed in 2023 and published in 2024*)

Experiments targeted on specific phenomena

Sub-nanosecond lifetimes of core-excited states in ¹⁰⁵Cd (experiment performed in July/August 2023 in IFIN-HH (Romania)) Sub-nanosecond lifetimes lifetimes in ^{103,105}Ag (experiment performed in July/August 2023 in IFIN-HH (Romania)

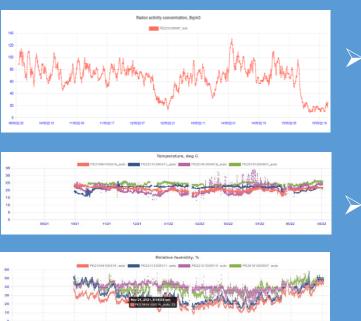

Proposals for future experiments

Fast-timing in ^{13,115}Ag with radioactive beams at the University of Jyvaskyla (proposal submitted to the PAC. Awaits approval) Plunger in ¹⁰⁷Ag (proposal approved, the experiment is scheduled for Dec.2024)

WP3: Radionulcide metrology and applications (Krasimir Mitev)

With colleagues from French primary metrology laboratory we have created the first ever radon-in-water primary standard .

WP3: Radionulcide metrology and applications (Krasimir Mitev)


We have developed and we are operating a state of the art system for monitoring of ²²²Rn in dwellings and workplaces with electronic radon detectors. ²²²Rn measurements with 10 minutes time resolution!

French National Metrlogy Laboratory (LNHB)
 United Kingdom Health Secruity Agency (UKHSA)

Metrological assurance (collaborations):

- The electronic monitors will provide real-time ²²²Rn data which will be very useful for active radon mitigation, development of safe indoor environment and smart heating solutions;
- There is a need of improvement of electronic radon sensors both in terms for sensitivity and time response, which will require adequate metrological assurance

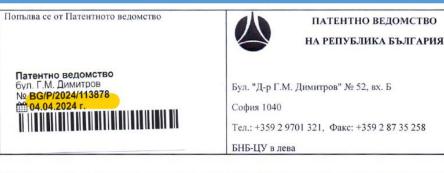
Design and study of novel methods for 222Rn detection of unique sensitivity

➢ The novel detectors employ activated carbon fabrics coupled with solid state nuclear track detectors. The fabric Kynol ACC-5092-10 was identified to have high radon adsorption ability even at high humidity levels.

> The novel designs make possible to break-through in problems not tackled yet:

- Study the fine distribution of radon concentrations in soil close to surface (including in the upper few cm close to surface) and refining estimates of the radon gradient on the surface under various circumstances;
- Resolving problems related to free radon exhalation-rate determination.

MDAC (²²²Rn) of different passive detectors for exposure time of 3 months and 1 week. Current state-of-theart in passive radon detectors is surpassed by one-two orders of magnitude.

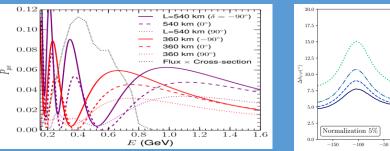

Detector	Counted area (cm²)	Conditions MDAC (Bq r		(Bq m ⁻³)
Exposure:			3 months	1 week
Conventional radon detectors	0.5 - 1	Usually CR-39 placed in diffusion chambers	≥5	≥ 60
ACC-5092-10 + LR-115/11	1	RH<50%, no temperature compensation	0.4	4.6
ACC-5092-10 + LR-115/11	1	RH>60%, no temperature compensation	1.0	11.5
ACC-5092-10 + LR-115/11	1	With temperature compensation	0.9	9.7
ACC-5092-10 + DVD	100	RH<50%, no temperature compensation	0.07	0.8
ACC-5092-10 + DVD	100	RH>60%, no temperature compensation	0.17	1.9
ACC-5092-10 + DVD	100	With temperature compensation	0.16	1.8

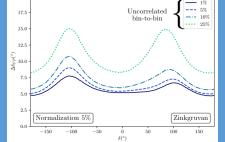
WP4: Dosimetry and radiation protection (Dobromir Pressyanov)

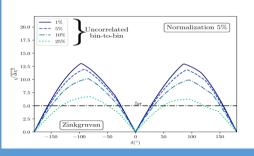
Possible break-through in the field: Gradient chamber for radon and thoron exhalation rates from surfaces

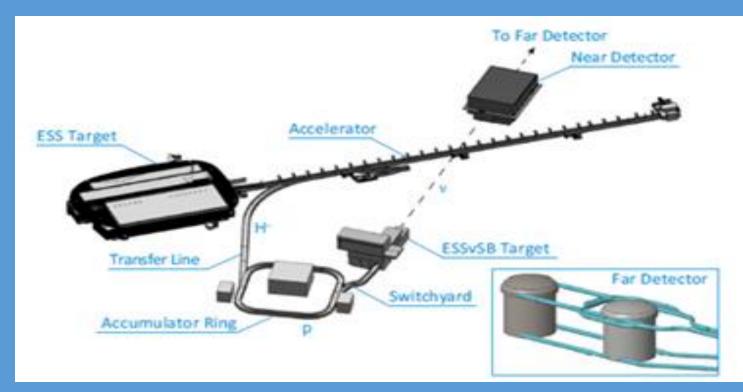
A patent application has been triggered

ЗАЯВЛЕНИЕ

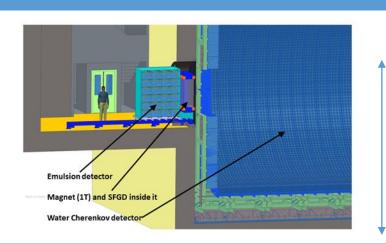

ЗА ПАТЕНТ ЗА ИЗОБРЕТЕНИЕ

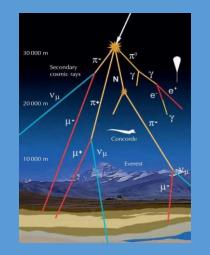

1. НАИМЕНОВАНИЕ НА ИЗОБРЕТЕНИЕТО: Камера за измерване на мощността на ексхалацията на радон и торон и повърхности					
2. ЗАЯВИТЕЛ/И:					
Име, презиме, фамилия (наименование на фирма) и	Гражданство:				
Софийски университет "Св. Климент Охридски"	Седалище на фирма: България				
ЕИК/БУЛСТАТ:0006706800015	Код на страната: ВG				
Адрес, пощ.код:	Телефон:				
Бул. "Цар Освободител" № 15	е-поща:				
София 1504	Факс:				
Трите имена на представляващия/те ЮЛ					
Проф. п-р Георги Александров Вълчев, ректор					


8А. ДЕКЛАРАЦИЯ ЗА ДЕЙСТВИТЕЛНИТЕ ИЗОБРЕТАТЕЛИ:				
Държава: България				
(по постоянен адре)				
Код на страната: В G				
Телефон: 028161268; 0889 138 639				
е - поща:				

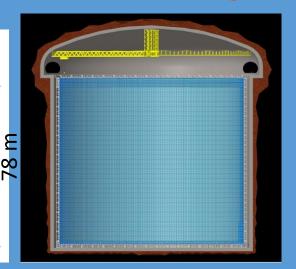

- The measured matter-antimatter asymmetry is ca 9 orders of magnitudes larger than what can be explained by the quark Charge-Parity (CP) violation in the Standard Model.
- A significant lepton CP violation could explain the presence of matter in Universe through leptogenesis.
 - It can be measured using neutrino oscillation in terms of the CP phase-angle δ_{CP} with the highest precision possible.

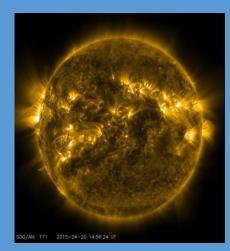
Owing to the use of the world-uniquely high power of the European Spallation Source (ESS) linear accelerator near Lund, Sweden, the ESSnuSB project will enable a measurement of δ_{CP} with a standard error below 8° for all values of δ_{CP} .

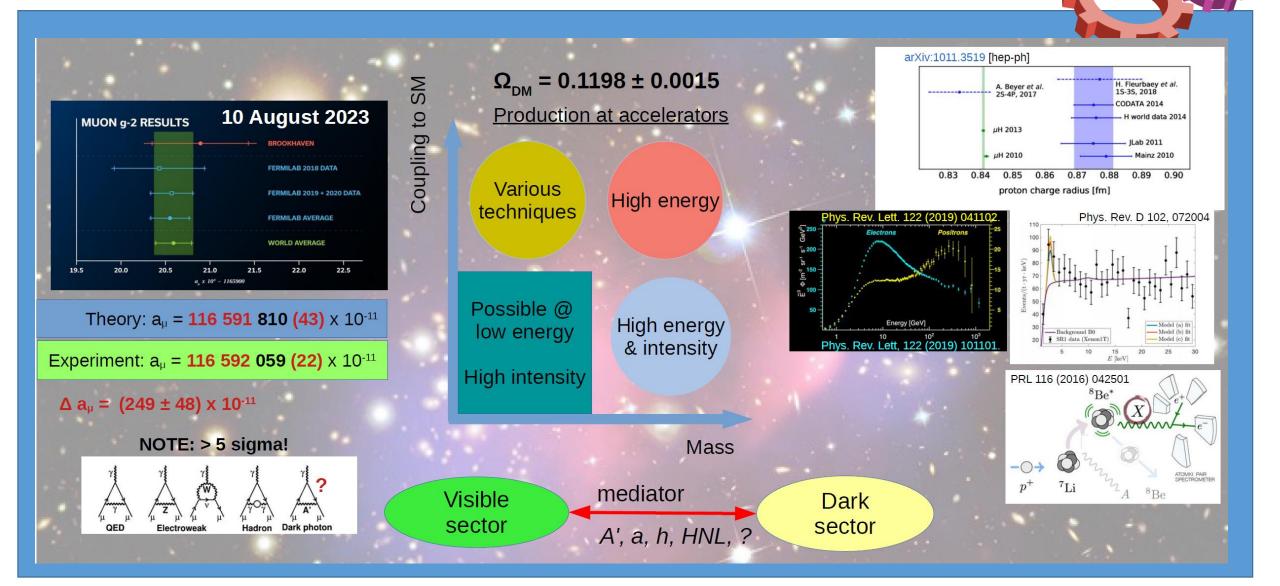



WP5: ESSnuSB Physics Reach (Mariyan Bogomilov)

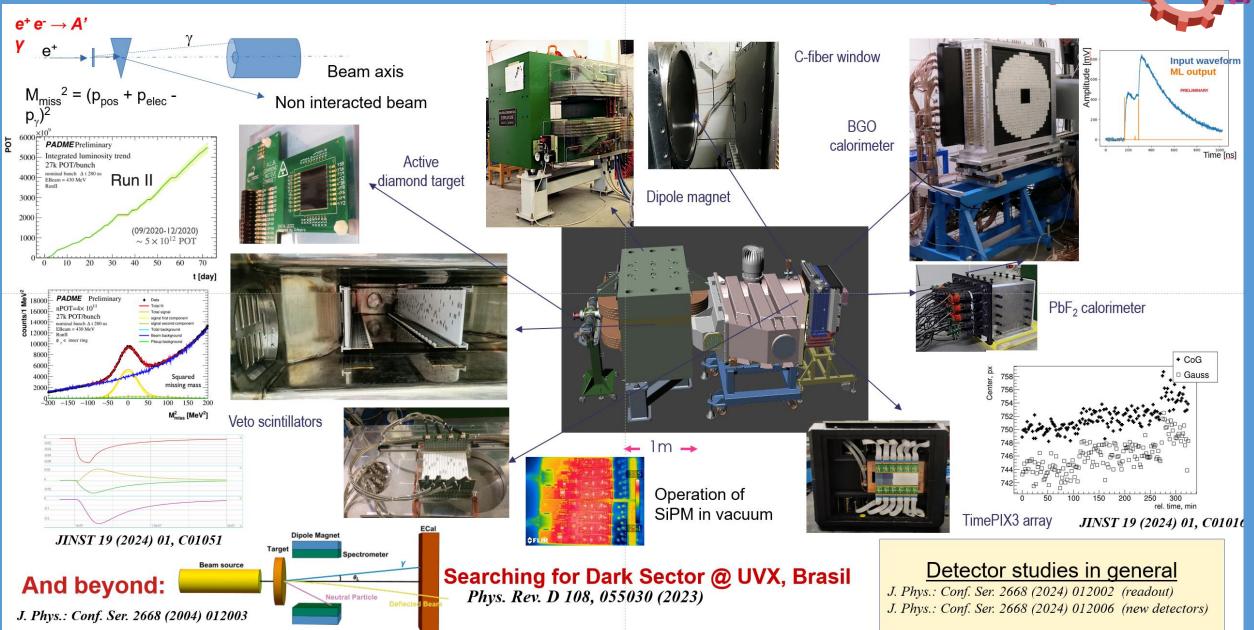
- Using near and far detectors
 - CP violation search
 - Precise measurement of δ_{CP} parameter
- Using only near detectors (50 m 250 m)
 - Sterile neutrino search
 - Non standard interactions
 - Constraining Beyond Standard Models theories via
 neutrino electron scattering
- Using only far detectors (ongoing or planned non-beam study)
 - Atmospheric neutrinos
 - Supernovae neutrinos
 - Diffuse supernovae background neutrinos
 - Geoneutrinos
 - Reactor neutrinos
 - Solar neutrinos


We are responsible for the one of the near detectors – Scintillation tracker (SuperFGD). We are coordinating the works on near detectors – development and software.


near detectors



far detector



WP5: Uncovering Dark Matter and its interactions (Venelin Koushuharov)

WP5: PADME: Positron Annihilation into Dark Matter Experiment (V. Koushuharov)

SUMMARY

The first year of the SUMMIT project was completed successfully in a spirit of good collaboration between the members of the group Nuclear. All the administrative necessities were timely and fully completed, including those related to completing the research staff of the group and performing the necessary reconstructions and laboratory relocations. This lead to a smooth execution of the project without significant disturbances.

Scientific

- 11 oral and 2 poster contributions to scientific conferences or meetings;
 15 papers were published with acknowledgment to the SUMMIT project;
 13 manuscripts are submitted for publications in various journals;
 Other papers are in a process of preparation.
- One patent application

For more interesting presentations: Tomorrow, FzF, A315, 9:30h

- S.Lalkovski et al, Structure of the high-spin, beta-decaying state in the neutron rich nucleus 146La, Physical Review C109, 024309 (2024),
- S.Lalkovski, S.Kisyov, O.Yordanov, j-1 anomalous states and electromagnetic transition rates in the neutron mid-shell Ag nuclei, Acta Physica Polonica B55, 1-A2 (2024),
- G.Pasqualito, ..., S.Lalkovski,..., Shape evolution in even-mass 98-104Zr isotopes via lifetime measurements using the γγcoincidence technique, European Physical Journal A59 (2023) 276
- B. Sabot, Ch. Dutsov, P. Cassette, K. Mitev, M. Hamel, GH. V. Bertrand, K.
 Lebbou, C. Dujardin, A compact detector system for simultaneous measurements of the light yield non-linearity and timing roperties of scintillators, Scientific Reports (2024) 14:6960
- V. Todorov, S. Georgiev, M. Hamel, C. Dutsov, B. Sabot, I. Dimitrova, K. Mitev, Evaluation of radon absorption and detection properties of a plastic scintillator developed for PSD measurements, Measurement, in press,
- K. Mitev, B. Sabot, S. Pierre, M-C Lepy, P. Cassette, "Towards a radon-inwater primary standard at LNHB", Applied Radiation and Isotopes, 201 (2023) 111013,

Thank you for your attention!

- P. Cassette, V. Todorov, B. Sabot, S. Georgiev, K. Mitev, "Uncertainties in TDCR measurement revisited: Contribution of optical effects", Applied Radiation and Isotopes, 201 (2023) 110992,
- J. Aguilar et al., Search for Leptonic CP Violation with the
 ESSnuSBplus Project, Letters in High Energy Physics, LHEP-517, 2024
- S. Bertelli et al, Design and performance of the front-end electronics of the charged particle detectors of PADME experiment, JINST 19 (2024) 01, C01051,
- S. Bertelli et al, Beam diagnostics with silicon pixel detector array at PADME experiment, JINST 19 (2024) 01, C01016,
- V. Buchakchiev et al, Reliability evaluation of the CAEN DT5202 for high-rate data acquisition, J. Phys.: Conf. Ser. 2668 012006,
- M. Naydenov, Phenomenology of dark tensor currents, J. Phys.: Conf. Ser. 2668 012003
- Veronika Arsova et al, Multichannel SiPM test readout system for gamma ray measurements, J. Phys.: Conf. Ser. 2668 012002,
- L. Angel, ..., V. Kozhuharov et al., Toward a search for axionlike particles at the LNLS, Phys. Rev. D 108 (2023) 5, 055030,