Guiding Expectations Forward

Viktor Marinkov European University Institute

September 23, 2015

 Introduction
 FG as a comm. device
 Expectations Formation
 Experiments and Results
 Conclusion

 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••

WHAT IS FORWARD GUIDANCE?

- ► Forward Guidance (FG) is information provided by the Central Bank (CB) regarding the future path of its policy rate.
- ► Recent episodes from the Federal Reserve include:
 - ► Open-ended (Dec 2008 Jul 2011)
 - "... for an extended period"
 - ► Calendar-based (Aug 2011 Nov 2012)
 - "through mid-2013", "through late 2014", "through mid-2015"
 - Threshold-based (Dec 2012 present)
 - ► unemployment below 6.5% and inflation around target of 2%

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
 0.	00000	0000	0000000000	00

PREVIOUS LITERATURE ON FG

- FG can represent two distinct intentions:
 - a promise to keep interest rates "low for longer" (Odyssean) as in Eggertsson and Woodford (2003)
 - a forecast for future policy actions (Delphic)

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
0●	00000	0000	0000000000	00

PREVIOUS LITERATURE ON FG

- FG can represent two distinct intentions:
 - a promise to keep interest rates "low for longer" (Odyssean) as in Eggertsson and Woodford (2003)
 - a forecast for future policy actions (Delphic)
- The literature at large relies on rational expectations (RE) and views FG as a promise.
- This is usually modelled as:
 - backward-looking policy (e.g. some sort of price level targeting)
 - news shocks to an otherwise standard Taylor rule

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
0●	00000	0000	0000000000	00

PREVIOUS LITERATURE ON FG

- FG can represent two distinct intentions:
 - a promise to keep interest rates "low for longer" (Odyssean) as in Eggertsson and Woodford (2003)
 - a forecast for future policy actions (Delphic)
- The literature at large relies on rational expectations (RE) and views FG as a promise.
- This is usually modelled as:
 - backward-looking policy (e.g. some sort of price level targeting)
 - news shocks to an otherwise standard Taylor rule
- Empirical findings are mixed, many reporting unusually large benefits of FG.

 Introduction
 FG as a comm. device
 Expectations Formation
 Experiments and Results
 Conclusion

 00
 0000
 0000
 0000
 000
 000
 000

FG AS A COMMUNICATION DEVICE

What if the CB is instead communicating its own reaction function?

 Introduction
 FG as a comm. device
 Expectations Formation
 Experiments and Results
 Conclusion

 00
 0000
 0000
 0000000000
 00

FG AS A COMMUNICATION DEVICE

What if the CB is instead communicating its own reaction function?

- Without RE under the zero lower bound (ZLB) a policy change is unobservable, unless communicated somehow. Then, FG could be used as an instrument to signal a policy change due to the crisis.
- In particular, the expected point of departure from ZLB could act as a target for bringing public expectations closer to actual policy.

FG AS A COMMUNICATION DEVICE

What if the CB is instead communicating its own reaction function?

- Without RE under the zero lower bound (ZLB) a policy change is unobservable, unless communicated somehow. Then, FG could be used as an instrument to signal a policy change due to the crisis.
- In particular, the expected point of departure from ZLB could act as a target for bringing public expectations closer to actual policy.

This project addresses the questions:

- 1. Should the Central Bank try to communicate its changed reaction function to the public?
- 2. What are the benefits and dangers of doing so?

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	0000	0000	0000000000	00

MODEL ENVIRONMENT

- Standard New Keynesian model with Rotemberg (1982) adjustment costs
- A continuum of households make consumption and labour supply decisions
- A continuum of monopolistically competitive firms produce differentiated goods using only labour and face a price setting problem
- ► All decisions at period *t* are made using information of period *t* − 1.

00 00 0 00 0000 00 00 00 00	Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
	00	00000	0000	0000000000	00

MODEL ENVIRONMENT CONT.

- Monetary policy is defined by a Taylor rule. Agents are assumed to know only the functional form of the rule, i.e. *i*(π_t, x_t) is linear.
- The Central Bank and the agents share the same expectational facility, thus the CB has no informational advantage beyond its own policy function.
- A period is a quarter.

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

The Model

The aggregate dynamics of the model can fully be described by:

$$x_{t} = \hat{\mathbb{E}}_{t-1} \sum_{T=t}^{\infty} \beta^{T-t} \left[(1-\beta) x_{T} - \beta (i_{T} - \pi_{T+1}) + \beta r_{T}^{e} \right]$$
(1)

$$\pi_{t} = \frac{\gamma_{1}\xi}{(1-\gamma_{1}\beta)} \hat{\mathbb{E}}_{t-1} \sum_{T=t}^{\infty} (\gamma_{1}\beta)^{T-t} \left[(1-\gamma_{1}\beta) (x_{T}+\mu_{T}) + \pi_{T} \right]$$
(2)

where $\xi > 0$ is a measure of price stickiness with $\xi \to \infty$ implying convergence to arbitrarily small costs of price adjustment (i.e. approaching fully flexible prices); and $0 < \gamma_1$ is an eigenvalue from the underlying microfoundations, where in a Calvo price adjustment it would represent the probability of not resetting the price.
 Introduction
 FG as a comm. device
 Expectations Formation
 Experiments and Results
 Conclusion

 00
 000
 000
 000
 00
 00
 00

MONETARY POLICY RULE

The model is closed with the monetary policy rule allowing for a lower bound:

$$i_t = \max\left\{\chi_{\pi}\hat{\mathbb{E}}_{t-1}\pi_t + \chi_x\hat{\mathbb{E}}_{t-1}x_t, i^*\right\}$$
(3)

where

- the policy parameters satisfy $\chi_{\pi} > 0$ and $\chi_{x} = \chi_{\pi} \lambda_{x} / \xi > 0$.
- ► $i^* = \frac{\beta m m}{\beta m} = 1 \frac{1}{\beta} \approx -1\%$ is the effective ZLB as it is the return on holding cash
- All variables are expressed as log-deviations from their steady state (SS) values.
 Thus, in SS x = π = i = r^e = μ = 0

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

EXPECTATIONS FORMATION

- Agents do not know the true structure of the economy and make forecasts as econometricians using simple regression models.
- ► Namely, they make forecasts according to the aggregate policy functions from the minimum state-variable RE solution to the model: $x_t(r_{t-1}^e, \mu_{t-1})$ and $\pi_t(r_{t-1}^e, \mu_{t-1})$
- ► Each period, as additional data becomes available, agents update the coefficients to their forecasting model.

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	000	0000000000	00

EXPECTATIONS FORMATION CONT.

Their perceived law of motion (PLM) then is:

$$z_{t} = \begin{bmatrix} r_{t}^{e} \\ \mu_{t} \end{bmatrix} = \tilde{\phi} z_{t-1} + \begin{bmatrix} \varepsilon_{t}^{r} \\ \varepsilon_{t}^{\mu} \end{bmatrix}, \text{ with } \tilde{\phi} = \begin{bmatrix} \rho_{r} & 0 \\ 0 & \rho_{\mu} \end{bmatrix}$$
(4)

$$Y_t^e = \begin{bmatrix} x_t^e \\ \pi_t^e \end{bmatrix} = \Phi_{t-1}\hat{\mathbb{E}}_{t-1}z_t + e_t = \Phi_{t-1}\tilde{\phi}z_{t-1} + e_t$$
(5)

$$i_t^e = \begin{bmatrix} \psi_{x,t-1} & \psi_{\pi,t-1} \end{bmatrix} Y_t^e \tag{6}$$

where Φ_t is a 2 × 2 transition matrix that defines the PLM.

IntroductionFG as a comm. deviceExpectations FormationExperiments and ResultsConclusion0000000000000000000000

UPDATING EXPECTATIONS

At the end of period *t* agents update their transition matrices Φ_t according to the recursive least squares algorithm (RLS) for the aggregate PLM:

$$\Phi_{t} = \Phi_{t-1} + \tau R_{t-1}^{-1} \hat{\mathbb{E}}_{t-1} z_{t} \left(Y_{t} - \hat{\mathbb{E}}_{t-1} Y_{t} \right)$$
(7)

$$R_t = R_{t-1} + \tau(\hat{\mathbb{E}}_{t-1}Y_tY_t' - R_{t-1})$$
(8)

and ψ_t for the Taylor rule PLM (see Evans and Honkapohja (2001)):

$$\psi_t = \psi_{t-1} + \tau Q_{t-1}^{-1} \hat{\mathbb{E}}_{t-1} Y_t \left(i_t - \psi_{t-1}' \hat{\mathbb{E}}_{t-1} Y_t \right)$$
(9)

$$Q_t = Q_{t-1} + \tau(\hat{\mathbb{E}}_{t-1}Y_tY_t' - Q_{t-1})$$
(10)

where $\tau = 0.02$

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

TIMING OF EXPECTATIONS

- 1. At the beginning of period *t* agents use the aggregate PLM (5) and the PLM for the interest rate (6) to form Y_t^e and i_t^e . Long-run expectations result from iterating forward the PLMs.
- 2. Y_t and i_t are realized according to (1)-(3). This gives rise to the actual law of motion of the economy (ALM).
- 3. Agents update their transition matrices Φ and ψ according to the recursive least squares algorithm (RLS).

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion 00

POLICY CHANGE

- ► A severe recession (negative shock in r^e_i: ε^r₁ = -0.05) hits the economy and brings the interest rates below the ZLB for some periods.
- The Central Bank increases its reaction to output gap, *χ_x*, from 0.1667 to 1. This is in line with statements from the FED and BoE about the crisis changing the relative weights on x and *π*.
- This prolongs the period under ZLB due to a negative output gap.

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion 00

Then different information and policy environments are considered.

1. Full Comm: $\chi_x = 1$ at t = 2 and agents know it \Rightarrow internalize in PLM

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

- 1. Full Comm: $\chi_x = 1$ at t = 2 and agents know it \Rightarrow internalize in PLM
- 2. No Comm: $\chi_x = 1$ at t = 2 and agents do NOT know this. They learn gradually

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion 00

- 1. Full Comm: $\chi_x = 1$ at t = 2 and agents know it \Rightarrow internalize in PLM
- 2. No Comm: $\chi_x = 1$ at t = 2 and agents do NOT know this. They learn gradually
- 3. Unambiguous FG: people know that χ_x has changed and CB releases regular forecasts for T^{CB} the last period under ZLB

Introduction 00	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion 00

- 1. Full Comm: $\chi_x = 1$ at t = 2 and agents know it \Rightarrow internalize in PLM
- 2. No Comm: $\chi_x = 1$ at t = 2 and agents do NOT know this. They learn gradually
- 3. Unambiguous FG: people know that χ_x has changed and CB releases regular forecasts for T^{CB} the last period under ZLB
- 4. Confused FG: people wrongly believe that χ_{π} has changed and CB releases regular forecasts for T^{CB} - the last period under ZLB

Introduction 00	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion 00

- 1. Full Comm: $\chi_x = 1$ at t = 2 and agents know it \Rightarrow internalize in PLM
- 2. No Comm: $\chi_x = 1$ at t = 2 and agents do NOT know this. They learn gradually
- 3. Unambiguous FG: people know that χ_x has changed and CB releases regular forecasts for T^{CB} the last period under ZLB
- 4. Confused FG: people wrongly believe that χ_{π} has changed and CB releases regular forecasts for T^{CB} - the last period under ZLB
- 5. Ambiguous FG: $\chi_x = 1$ at t = 2, CB releases regular forecasts for T^{CB} the last period under ZLB, but agents update both ψ_{π} and ψ_x

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000	00

RATIONAL EXPECATIONS

	Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
6666 6666666666666666666666666666666666	00	00000	0000	000000000	00

RATIONAL EXPECATIONS

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000	00

RESULTS

Result 1 The Central Bank faces tradeoffs with such a policy change \Rightarrow non-trivial decision.

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000	00

RESULTS: EFFECTS OF POLICY CHANGE

RESULTS: EFFECTS OF POLICY CHANGE

16/24

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000	00

Results: Full Comm. Transition Matrix - Φ

Results: Full Comm. Transition Matrix - Φ

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

RESULTS: FULL COMM. INTEREST RATE PATH

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

RESULTS: FULL COMM. INTEREST RATE PATH

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

RESULTS

Result 1

The Central Bank faces tradeoffs with such a policy change \Rightarrow non-trivial decision.

Result 2 *Forward Guidance is welfare improving compared to no communication.*

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000000	00

OUTPUT GAPS AND INFLATION ACROSS MODELS

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion 00

OUTPUT GAPS AND INFLATION ACROSS MODELS Output Gap Inflation

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

RESULTS: NO COMM VS FG. TAYLOR COEFFICIENTS

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	00

RESULTS: NO COMM VS FG. TAYLOR COEFFICIENTS

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000	00

WELFARE ANALYSIS

$$\min \mathbb{E}_{t-1} \sum_{T=t}^{\infty} \beta^{T-t} \left(\pi_T^2 + \lambda_x x_T^2 \right)$$
(11)

subject to the RE versions of the main equations of the economy (1) and (2). $\lambda_x = 0.005$ as in Eusepi and Preston (2010)

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	000000000	00

WELFARE ANALYSIS

$$\min \mathbb{E}_{t-1} \sum_{T=t}^{\infty} \beta^{T-t} \left(\pi_T^2 + \lambda_x x_T^2 \right)$$
(11)

subject to the RE versions of the main equations of the economy (1) and (2). $\lambda_x = 0.005$ as in Eusepi and Preston (2010)

Model 0	Model 1	Model 2	Model 3	Model 4
No change	Full Comm	No Comm	Unam FG	Conf. FG
165.5712	121.6338	165.5686	145.2381	150.2124
3891.0823	2368.4768	3891.1160	3328.9318	3666.5521
146.1158	109.7914	146.1131	128.5935	131.8797
	Model 0 Jo change 165.5712 3891.0823 146.1158	Model 0Model 1Jo changeFull Comm165.5712121.63383891.08232368.4768146.1158109.7914	Model 0Model 1Model 2Jo changeFull CommNo Comm165.5712121.6338165.56863891.08232368.47683891.1160146.1158109.7914146.1131	Model 0Model 1Model 2Model 3Jo changeFull CommNo CommUnam FG165.5712121.6338165.5686145.23813891.08232368.47683891.11603328.9318146.1158109.7914146.1131128.5935

 $\times 10^{-6}$

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	•0

EXTENSIONS

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion ●○
Extensi	IONS			

► Outcomes from Model 5: Ambiguous FG depend on the updating weight λ ∈ (τ, 1). The smaller λ is, the closer the results are to Model 3: No Comm; the higher - the closer to Model 3: Unambiguous FG, yet never there since both coefficients are update.

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion ●○

EXTENSIONS

- ► Outcomes from Model 5: Ambiguous FG depend on the updating weight λ ∈ (τ, 1). The smaller λ is, the closer the results are to Model 3: No Comm; the higher the closer to Model 3: Unambiguous FG, yet never there since both coefficients are update.
- The dynamics of the models are almost entirely driven by the ψ matrix, rather than the Φ matrix. Therefore, perceptions about the Taylor rule are crucial. This strengthens the case for Central Bank communications.

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	Conclusion ●○

EXTENSIONS

- ► Outcomes from Model 5: Ambiguous FG depend on the updating weight λ ∈ (τ, 1). The smaller λ is, the closer the results are to Model 3: No Comm; the higher the closer to Model 3: Unambiguous FG, yet never there since both coefficients are update.
- The dynamics of the models are almost entirely driven by the ψ matrix, rather than the Φ matrix. Therefore, perceptions about the Taylor rule are crucial. This strengthens the case for Central Bank communications.
- The model can generate realistic disparities in heterogeneous expectations which increase with FG and decrease as time goes on as shown in Andrade et al. (2015). All this supports the FG interpretation here.

Introduction	FG as a comm. device	Expectations Formation	Experiments and Results	Conclusion
00	00000	0000	0000000000	0

- 1. Should the Central Bank try to communicate its changed reaction function to the public?
- 2. Is Forward Guidance an ultimate solution?

3. Is the story of FG as a communication device plausible?

	Introduction 00	FG as a comm. device	Expectations Formation	Experiments and Results	$\underset{\odot \bullet}{\text{Conclusion}}$
--	--------------------	----------------------	------------------------	-------------------------	---

- 1. Should the Central Bank try to communicate its changed reaction function to the public?
 - *Yes!* Forward Guidance resulted in higher welfare in all experiments.
- 2. Is Forward Guidance an ultimate solution?

3. Is the story of FG as a communication device plausible?

Introduction 00	FG as a comm. device 00000	Expectations Formation	Experiments and Results	$\underset{\odot \bullet}{\text{Conclusion}}$

- 1. Should the Central Bank try to communicate its changed reaction function to the public?
 - *Yes!* Forward Guidance resulted in higher welfare in all experiments.
- 2. Is Forward Guidance an ultimate solution?
 - No! FG improves welfare mostly when properly interpreted. Vague messages result in lower gains and wrongly perceived Taylor rules.

3. Is the story of FG as a communication device plausible?

Introduction 00	FG as a comm. device	Expectations Formation	Experiments and Results	$\underset{\odot \bullet}{\text{Conclusion}}$

- 1. Should the Central Bank try to communicate its changed reaction function to the public?
 - *Yes!* Forward Guidance resulted in higher welfare in all experiments.
- 2. Is Forward Guidance an ultimate solution?
 - No! FG improves welfare mostly when properly interpreted. Vague messages result in lower gains and wrongly perceived Taylor rules.
- 3. Is the story of FG as a communication device plausible?
 - ► *Yes!* The model manages to capture realistic heterogeneous expectations during the crisis and FG periods. It also complies with explanations from Central Banks about the nature of their communication.