

Финансирано от Европейския съюз NextGenerationEU



Национален план за възстановяване и устойчивост



НА РЕПУБЛИКА БЪЛГАРИЯ

#### SOFIA UNIVERSITY – Marking momentum for innovation and technological transfer

Quantum chemical modeling of catalytic systems and reactions on them

prof. Hristiyan Aleksandrov

Scientific group: 3.1.5 "Computational Heterogeneous Catalysis"

До говор BG-RRP-2.004-0008 ..СОФИЙСКИ УНИВЕРСИТЕТ PAHCΦEP (S UMMIT)" по ст за финанси ране на проект ЗА ИНО ълб 2 "Създаване на мрежа в рамките на к о мпонент "Ино вативна България" от Национален план за възстановя ване и ус тойчивост к рам ата за ускоря ване на икон омическ отовъзстановя ванеит рансфо рмация чрез н вании

### Catalysts



- Increase the rate of chemical reactions without themselves being consumed
- □ Lower the activation energy
- Help the reactions to occur under favorable conditions (P and T), increasing the yield and reducing the cost of the product
- More than 80% of industrial processes are expedited (at least in part) by catalysis

https://ib.bioninja.com.au/higher-level/topic-8metabolism-cell/untitled-6/activation-energy.html

### Computational heterogeneous catalysis

- Computational catalysis can help to:
  - Determine the structure of the catalysts and outline the catalytic sites
  - Find the most plausible pathway of the catalytic transformations
- Complications:
  - Defects and irregularities on the catalytic surface
  - Multicomponent catalysts
  - Impurities and spectator species on the surface



Wilde, Schauermann, Freund et al. Angew. Chem. Int. Ed. 47 (2008) 9289



Scientific group: 3.1.5 "Computational Heterogeneous Catalysis"

In the focus of the project is quantum-chemical modeling of catalytic materials and processes which can be used:

- To convert the harmful automotive exhaust gases (CO,  $NO_x$ , and hydrocarbons) into non-toxic CO<sub>2</sub>,  $H_2O$ , and  $N_2$
- For storage of harmful and greenhouse gases as  $CO_2$ ,  $CH_4$ , and  $NO_x$
- To produce green hydrogen ш
- For nitrogen fixation processes ш
- We will pay special attention to the possibility to reduce the amount of precious metals ш in these catalysts, but simultaneously the reactivity and selectivity to be retained and even enhanced
- The results of this project will help to be elaborated better and cheaper catalysts for ш cleaner environment and production of green energy

### Modeled materials with catalytic applications







Metal oxides

Transition metals







Zeolites

5

### NO oxidation to $NO_2$ on TM/CeO<sub>2</sub>

- NO oxidation to NO<sub>2</sub> is critical for environmental catalysis in diesel aftertreatment systems because:
  - $NO_2$  formation is important in lean NOx reduction
  - $NO_2$  facilitates ammonia selective catalytic reduction (SCR) (so-called "fast" SCR, with an ideal 1:1 ratio between NO and  $NO_2$ )
  - Lean NOx storage NO must first be oxidized to NO<sub>2</sub> to be stored on LN traps materials



https://www.climateandweather.net/world-weather/acid-rain/

- Best catalysts for NO oxidation typically contain a few wt % percent of expensive Pt and Pd
- Catalyst with atomically dispersed Ru<sub>1</sub>O<sub>5</sub> sites on (100) facets of ceria only 0.1–0.5 wt % of Ru is sufficient to achieve high catalytic activity

J. Am. Chem. Soc., 2023, 145, 9, 5029-5040

### NO oxidation on Rh<sup>II</sup>O/Ce<sub>21</sub>O<sub>42</sub>



The rate-limiting step is NO oxidation -  $\Delta G^{\#}_{623}$  are 154 and 200 kJ/mol, respectively, on c-10 and e-10 sites

□ The former barrier seems to be operative at 623 K, as the calculated kinetic constant is 1.58 s<sup>-1</sup> which corresponds to a half-life T<sup>1</sup>/<sub>2</sub> of ~0.44 sec

*J. Am. Chem. Soc.*, **2023**, 145, 9, 5029–5040 <sup>7</sup>

### CO oxidation on $Pt/CeO_2$

- $\Box$  CO oxidation to CO<sub>2</sub> is a key process in various industrial reactions:
- Conversion of automotive exhaust gases into harmless ones
- Water-gas shift reaction (WGSR)
- Preferential CO oxidation in the presence of hydrogen (PROX)
- Reforming of alcohols etc.
- □ Pt/CeO<sub>2</sub> high catalytic activity for CO oxidation under various reaction conditions



https://www.linkedin.com/pulse/emission-controlgasolinepetrol-engine-three-way-catalytic-tharad

ACS Catalysis, 2023, 13, 8, 5358-5374

### CO oxidation on mononuclear $Pt^{4+}(O)_2$ species



ACS Catalysis, 2023, 13, 8, 5358-5374

#### CO oxidation on Pt<sub>8</sub> clusters



ACS Catalysis, **2023**, 13, 8, 5358–5374

### CO oxidation on Pd catalysts

- Low catalytic activity of Pd nanoparticles catalytic sites blocked by CO
- High catalytic activity of Pd<sub>4</sub> clusters supported in FER zeolite
- O<sub>2</sub> adsorption seems to be the crucial step of the process

![](_page_10_Picture_4.jpeg)

## CO and O<sub>2</sub> adsorption on $Pd_{79}$ NP and $Pd_4$ /FER

- $\Box$  Higher flexibility of Pd<sub>4</sub> cluster upon CO adsorption than significantly larger Pd<sub>79</sub>
- $\Box$  O<sub>2</sub> binds stronger to the Pd<sub>4</sub> cluster than to the Pd<sub>79</sub> NP

Pd₄/FER

□ Significant activation of O-O bond on Pd<sub>4</sub> cluster

![](_page_11_Figure_4.jpeg)

J. Am. Chem. Soc., 2023, 145, 50, 27493–27499

 $Pd_{79}(O_2)(CO)_{60}$ BE(O<sub>2</sub>) = -120 kJ/mol  $\Delta$ (O-O) = 7.6 pm

![](_page_11_Figure_7.jpeg)

![](_page_11_Picture_8.jpeg)

Pd<sub>4</sub>(CO)<sub>4</sub>(O<sub>2</sub>)/FER BE(O<sub>2</sub>)=-142 kJ/mol ∆(O-O) = 19.8 pm

### Zeolites – potential CO<sub>2</sub> sorbents

![](_page_12_Figure_1.jpeg)

J. Phys. Chem. Lett., 2023, 14, 6, 1564–1569

Crystalline porous aluminosilicates

- 3D structures with crystal lattice:  $[SiO_4]$ and  $[AIO_4]$
- CaY zeolites possess a high CO<sub>2</sub> adsorption capacity at ambient temperature
- Each Ca<sup>2+</sup> site can attach two CO<sub>2</sub> molecules at relatively low partial pressure and has the reserve potential to bind an additional molecule when the equilibrium pressure increases

# Metal-organic frameworks (MOFs)

MOFs: Crystalline class of porous materials assembled from inorganic metal nodes and organic linkers

![](_page_13_Figure_2.jpeg)

Energy Environ. Sci., 2015,8, 1190-1199

![](_page_13_Figure_4.jpeg)

Chem. Soc. Rev., 2014,43, 5994-6010

## MOFs – properties and applications

- high porosity
- huge inner surface
- crystallinity
- tunability (linker, metal ions, defects)
- deposition as thin films

- gas storage & separation
- drug storage & release
- energy storage
- sensors
- structure property relationships
- etc.

## 2D conjugated metal-organic frameworks (c-MOFs)

- Highly tailorable, their conductivity, charge carrier mobility and band-gap can be controlled through the appropriate design.
- Two general approaches towards 2D c-MOF design:
  - "in-plane" approach (through the bonds)
  - "out-of-plane" approach (*through the space*)

![](_page_15_Figure_5.jpeg)

ACS Appl. Nano Mater. 2022, 5, 10, 14377–14387

![](_page_15_Figure_7.jpeg)

![](_page_15_Figure_8.jpeg)

J. Am. Chem. Soc. 2021, 143, 34, 13624–13632

**Oxidation State Dependent Conjugation Controls** Electrocatalytic Activity in a Two-Dimensional Di-Copper Metal–Organic Framework

![](_page_16_Picture_1.jpeg)

J. Phys. Chem. C, 2023, 127, 15, 7299–7307

Near IR Bandgap Semiconducting 2D Conjugated Metal-Organic Framework with **Rhombic Lattice and High Mobility** 

![](_page_16_Figure_4.jpeg)

High-mobility 2D c-MOF semiconductor

DFT: the large aromatic core of the ligands leads to improved  $\pi$ - $\pi$  interactions normal to the layers, which contributes to strong band dispersion close to the Fermi level and dominates the overall conductivity.

Angew. Chem. Int. Ed., 2023, 62, e202300186

#### Research achievements in 2023

- The group published 21 publications in 2023, which exceeds the number of publications planned for 2024 (16) and 2025 (19)
- □ The total impact factor (IF) of these papers is 206.9 (average IF of 9.94)
- 14 of the publications are in the area of computational heterogeneous catalysis total IF is 178.8 (average IF of 13.39)
- □ These studies were published in some of the most prestigious scientific journals in the areas of:
  - Chemistry: Angew. Chem. Int. Ed.; J. Am. Chem. Soc.
  - Catalysis: ACS Catalysis
  - Materials: Nat. Mater.; Micropor. Mesopor. Mater.; Chem. Mater.
  - Theoretical and physical chemistry: J. Phys. Chem. Lett.; J. Phys. Chem. C

![](_page_18_Picture_0.jpeg)

prof. Hristiyan Aleksandrov

Project team

![](_page_18_Picture_3.jpeg)

prof. Petko Petkov

![](_page_18_Picture_5.jpeg)

Assoc. prof. Iskra Koleva

![](_page_18_Picture_7.jpeg)

Assoc. prof. Miroslava Nedyalkova

![](_page_19_Picture_0.jpeg)

Bayan Karapenchev

![](_page_19_Picture_2.jpeg)

Ivana Hristova

### Project team

![](_page_19_Picture_5.jpeg)

Polya Koleva

![](_page_19_Picture_7.jpeg)

Boyana Sabcheva

### Project team

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

Nikolay Daskalov

Kristina Simeonova

![](_page_21_Picture_0.jpeg)

SOFIA UNIVERSITY Marking momentum For innovation and Technological transfer

### THANK YOU!

![](_page_21_Picture_3.jpeg)

Финансирано от Европейския съюз NextGenerationEU Национален план за възстановяване и устойчивост

![](_page_21_Picture_6.jpeg)

НА РЕПУБЛИКА БЪЛГАРИЯ

![](_page_21_Picture_8.jpeg)