СОФИИСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФИЗИЧЕСКИ ФАКУЛТЕТ

SOFIA UNIVERSITY St. Kliment ohridski

FACULTY OF PHYSICS

Primary measurement methods in radionuclide metrology

Philippe Cassette

visiting professor at Sofia University "St. Kliment Ohridski"

With the contributions of S. Pommé (JRC), B. Sabot, (LNHB), M. Loild (LNHB) and R. Collé (NIST)

Realization of the SI-unit Becquerel

 "Direct" measurement of the number of spontaneous transitions of a radionuclide in a time interval

= primary standardisation

- = realization of the Becquerel [s⁻¹]
- Primary standard
 - = directly measured source+ Activity + Uncertainty

Primary measurement methods

- "Transitions" are measured through the emitted radiation (X, γ , α , e⁻, e⁺)
- Different physical detection principles and devices are used, depending on radionuclide.
- <u>Counting efficiency</u> should be
 - –≈100% with small corrections
 - high-geometry (4π) methods
 - <100%, but calculated with low uncertainty</p>
 - coincidence counting
 - defined solid angle counting
- The 'ideal' primary method is accurate, precise, under statistical control, independent of decay scheme parameters and not based on calibrations with other radioactivity standards

Primary Standardisation of activity

Counting at a defined small solid angle

Defined Solid Angle = DSA

Particles should

- not easily scatter
- not pass through diaphragm edge
- be detected with known efficiency

Method works with:

- 1. <u> α -particles</u> (MeV)
- 2. <u>X-rays</u> <10 keV
- 3. not β^{-} or γ -rays

Counting @ Defined Solid Angle

<u>Principle assumptions</u> :

- one particle is emitted per transition
- moves in random direction, along straight line
- is counted when reaching detector
- geometry is extremely well defined

<u>Counting efficiency</u> :

- detector efficiency = unity
- geometrical efficiency = solid angle / 4π

Scattering effects should be small

Alpha-particle counter with well-defined geometry

Reproducible geometric assembly

Example of how to measure source-detector distance without touching?

First : replace source by reference plate

Then: measure distance reference plate - diaphragm

Compare with Gauge blocks as SI-traceable reference

Last : compare thickness source and reference plate

No touching, just optical focussing on surface

tray with reference plate 'R' or source

Geometry factor

 the fraction of alpha particles emitted in the 'right' direction

 the counting efficiency, if the detection efficiency is 100%

• = the ratio of the solid angle to 4π steradians

Mathematical representations

- Simplifications :
 - axial symmetry
 - point source, circular source
 - circular diaphragm (detector)
 - parallel planes
 - homogeneous activity distribution
- Reality :
 - inhomogeneous, off-axis, non-circular source
 - diaphragm edge has certain thickness

Point source on symmetry axis

circular aperture diaphragm/detector

• The only geometry with a simple solution for $\boldsymbol{\Omega}$

$$\Omega = 2\pi(1 - \cos\theta)$$

 $\theta = a \tan(R_D/d)$

coaxial 'point' source

Coaxial, homogeneous, disk source

- Tables and Approximations Masket, Jaffey, etc.
- Numerical Integration
 Pommé et al., NIM A505
- Elliptic functions Tryka, Optics Com. 137
- Bessel functions Ruby, NIM A337 Pommé, NIM A531

Disk or point source out-of-centre

- Numerical Integration
 Pommé et al., NIM A505
- Bessel functions Conway, NIM A562, A583 Pommé et al., NIM A579

Software: ANGLESOL (LNHB) and SOLIDANGLE (JRC)

📾 D:\BACKUP~1\calcul\asd\ANGLESO	L.EXE			Po	
LPRI	Calcul d'angle s	olide	S. Blanchis		
Description	Valeur mêmes unités	Incertitude	type absolue		
	dimensionnelles	(Type A)	(Туре В)	- Dia	
Distance disque à disque Rayon du disque source Rayon du disque récepteur Distance entre les 2 axes Angle entre les 2 disques	1.000000E+01 1.000000E+00 2.000000E+00 0.000000E+00 0.000000E+00 r	0.000000E+00 0.000000E+00 0.000000E+00 adians	1.000000E-03 1.000000E-04 1.000000E-04		
Арриуе	z sur 'c' pour lan	cer le calcul			
Angle solide : 1.211670E-01 stéradians Facteur de géométrie : 9.642171E-03 Incertitude type composée relative : 2.160046E-04					
'Esc' pour quitter, 's' p Utilisez les flèches pour	our sauvegarder da vous déplacer	ns 'result.txt'			
Temps de calcul max : 40 s sur 486DX2 66 MHz et 10 s sur Pentium Pro 200 MHz					
				Save	

D ANGLE	
	SOLID ANGLE by Stefaan Pommé, JRMM, 200
Point Source circular disk aninular disk rings	
inner radius outer radius	offset
2 3	0
± 0 ± 0	± 0
- Diaphragms	
Radius Dis	stance from source plane
✓ "detector" 20 → 0	20 1 0
🔽 diafragm 2 14 🛨 0	15 _± 0
⊠ diafragm 3 10 ± 0	10 ± 0
- Results	
Solid apple = 16569350 sr	G = 12 195407 %
± 0 % 1/	G = 7.5841421
	A A A
	• Integration
Recall Data Solid Angle	C Monte Carlo
	O normal
Save Data Uncertainty	O accurate
	Exit

Vacuum evaporated source

• Visual

Autoradiograph

Drop deposited source

• Visual

Autoradiograph

Activity distribution in sources

 ...not as homogeneous as you would like!

Error by misrepresenting source as a centred, homogeneous disk

Subdivide source in concentric rings

 $\begin{array}{c} \mbox{Weighted sum of} \\ \mbox{each ring's contribution to } \Omega \end{array}$

Primary Standardisation of activity

²²²Rn standard

Various radon

- « radon » (²²²Rn), half-life 3,8 d from ²²⁶Ra (²³⁸U natural decay chain)
- « thoron » (²²⁰Rn), half-life 56 s from ²²⁴Ra (²³²Th natural decay chain)
- « actinon » (²¹⁹Rn), half-life 4 s from ²²⁷Ac (²³⁵U natural decay chain)

²²²Rn simplified decay scheme

²²²Rn standards

- Before 1995 : from ²²⁶Ra with emanation coefficient
- In 1995, first cryogenic radon standard at LNHB (France)
- Development of the same instrument at IRA-METAS (Switzerland, PTB (Germany), KRIIS (Korea) and NIM (China)

Measurement method

Measurement chamber

Alpha spectrum (at equilibrium)

Detection efficiency

- Intrinsic efficiency of the silicon detector = 1 (1 α of 5 MeV creates 1,5 10⁶ e⁻/holes pairs)
- Geometry factor:

Uncertainty

$$\frac{u(A)}{A} = \left[\left(\frac{u(n)}{n} \right)^2 + \left(2(1-G)(1-2G)\sqrt{\left(\frac{u(a)}{a} \right)^2 + \left(\frac{u(z)}{z} \right)^2} \right)^2 \right]^{1/2}$$

In practice 0.3 to 0.4 % relative standard uncertainty in the best conditions
Primary Standardisation of activity

Coincidence Counting

Basics of Coincidence Counting

Consider simple decay scheme: one beta followed by one gamma. Measure count rates in each detector along with "coincidence" rate.

Three equations... three unknown

Only true under certain conditions...

Some requirements

- Detectors sensitive to one type of radiation only
 - no gamma-ray detection in beta-counter
 - also no pickup of electronic noise !!
- ϵ_{β} and ϵ_{γ} must be independent and constant
 - no directional correlation between β and γ
 - \rightarrow use 4π beta detector
 - at least one of the efficiencies should be the same in all parts of the source
- No coincidences should be lost
 - coincidence window wide enough to avoid loss through time-jitter between β and γ signals
 - compensate for accidental coincidences and dead time

Suitable beta detectors

- Need 4π geometry
 - high ϵ reduces uncertainty of extrapolation
 - if $< 4\pi$, will be error in activity if > 1 beta branch
 - no directional correlation
 - no scattering/absorption correction outside source(cf. 2π or defined solid angle)
- Proportional counters with thin sources
 - high gas gains & low dead times
 - almost all charged particles escaping source are counted
 - requires suitable chemical form for thin stable solid source
- Liquid scintillation counters
 - dead times usually larger than PC (after-pulses ...)
 - higher $\varepsilon_{\beta\gamma}$ interaction than PC (by ~ 10x)
 - requires suitable chemical form to be stable, compatible with scintillant

A rudimentary set-up

A performant set-up

So far the good news, but how about...

- <u>dead time</u> in both counters and their combined effect in the coincidences?
- <u>extended</u>, <u>non-uniform sources</u>?
- sensitivity of beta detector for <u>photons and conversion</u> <u>electrons</u>?
- sensitivity of γ -ray detector for <u>annihilation photons</u> created after β^+ decay?
- complex decay schemes with <u>multiple branches</u>?
- pure beta emitters?

Add artificial dead time

advantage: counters now have a known **type** and **length** of dead time => one can apply dedicated dead time corrections formulas

Extended sources

Uniformity requirements

Different parts of source may give rise

to different efficiencies in a detector :

- a) non-uniform source (e.g. thickness)
- b) extended source

Let $f_i = \text{fraction}$ with efficiencies $\epsilon_{\beta i}$ and $\epsilon_{\gamma i}$, where $\sum f_i = 1$.

Possible solutions

Possibility 1: make sure that the **beta** efficiency is **constant**

all
$$\varepsilon_{\beta i} = \varepsilon_{\beta}$$
 $\implies \frac{N_{\beta}N_{\gamma}}{N_{c}} = A \cdot \frac{\varepsilon_{\beta} \sum f_{i} \cdot \sum f_{i}\varepsilon_{\gamma i}}{\varepsilon_{\beta} \sum f_{i}\varepsilon_{\gamma i}} \equiv A$
e.g. 4π geometry

Possibility 2: make sure that the gamma efficiency is constant

all
$$\varepsilon_{\gamma i} = \varepsilon_{\gamma}$$
 \longrightarrow $\frac{N_{\beta} N_{\gamma}}{N_{c}} = A \cdot \frac{\sum f_{i} \varepsilon_{\beta i} \cdot \varepsilon_{\gamma} \sum f_{i}}{\varepsilon_{\gamma} \sum f_{i} \varepsilon_{\beta i}} \equiv A$

e.g. well detector

Possibility 3: use thin and small sources

... and compare several sources of different mass

Typical sources

substrate of ultra-thin gold-coated VYNS polymer

source drop deposition quantified by weighing

beta detector sensitive to γ-rays and conversion electrons

$$N_{\beta} = A \left[\epsilon_{\beta} + (1 - \epsilon_{\beta}) \left(\frac{\epsilon_{\beta\gamma} + \alpha \epsilon_{ce}}{1 + \alpha} \right) \right]$$
$$N_{\gamma} = A \frac{\epsilon_{\gamma}}{1 + \alpha}$$
$$N_{c} = A \left[\frac{\epsilon_{\beta} \epsilon_{\gamma}}{1 + \alpha} - (1 - \epsilon_{\beta}) \epsilon_{c} \right]$$

 α = conversion factor ε_{β} = interaction probability for γ -ray in β -detector

corrections cancel out for $\varepsilon_{\beta} \rightarrow 1$

extrapolation $\epsilon_{\beta} \rightarrow 1$, $N_{\beta} \rightarrow A$

$$N_{\beta} = A \left[1 - \frac{C}{D} \left(1 - \frac{N_c}{N_{\gamma}} \right) \right]$$

Idem for α , example : ²⁴¹Am by $\alpha - \gamma$ coincidences

Multiple branches

Energy discrimination

sufficient condition for correct extrapolation => vary counts in the beta detector in a manner that provides energy discrimination

threshold variation in beta channel foil absorption of low-energy beta rays

Example: β⁺ decay

slope depends on inclusion of 511 keV annihilation gammas in γ -ray detector

efficiency variation by cover foil absorption and threshold variation (+ self-absorption in different sources)

¹³⁷Cs decay scheme

Problems with ¹³⁷Cs

coincidence formula is no longer valid

Solution: add ¹³⁴Cs as tracer

The tracer method

A(134+137) ~
$$\frac{N_{\beta}(134+137) N_{\gamma}(134)}{N_{c}(134)}$$

 N_{β} =A +ce for ε_{β} \rightarrow 100%

Extrapolation - pure ¹³⁴Cs

Extrapolation – ¹³⁴Cs+¹³⁷Cs

References: coincidence counting

- <u>Metrologia 44</u> (2007) Special issue on Radionuclide Metrology
- ICRU Report 52 (1994): Particle Counting in Radioactivity Measurements

Anticoincidence counting

Why anticoincidence counting ?

- No coincidence resolving time, no accidental coincidence correction
- Works with radionuclides with delayed excited states

Why extending-time dead-time?

- Optimum dead-time for saturated pulses and afterpulses
- Because a fixed dead-time is never really fixed

Why live-time counting?

- No dead-time correction needed
- Very simple implementation with live-time clock

Background corrected count rates

Principle of live-time clock

Counting the number of surviving pulses directly gives the live-time

Nuclear Instruments and Methods in Physics Research A 422 (1999) 395-399

A simple, powerful $4\pi\beta/\gamma$ coincidence system based on the pulse-mixing method

Jacques Bouchard*, Bruno Chauvenet

BNM-LPRI (Laboratoire Primaire des Rayonnements Ionisants) CEA/Saclay, F 91191 Gif-Sur-Yvette Cedex, France

Pulse mixing principle (single gamma channel)

A: source activity B: uncorrelated beta pulses G: uncorrelated gamma pulses C: correlated pulses Beta channel: B+C Gamma channel: G+C t_b : live time beta channel t_g : live time gamma channel t_c : live time common channel N_b , N_a , N_c counts in channels b, g and c

 $N_b/t_b=B+C$ $N_g/t_g=G+C$ $N_c/t_c=B+G+C$

$$A = \frac{N_{b}/t_{b^{*}}N_{g}/t_{g}}{N_{c}/t_{c}} = \frac{(B+C) + (G+C)}{(B+C) + (G+C) - (B+G+C)}$$

Pulse mixing principle (multiple gamma channels)

Advantages

- Counting statistics similar to traditional coincidence counting
- No correction needed: dead-time, accidental coincidences, time jitter...
- Can be used for radionuclide with metastable states
- Very simple implementation!

But

All requirements for coincidence counting must be fulfilled Extrapolation generally needed

Primary Standardisation of activity

 $4\pi - \gamma$ Counting

"4 $\pi\gamma$ - counting" in a Nal well detector

4πγ**- counting**

4π photon, electron, alpha counting by CsI(Tl) sandwich spectrometer

cover source by plastic caps to stop electrons and alpha-particles

CsI(TI) crystal with semi-spherical cavity

0

source with semi-spherical caps

Total emission counting

K X –rays and γ-rays and electrons are being measured

Primary Standardisation of activity

 $4\pi - \beta, \alpha$ Counting by pressurised proportional counter

Example: standardization of ²⁰⁴TI

Pressurised proportional gas counter

Fig. 5-11. Cut-away representation of a cylindrical 4π gasflow proportional counter.

Example of 4π proportional counter (BIPM)

Problematic case

quantitative sources by 'drop deposition' with pycnometer

Fast source drying to reduce self-absorption in the sources

10

Primary Standardisation of activity

Liquid scintillation counting

LSC as a direct measurement method

Detection efficiency is calculated without using a standard (of the same radionuclide)

Calculation from a model of the various physic-chemical phenomena occurring during the LSC process:

radionuclide decay, radiation emission, radiation absorption by the scintillator, energy transfer in the scintillator, light emission statistics, light propagation, light detection by the photomultiplier tubes, coincidence counting...

The measurande (mean number of disintegrations per time unit) is not directly observable, sometimes a disintegration produces no directly observable information

The LS process

Energy transfer

"Eventually, ionizing radiation is transformed into electron energy or heath"

Solvent excitation (main mechanisms, very simplified)

$$S_0 + e^- \to S_n^* \to S_1^*$$
$$S_0 + e^- \to T_n^* \to T_1^*$$

Energy transfer in the solvent

$$S_1^*(1) + S_0(2) \rightarrow [excimer ?] \rightarrow S_0(1) + S_1^*(2)$$

 $T_1^*(1) + T_1^*(2) \rightarrow S_1^*(1) + S_0(2)$

Quenching and light emission

$$\begin{split} S_1^* + M &\to S_0 + M + kT & \text{Chemical quenching} \\ S_1^*(1) + S_1^*(2) &\to S_0(1) + S_0(2) + kT & \text{Ionization quenching} \\ S_1^* + F &\to S_0 + F_1^* \to F + h\nu & \text{Light emission!} \end{split}$$

Example of energy transfer in a toluene-PPO cocktail

Consequences

- Light emission is a fast process (some ns)
- Light emission yield is low (a keV of energy produces a few photons)
- The number of photons emitted is random
- The mean number of photons emitted is not proportional to the energy

Light emission, Birks formula

If an electron with energy E is absorbed by the liquid scintillator, a mean number of m photons are emitted

Mean number of photons emitted after absorption of E

Light emission

The number of photons emitted is a Poisson-distributed random number

$$P(x/m) = \frac{m^{x}e^{-m}}{x!}$$

Probability of emission of x photons for a mean value m(E)

Detection efficiency when an energy *E* is absorbed by the liquid scintillator

A photon will produce a photoelectron in the photocathode of the PMT with a probability v(quantum efficiency of the photocathode)

$$P(yIm) = \frac{(vm)^{y}e^{-vm}}{y!}$$

Probability to create y photoelectrons for a mean value of m(E) photons

Detection efficiency (1 PMT)

•The detection efficiency is the detection probability

•The detection probability is 1 minus the non-detection probability

•Non-detection probability : probability of detection of 0 photon when a mean value of *m* is expected

$$\varepsilon = [1 - P(0)] = 1 - \frac{(\nu m)^0 e^{-\nu m}}{0!}$$

$$\varepsilon = 1 - e^{-\nu m}$$

The detection efficiency is a function of a free parameter, vm, mean number of photoelectrons produced after the absorption of E

Detection efficiency of electrons with energy spectrum S(E) injected in a liquid scintillator

$$\mathcal{E} = \int_{0}^{E} S(E)(1 - e^{-v\alpha m}) dE$$

with
$$m = \int_{0}^{E} \frac{dE}{1 + kB \frac{dE}{dx}}$$

 $v\alpha$, free parameter, is the intrinsic efficiency of the detector (scintillator + PMT) in number of photoelectrons per keV

The knowledge of $\nu \alpha$ allows the calculation of ε

How to know $v\alpha$?

Traditional methods (ca. 1988)

- Using a radionuclide as a tracer, the CIEMAT/NIST method
- Using a LS counter with 3 PMT, the TDCR method

Recent developments (after 1995)

- Using a Compton source with a counter with 3 PMT, the CET method
- Using a LS counter with a photodetector giving the histogram of the number of photoelectrons, the HPMT method

The CIEMAT/NIST method

Measurement of a quenched set of ³H standard

with a commercial LS counter (2PMT)

$$\mathcal{E}_{H-3} = \int_{0}^{E} S(E)(1 - e^{-\nu com})^{2} dE$$

$$m = \int_{0}^{E} \frac{dE}{1 + kB \frac{dE}{dx}}$$
³H detection efficiency
³H spectrum

 ε is known (activity is known) and thus, the free parameter $v\alpha$ can be calculated

$v\alpha$ function of the quenching index

If the measurement conditions are kept identical (same vial, scintillator, counter, etc.) the value of this free parameter (function of quenching) can be used for the measurement of another radionuclide

Measurement of radionuclide X

³H, $v\alpha$ vs. quenching Make a LS source of radionuclide X 1 0,9 0,8 Measure the quenching of this source Free parameter 0,7 0,6 0.5 Get the value of $v\alpha$ from the curve 0,4 0,3 0,2 Calculate the detection efficiency for 0,1 0 the radionuclide X 550 600 650 700 750 800 850 Quenching index (SQPE) $\varepsilon_X = \int_0^E S(E)(1 - e^{-vom})^2 dE$ $m = \int_0^E -$ Spectrum of radionuclide X

The CIEMAT/NIST efficiency tracing method (CNET)

- Calculation of the free parameter using a ³H standard source (for given quenching conditions)
- Use this free parameter to calculate the detection efficiency of any radionuclide... if you know its spectrum S(E)

S(E) is the spectrum of the energy absorbed by the scintillator:

- For beta radionuclide, this is the beta spectrum
- For electron capture radionuclides, it must be calculated for each decay path
- For γ- or X-rays, it is calculated using Monte Carlo calculation methods (e.g. PENELOPE)

More details in: http://www.nucleide.org/ICRM_LSC_WG/icrmciematnist.htm

The Triple to Double Coincidence Ratio method (TDCR)

LSC TDCR Counter

The TDCR method in short

Radionuclide with normalized spectrum density S(E)

Events	Detection efficiency for <i>S(E)</i>
2 PMT's in coincidence	$\varepsilon_2 = \int_0^{E_{\text{max}}} S(E) (1 - e^{-\frac{v \alpha m}{3}})^2 dE$
3 PMT's in coincidence	$\varepsilon_T = \int_0^{E_{\text{max}}} S(E) (1 - e^{-\frac{v \alpha m}{3}})^3 dE$
Logical sum of double coincidences	$\varepsilon_D = \int_0^{E_{\text{max}}} S(E) (3(1 - e^{-\frac{v \alpha m}{3}})^2 - 2(1 - e^{\frac{v \alpha m}{3}})^3) dE$

The ratio of triple to double detection efficiency is:

$$\frac{\varepsilon_T}{\varepsilon_D} = \frac{\int_0^{E_{\max}} S(E)(1 - e^{-\frac{v c c m}{3}})^3 dE}{\int_0^{E_{\max}} S(E)(3(1 - e^{-\frac{v c c m}{3}})^2 - 2(1 - e^{-\frac{v c c m}{3}})^3) dE}$$

with $m = \int_0^E \frac{dE}{1 + kB \frac{dE}{dx}}$

For a large number of recorded events, the ratio of frequencies converges towards the ratio of probabilities:

$$\frac{T}{D} = \frac{\varepsilon_T}{\varepsilon_D} = TDCR$$

Resolution algorithm:

Find a value of the free parameter ($\nu\alpha$) giving:

 ϵ_T / ϵ_D calculated = T/D experimental

How many solutions ?

- Monoenergetic electrons: 1 analytical solution
- Pure-beta radionuclides: 1 solution
- Beta-gamma, electron capture: up to 3 solutions...

Detection efficiency (single energy)

Similar PMT's:

$$\mathcal{E}\boldsymbol{D} = \frac{27(\boldsymbol{T}\boldsymbol{D}\boldsymbol{C}\boldsymbol{R})^2}{\left(1 + 2(\boldsymbol{T}\boldsymbol{D}\boldsymbol{C}\boldsymbol{R})\right)^3}$$

Analytical solution

PMT's with different quantum efficiencies:

$$m v_A = -3Ln(1 - \frac{T}{BC})$$

a.s.o. for
$$v_B$$
 and v_C

$$\mathcal{E} D = T^{2} \left(\frac{1}{BC \cdot AC} + \frac{1}{AC \cdot AB} + \frac{1}{AB \cdot BC} - 2 \frac{T}{AB \cdot BC \cdot AC} \right)$$
Detection efficiency (multiple energies)

Normalized energy spectrum *S*(*E*)

Numerical solution: find out vA (fom) to solve:

with

$$m(E) = \int_0^E \frac{dE}{1 + kB \frac{dE}{dx}}$$

If the 3 PMT 's are different (and they generally are!)

$$\frac{\varepsilon_T}{\varepsilon_{AB}} = \frac{\int_0^{E_{\max}} S(E)(1-e^{-\frac{v_A \alpha m}{3}})(1-e^{-\frac{v_B \alpha m}{3}})(1-e^{-\frac{v_C \alpha m}{3}})dE}{\int_0^{E_{\max}} S(E)(1-e^{-\frac{v_A \alpha m}{3}})(1-e^{-\frac{v_B \alpha m}{3}})dE}$$

a.s.o. for
$$\frac{\varepsilon_T}{\varepsilon_{BC}}$$
 and $\frac{\varepsilon_T}{\varepsilon_{AC}}$
olution, minimize: $\left[\left(\frac{T}{AB} - \frac{\varepsilon_T}{\varepsilon_{AB}}\right)^2 + \left(\frac{T}{BC} - \frac{\varepsilon_T}{\varepsilon_{BC}}\right)^2 + \left(\frac{T}{AC} - \frac{\varepsilon_T}{\varepsilon_{Ac}}\right)^2\right]$

This gives the detection efficiency and free parameter for of each PMT

S

Example of calculation, ³H

More complicated example,⁶⁴Cu $(\beta^+, \beta^-, e.c.)$

Typical TDCR uncertainty budget

Uncertainty component	Relative uncertainty (k=1)
Weighing	~ 0.1 %
Counting statistics	ALARA (e.g. 0.1 %)
Background	ALARA (e.g. 0.01 %)
Detection efficiency	0.1 % - 1 % function of <i>E</i>
Sources variability	Generally ~ 0.2 %
Total	From a few 0.1 % to a few %

The Compton Efficiency Tracing method (CET)

LSC radionuclide standardization methods

Alternative: efficiency tracing with a virtual radionuclide

Principle: produce a temporary electron source inside a LS vial using the Compton interaction

This source is switchable and its energy spectrum is measurable (can be either monoenergetic or polyenergetic)

Experimental setup

External 59.5 keV γ source (filtered ²⁴¹Am solid source)

- γ-ray detector with calibrated energy
- Coincident measurement (rejection of other electron sources)
- Energy of the electron source controlled by energy selection of the diffused Compton photon spectrum

Internal low-energy tracer source

The geometry of the system defines the possible detectable Compton diffused photon

The useful portion of this spectrum is selected using the SCA

Compton source tracer method, step 1

Compton source tracer method, step 2

The CET is, in principle, similar to the CIEMAT/NIST method but:

- Free parameter deduced from the real source to measure (no quenching parameter to consider)
- Tracer from internal source created *in situ* by Compton effect
- The counting rate of the Compton source does not matter
- The spectrum of the tracer source is only defined by the geometry of the detector and can be measured
- The detection efficiency can also be calculated using the traditional TDCR model with the same data set

Recent developments of the Compton efficiency tracing method

Cooperation between the Sofia University and Laboratoire National Henri Becquerel: Krasimir Mitev, Chavdar Dutsov, Benoit Sabot

Development of a miniature 3D-printed Compton TDCR spectrometer with list-mode digital acquisition

Advantages:

- no direct interaction between the excitation source and the PMTs
- Reduction of the acquisition time (many energies covered at the same time)
- A common publication is coming soon...

Other method in LSC using high-resolution photodetectors

HPMT

Resolution of photodetectors

Analysis of the PMT spectrum

Convolution of:

- single photoelectron spectrum
- Radionuclide spectrum
- Statistical distribution of the number of photons
- Backscattering

The statistical distribution of photons can be calculated by deconvolution

This statistical distribution allows the calculation of the free parameter

More details in: http://www.nucleide.org/ICRM_LSC_WG/icrmhpmt.htm

Towards a no-parameter approach, the ZoMBieS method (L. Bignell, ANSTO)

Zero Model By using Coincidence Scintillation

- 3 PMT detector with Compton spectrometer
- Compton spectrometer used to generate monoenergetic Compton electrons in the LS source, with variable energy

Ratio of detection efficiency in triple and double coincidence:

$$\frac{T}{AB} = \frac{\varepsilon_A \cdot \varepsilon_B \cdot \varepsilon_C}{\varepsilon_A \cdot \varepsilon_B} = \varepsilon_C \qquad \text{Idem for BC and AC}$$

By varying the energy, one can plot $\epsilon_{\text{A}},\,\epsilon_{\text{B}}$ and ϵ_{C} vs. the energy

ZoMBieS method

The detection efficiency can be calculated *without* free parameter model!

ZoMBieS method

Advantage:

- No-parameter model, no standard, no calibrated tracer
- Minimum model assumptions (no Birks equation, no Poisson law)

Drawbacks:

- Complicated experimental system (monoenergetic Compton electrons selection difficult to adjust)
- <u>Very</u> long acquisition time

Future developments:

• Optimized counter with higher efficiency in γ channel

Conclusions for LSC

The free parameter model is the main tool for the use of LSC in radionuclide metrology (TDCR, CIEMAT/NIST, efficiency tracing techniques)

• Some open issues still remain:

- Optimal statistical model
- Calculation of the scintillator non-linearity
- Calculation of detection efficiency in coincidence when there is a correlation between PMT signals
- Cerenkov light emission model
- Light propagation anisotropy model (color quenching)

• New developments are pending:

- Monte Carlo simulation including light propagation and detection
- Experimental study of scintillator non-linearity

The free parameter model will remain the cornerstone of the use of LSC in radionuclide metrology... until the proof that the no-model approach is mature

Primary Standardisation of activity

Radioactive gas (noble gas and tritium)

^{131m}Xe and ¹³³Xe decay schemes

Example: Standardization of 127Xe

Internal gas counting system:

• 3 proportional counters, identically constructed but with different lengths

• counting gas: propane

Counters

Differential measurement

Long – short ≈ virtual cylindrical counter without end effects

Measurement method

Sample preparation

Sample measurement

Data acquisition system

Optimum operating voltage

- Energy threshold: 200 eV (calibrated using a ³⁷Ar source with 200 eV Auger electrons)
- Imposed extending-type dead-time (50 µs) to mitigate the effect of saturated pulses
- Live-time measured with a live-time clock (no calculated dead-time correction)
- Detection efficiency = 1-probability of undetected radiations

•Atomic rearrangement using detailed atomic levels: L1 to L3, M1 to M5, N1 to N5, O subshells considered

- •Electron vacancy in N and O shells: maximum Auger electrons energy of 136 eV. $\epsilon_{\rm N}{=}0$
- •Electron vacancies in M shells. ϵ_M =1
- •Electron vacancy in L shells. No detection of some Coster-Kronig transitions E<200 eV. ε_L = 0.989 for L3, 0.980 for L2 and 0.982 for L1
- •Electron vacancy in K shell. $\epsilon_{\rm K}$ =0.962

Detection efficiency of electron capture: 0.960

Gamma and X-rays emissions: Monte Carlo simulation, PENELOPE code, taking into account the emission intensities

58 keV: ε=0.792 203 keV: ε=0.162 375 keV: ε=0.184

Global detection efficiency of ¹²⁷Xe: ε = 0.967

•Uncertainty calculation: composition of uncertainties due to atomic and nuclear data and uncertainties due to Monte Carlo simulation of photons absorption

•Uncertainties on atomic and nuclear data: from « table des radionucléides », LNHB

•Uncertainties on Monte Carlo simulation: conservative value of 10 %

- •Low influence of atomic and nuclear data (robust model)
- •Small influence of Monte Carlo simulation results

 Combined relative standard uncertainty of detection efficiency: 0.4 %
Global uncertainty budget

Component	Relative standard uncertainty %
Counting statistics	0.38
Counters volumes	0.23
Reference volume and STP correction	0.30
Decay corrections	0.05
Discriminator threshold	0.15
Detection efficiency	0.4
Combined standard uncertainty	0.7

Primary Standardisation of activity

Isothermal calorimetry

Basic relationship between rate of energy (heat) input, or power *P*, and activity *A*

$dH/dt = P = A \hat{E}$

 \hat{E} = average energy per decay

³ H / ⁵⁵ Fe	0.9	μ W·GBq ⁻¹
¹⁰³ Pd / ¹²⁵ l	9.	
³² P	111.	
⁹⁰ Sr- ⁹⁰ Y	181.	
²²⁶ Ra	4338.	

Assumes absorb & measure ALL ionizing radiation (no losses)

And no "heat defect" effects (I.e., no chemistry)

CSC "Isothermal Microcalorimeter (IMC)"

port assemblies -- source (absorbers) holders & cells

$P = V^2/R$

mean (P) = 1/2 mean (P_{+V}) + 1/2 mean (P_{-V})

var (P) = 1/2 var (P_{+V}) + 1/2 var (P_{-V}) + covar (P_{+V}, P_{-V}) + autocorr(P_{+V}) + autocorr(P_{-V})

Brachytherapy source used to treat prostate cancer candidate for intravascular use

Calorimeter at LNHB

Source holder

Example : standardization of a ²⁴¹Am source

100% alpha decay towards ²³⁷Np: Q_{α} = (5637,81± 0,12) keV

 γ et X-ray emission

Emission of 131 γ photons with energies between 26 keV and 1 MeV) but main emission at **59,54 keV** (emission intensity 36%)

Secondary X-rays emission between 11,9 keV and 118,4 keV

Monte Carlo simulation of photon interactions with the absorber cell (PENELOPE)

Determination of the absorbed power

Results for A = 10 MBq

Power released: $P_D = (9,0205 \pm 0,0002) \, \mu W$

Relative absorption $P_{abs} = 99,9999350$ %

Geometry of the absorber cell

Activity of the ²⁴¹Am source

Calorimetry $P = (11,633 \pm 0,041) \, \mu W$

 $A = (12,896 \pm 0,045) MBq$

Comparative measurement: LSC after quantitative dissolution of the source

$$A_{source} = (12,8884 \pm 0,0045) MBq$$

Relative difference: 0,06 %

Comments about calorimetry

Calorimetry is SLOW

needs long time to thermally stabilize typically need multiple determinations different / absorbers / Monte Carlo calc. verifications

Accuracy is in range of \pm 1 or 2 percent Largely due to baseline instabilities and uncertainties in establishing baselines to get ΔP

Power may be measured very accurately But still need average energy per decay to get Activity Low-temperature calorimeters (bolometers)

Magnetic metallic calorimeters (MMC)

Why very low temperatures (< 100 mK)? Heat capacity C = g T and thermodynamic fluctuations

What do we measure? Incident energy converted into detectable energy

production	
Thormal phonons	$(10^{-5} \text{ to } 10^{-4} \text{ eV})$
Breaking of Cooper pairs quasiparticles	10-3 eV
<100 mK)	3 - 4 ev
Electron-hole pairs	3 - 1 oV
Ionisation	10 to 30 eV
Visible light photons	0.1 to 1 keV
detectors	information
Physics of the	minimum energy for
-	Physics of the detectors Visible light photons Ionisation Electron-hole pairs < <u>100 mK</u>) Breaking of Cooper pairs ➡ quasiparticles

Absolute activity measurement with MMC

Primary Standardisation of activity

Neutron emission rate

Neutron sources

Measurand:

Emission rate under 4π sr (unit : s⁻¹)

Neutron sources:

- (α,n) : AmBe, PuBe, RaBe...
- spontaneous fission: ²⁵²Cf, ²⁴²Cm...
- mixtes : ²⁴⁴CmBe...
- (γ,n) : PuBe...

Range:

• from 10⁵ to 10⁹ s⁻¹

Target uncertainty:

• about 1 %

Measurement principle

Activation kinetics

Ι

Neutron emission rate

 Φ : number of neutrons emitted by time unit under 4π sr

- Φ : emission rate under 4π sr, s⁻¹
- A_{sat} : ⁵⁶Mn activity in the bath at saturation, Bq
- R : efficiency of the bath (probability of creation of one ⁵⁶Mn atom per neutron)

Relative uncertainty

T

$$\frac{u_{\Phi}}{\Phi} = \sqrt{\frac{u_{A_{eq}}^2}{A_{eq}^2} + \frac{u_R^2}{R^2}}$$

Neutron interaction with the bath

Facility at LNHB

Inside view

Monte Carlo model of the bath

• Source model: volume source (composition of point sources with emission spectrum from ISO 8529-1)

detailled model of the source with structures

Monte Carlo calculation

Choice of cross-section libraries

Selected library: ENDF/B VII-0

Major problem on oxygen cross-sections (disparities between libraries)

0,5 % difference on the calculated bath efficiency between two crosssections libraries

Comparison between Monte Carlo codes

For the same input data (geometry, cross sections, source) results of MCNPX, FLUKA et GEANT4

Code	Mn	Н
MCNPX	42,72 (1)	51,00 (1)
GEANT4	45,25 (2)	48,66 (2)
FLUKA	43,47 (7)	51,92 (7)

Probability of interaction with the atoms of the bath (uncertainties are the Monte Carlo fluctuations)

Known issues

- 1. Oxygen cross-sections
- 2. Bias between MCNPX and FLUKA (up to 1,8 % difference on the bath efficiency)

MCNPX is the standard code for laboratories using the manganese bath method

Thus, if durng an international comparison all participants use MCNPX and the same cross-section library (e.g. CCRI(III) K9 AmBe1 comparison)... a good consensus can be reached!

But an experimental validation is necessary. This validation is extremely complicated.
Validation difficulties

Neutron measurement is difficult

- non-directly ionizing radiation
- scattering
- Very large energy range (from a few meV to several tenths of MeV)
- Measurement instruments are generally calibrated with standards... calibrated with the manganese bath method!

Recent developments: online measurement of the ⁵⁶Mn activity by Cerenkov-γ coincidence

I

Online ⁵⁶Mn activity measurement

Advantage: avoid the calibration of the Nal detector

⁵⁶Mn coincidence counting

With some $\beta - \gamma$ cross-talk

Conclusion on primary measurement methods

- Necessity of various instrumentation and measurement methods due to the various properties of radioactivity
- Precise primary activity measurement is always a difficult task
- Final relative standard uncertainty can be lower than 1 %, depending on the method
- The more precise methods are based on coincidence counting or defined solid angle counting