

Софийски университет "Св. Климент Охридски" Физически факултет

Симона Илиева Илиева

Изследване на адрон-ядрени взаимодействия при високи енергии

ОПРЕДЕЛЯНЕ НА СЕЧЕНИЕ ЗА ВЗАИМОДЕЙСТВИЕ ЧРЕЗ ОТСЛАБВАНЕТО НА СНОП ПРОТОНИ С ИМПУЛС 31 GEV/C В 90 САНТИМЕТРОВА ГРАФИТНА МИШЕНА

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертация за присъждане на образователната и научна степен "доктор"

Научна специалност: 4.1 Физически науки Физика на елементарните частици и високите енергии

Научен ръководител: доц. д-р Мариян Богомилов

Март 2021

Докторантът е зачислен към катедра "Атомна физика" при Физически факултет на Софийски университет "Св. Климент Охридски" със заповед № РД 20-912/27.06.2017 в редовна форма на обучение по професионално направление 4.1.Физически науки, докторска програма "Физика на елементарните частици и високите енергии".

Експериментите, свързани с научните изследвания в дисертационния труд, са проведени в Европейската организация за ядрени изследвания, CERN. Анализът на данните е направен във Физически факултет на Софийски университет "Св. Климент Охридски".

Дисертацията съдържа 87 страници, 61 фигури и 14 таблици, разпределени в 7 глави. Библио-графията обхваща 131 заглавия.

Съдържание

1	Обща характеристика на дисертацията	1
	1.1 Актуалност на проблема	1
	1.2 Задачи на дисертационната работа	4
	1.3 Структура и обем на дисертационния труд	4
2	Експериментът NA61/SHINE	5
	2.1 Детекторни системи	5
	2.2 Референтни измервания в NA61/SHINE на адронни добиви и сечения за взаимо-	
	действие	7
3	Определяне на сечението за взаимодействие тип продукция в $p+C$ реакции при	1
	$31~{ m GeV}\!/\!c$ импулс на налитащия сноп	10
	3.1 Метод на пресмятане	10
	3.2 Подход при селекцията на ТРС следи	10
	3.3 Прилагане на Монте Карло корекция	11
	3.4 Обсъждане на резултата и следствията от него	12
4	Заключение	15
5	Научни приноси	16
	5.1 Приноси на докторанта	16
	5.2 Публикации по темата на дисертацията	16
Б	иблиография	19
Б.	лагодарности	21

Обща характеристика на дисертацията

1.1 Актуалност на проблема

Теоретичното описание на явлението осцилации на неутриното за три поколения лептони включва три ъгъла на смесване, една Диракова фаза, свързана с нарушаването на СР симетрията в лептонния сектор, и две независими разлики между квадратите на масите на масовите състояния на неутриното. Стойностите на тези параметри се определят експериментално от вероятностите за преминаване на един аромат неутрино в друг, а получените резултати имат приложение и извън областта на осцилациите на неутриното. Например оценките за разликите между масите на неутриното задават ограничения в моделите за произхода на масата на тази частица. Освен в PMNS матрицата на смесване на неутриното, големината на Дираковата фаза е важен параметър и в моделите, обясняващи асиметрията между материя и антиматерия във Вселената. Към настоящия момент, един от експериментите с водеща роля в определянето на параметрите на осцилациите на неутриното е експериментът T2K [1].

T2K (Tokai to Kamioka) е неутрнинен експеримент с голямо прелетно разстояние [2]. В него осцилациите на неутриното се наблюдават като разлика между предсказани и измерени неутринни добиви за даден аромат неутрино при далечния детектор, разположен на стотици километри от източника на неутрино. Началният сноп неутрино в T2K се генерира в разпадите на частици, получени при бомбардиране на 90 сантиметрова графитна мишена с протони, които са ускорени до енергия 30 GeV. При преминаването си през мишената протоните взаимодействат с нея, в резултат на което се раждат множество частици, сред които пиони, каони и мюони. Заредените частици, напускащи мишената, се фокусират посредством магнити. Разбира се, възможни са вторични техни взаимодействия с материалите по направлението на снопа, при които да се получат допълнителни адрони и лептони. В дълъг, пълен с хелий тунел след мишената, наречен разпаден обем, генерираните пиони, каони и мюони се разпадат до неутрино и по този начин се получава насочен неутринен поток. Каналите на разпадане на частиците до неутрино са дадени в Таб. 1.1. В голямата си част крайният поток се състои от мюонно неутрино. Около 90% от всички частици неутрино са получени при разпадането на адрони, родени в първичните взаимодействия протон-въглерод в мишената.

Предсказанието на неутринния поток и неговия енергетичен спектър се съставя чрез симулации на целия процес на генериране на неутриното, започвайки с протонния сноп и взаимодействията му в мишената и завършвайки с разпадането на пиони, каони и мюони до неутрино. Цялата история на всяко получено неутрино се запазва в края на симулациите. След това, записаните адронните добиви, както и честотата на взаимодействията в мишената, се претеглят с външни, референтни измервания на последните. Експериментът NA61/SHINE извършва такива изследвания за T2K с тънка мишена с дебелина от около 2 cm и с мишена-копие (реплика) на тази в T2K. С първия вид мишени се изследват еднократни взаимодействия: първични p + C реакции или вторичини реакции на получените частици с мишената или материалите по направлението на началния сноп. С втория вид мишени-копия се наблюдава резултатът от всички взаимодействия

Частица	Продукти на разпада	Branching Ratio [%]
π^{\pm}	$\mu^{\pm} u_{\mu}(ar{ u}_{\mu})$	99.987
Л	$e^{\pm}\nu_e(\bar{\nu}_e)$	0.0123
	$\mu^{\pm} u_{\mu}(ar{ u}_{\mu})$	63.56
K^{\pm}	$\pi^0 e^{\pm} u_e(ar{ u}_e)$	5.07
	$\pi^0\mu^\pm u_\mu(ar u_\mu)$	3.35
K^0	$\pi^{\pm}e^{\mp}\bar{ u}_e(u_e)$	40.55
κ_L	$\pi^{\pm}\mu^{\mp}ar{ u}_{\mu}(u_{\mu})$	27.04
μ^{\pm}	$e^{\pm}\nu_e(\bar{\nu}_e)\bar{\nu}_\mu(\nu_\mu)$	100

Таб. 1.1: Моди на разпад на v_e и v_μ неутринни източници. Електронното неутрино, получено от разпадите на K_L^0 или μ^{\pm} , формира фон в потока мюонно неутрино. Стойностите за относителната вероятност за разпад по конкретен канал (branching ratio) са взети от Particle Data Group [3].

Фиг. 1.1: Относителна неопределеност на потока мюонно неутрино, ν_{μ} , при далечния детектор Super-Kamiokande. Приносът на различните източници на неопределеност са показани чрез линии с различен цвят. Сивата област показва нормализирания неутринен поток. Използван е логаритмичен мащаб по оста х. Фигурата е от [5].

вътре в мишената. Претеглянето на резултатите от симулацията на неутринния поток с данни от преки измервания позволява да се намаляват систематичните неопределености на предсказанията на потока при близкия и далечния детектор, които са свързани с моделирането на адронните взаимодействия в Монте Карло генераторите. Този компонент доминира пълната неопределеност на предсказанието на неутринния поток [4]. Използването на референтни данни от измервания с тънка и мишена-копие водят до значително намаляване на пълната неопределеност на предсказанието до нива от около 5% при енергията на пика на потока неутрино, както е показано на Фиг. 1.1. Детайлното и прецизно познаване на адронните добиви и сеченията за адрон-ядрени взаимодействия е ключово за прецизността на предсказанията за неутринния поток, а оттам и за тази на измерванията на параметрите на неутринните осцилации.

Един от елементите на неопределеността, свързана с моделирането на адрон-ядрените взаимодействия в Монте Карло генераторите, е честотата на взаимодействията с различните материали по направлението на началния сноп. Тази честота се определя от заложената стойност на сечението за взаимодействие тип продукция. В експеримента Т2К продукция се нарича процес, при който в изходния канал на реакцията се съдържат нови адрони, различни от участващите във

Фиг. 1.2: Сечение за взаимодействие тип продукция за p+C реакции при импулси на началния сноп в диапазона 20 - 60 GeV/c. Представени са резултати от NA61/SHINE [7], Bellettini et al. [8] и Carroll et al. [9]. Оценките на Denisov et al. [6], публикувани в [6], са показани без и с изваденото сечение за квазиеластично взаимодействие (около 30 mb). Фигурата е от [10].

Фиг. 1.3: Отношението на предсказанията на неутринния поток получени чрез претегляне с данни от референтни измервания с тънка или мишенакопие. Вертикалните неопределености са резултат от зададената неопределеност на сечението за взаимодействие тип продукция. Фигурата е от [11].

входния ѝ канал. В предсказанието на неутринния поток в T2K оценката на неопределеността на това сечение е консервативна. Тя е основана на набюдаваното несъответствие между стойностите на сечението за взаимодействие тип продукция, докладвани от отделни работни колективи. Такива резултати за p + C реакции при различни импулси на началния сноп са представени на Фиг. 1.2. Данните на Denisov *et al.* са завишени спрямо останалите. Те са представени в [6] като сечения за "абсорбция", без да е изрично съобщено дали това понятие включва квази-еластични процеси. Квази-еластичното разсейване частица-ядро се дефинира като реакция, при която ядрото фрагментира вследствие на взаимодействието. Ако от числените резултати на Denisov *et al.* се извади сечението за квази-еластично взаимодействие, се получава съответствие между оценките на всички групи. Поради тази причина неопределеността на сечението за взаимодействие тип продукция в предсказанието на неутринния поток в T2K е с размер големината на сечението за квази-еластично взаимодействие. За реакция протон-въглерод при 31 GeV/*c* импулс на началния сноп, сечението за квази-еластично разсейване е около 30 mb.

Интересна аномалия се наблюдава при сравнението на предсказанията за неутринния поток при претеглянето на историята на неутриното с използването на референтни измервания само с тънка мишена или само с мишена-реплика. На Фиг. 1.3 е показано отношението на така получени два енергетични спектъра. В по-голямата си част двете предсказания са в добро съотношение. Около енергията на пика (0.6 GeV) на неутринния поток обаче предсказанието, претеглено с данни от измервания с мишена-копие, дава с 5% по-ниски резултати за потока неутрино. Една от идентифицираните възможни причини за това разминаване е използваната стойност за сечението за взаимодействие тип продукция при претеглянето на честотата на взаимодействията в мишената. Наличните към момента резултати за това сечение са получени с помощта на тънка графитна мишена. По-съвременните от тях имат силно изразена зависимост от моделите на адрон-ядрените взаимодействия в Монте Карло генераторите, въведена чрез Монте Карло корекции в анализа на данните. С цел получаване на по-прецизна оценка на сечението за взаимодействие тип продукция е направено допълнително изследване с мишената-копие на мишената в T2K. Това изследване е обект на представената дисертация.

1.2 Задачи на дисертационната работа

Дисертационният труд представя експериментално изследване на взаимодействията протонвъглерод с крайна цел определяне на сечението за взаимодействие тип продукция. За постигането на тази цел са дефинирани следните задачи:

- разработване на процедура за анализ на данни и Монте Карло
- генериране на Монте Карло симулации
- оценка на систематичните неопределености на резултата за сечението

До този момент сечението за взаимодействие тип продукция в p + C реакции е изследвано чрез бомбардиране на тънка (около 2 cm) мишена със сноп протони. Подобни изследвания се правят и в експеримента NA61/SHINE. При тях крайният резултат е силно зависим от моделирането на адрон-ядрените взаимодействия в мишената в симулациите, които са необходими за определянето на сечението от експериментално наблюдаемите величини. В настоящата работа са анализирани данни получени отново на експеримента NA61/SHINE, но при фокусиране на сноп протони с импулс 31 GeV/c върху предната основа на графитен цилиндър с дължина от 90 cm. Използваната дълга мишена е копие (реплика) на тази от експеримента T2K. В този случай, методът за пресмятане на сечението за взаимодействие тип продукция се основава на изчисляването на вероятността протон да оцелее при преминаването си през мишената. Полученият резултат за сечението е сравнен с други такива и са направени изводи за влиянието му върху предсказанието на потока неутрино в T2K.

1.3 Структура и обем на дисертационния труд

Дисертацията е представена в обем на 86 страници и включва 7 главни раздела, както следва:

Глава 1 е въведение във физиката на неутриното и описва явлението осцилации на неутриното. Представени са методите за получаване на снопове неутрино в лабораторни условия и е направен обзор на референтните изследвания на адрон-ядрените реакции, участващи в генерирането му.

Глава 2 описва експеримента T2K, предсказването на потока неутрино при близкия и далечния детектор в T2K чрез симулации и свързаните с предсказанието неопределености.

Глава 3 описва експеримента NA61/SHINE и програмата му за изследвания на адрон-ядрените реакции, участващи в процеса на получаване на неутрино в T2K.

Глава 4 е свързана с качествения контрол на използваните при анализа данни и симулации.

Глава 5 детайлно представя метода за изчисление, направения анализ и крайната оценка за сечението за взаимодействие тип продуцкция при бомбардиране на 90 сантиметрова графитна мишена със сноп протони с енергия 31 GeV/c. Описани са систематичните неопределености на полученото сечение. В тази глава е поместена и дискусия на резултата и следствията от него.

Глава 6 представлява кратко заключение, в което са описани и бъдещите планове за изследвания и обновяване на детекторите на експеримента NA61/SHINE.

В Глава 7 са систематизирани най-важните резултати от изследването и е даден списък с публикации с учатието на автора, които са свързани с представената тема.

Експериментът NA61/SHINE

NA61/SPS Heavy Ion and Neutrino Experiment (NA61/SHINE) е експеримент с фиксирана мишена, разположен в експерименталната зала North Area на Европейската организация за ядрени изследвания CERN [12]. В NA61/SHINE се използват снопове високоенергетични частици получени от ускорителя SPS (Super Proton Synchrotron). Като мишени се използват както тънки, така и мишени-копия на тези от експериментите по осцилации на неутриното. В NA61/SHINE се изследват адрон-протонни, адрон-ядрени и ядро-ядрени взаимодействия чрез детектиране на продуктите от тези реакции. Много от компонентите на детекторната установка на експеримента са наследени от предшественика му NA49 [13]. Изследователската програма на NA61/SHINE има три основни фокуса:

- изучаване на формирането на кварк-глуонната плазма и търсенето на критичната точка на преход между кварк-глуонна плазма и адронен газ
- изучаване на адрон-ядрени взаимодействия с цел подобряване моделирането на широките атмосферни порои
- изучаване на адрон-ядрени взаимодействия с цел определяне на сечения за взаимодействие и адронни добиви за подобряване предсказанията на неутринните потоци в експерименти като T2K и неутринните експерименти във Fermilab: MINERνA [14], NOνA [15] и DUNE [16].

Настоящата работа е част от направлението за адрон-ядрени изследвания в NA61/SHINE, свързани с T2K.

2.1 Детекторни системи

В експеримента NA61/SHINE се използват както йонни, така и адрони снопове от ускорителя SPS. За референтните изследвания, свързани с експериментите по неутринни осцилации, се използват адронни снопове. Те се получават от ускорените в SPS протони, който се транспортират около 1 km до първична берилиева мишена, наречена T2. Вследствие на взаимодействията в мишената T2 се раждат вторични частици. Последните достигат до детектора на NA61/SHINE по транспортната линия H2. По тази линия се извършва селекцията по импулс на частиците чрез серия от магнити. В резултат, снопът се състои от различни по вид частици, но с приблизително еднакъв импулс. По-нататък, селекцията на типа адрони от снопа се извършва от детекторите на NA61/SHINE.

В експериментите провеждани в NA61/SHINE и свързани с T2K досега са използвани протонни снопове с енергия 31 GeV/c. Представеният в тази работа анализ е на данни от 2010 година с мишена-копие на мишената от T2K. По тази причина следващото описание се отнася до детекторната установка към 2010 година, която е схематично представена на Фиг. 2.1. Координатната система на експеримента е дадена в долния ляв ъгъл. Снопът адрони идва отляво и направлението му съвпада с оста z.

Фиг. 2.1: Изглед отгоре (a) и отстрани (б) към експерименталната установка на NA61/SHINE през 2010 година при набирането на данни с мишената-реплика на тази от T2K. Координатната система е дадена в долния ляв ъгъл. Началният сноп е насочен по оста z и идва отляво.

Типът на налитащите адрони се определя от два Черенковски детектора: Cherenkov Differential Counter with Achromatic Ring Focus (CEDAR) [17] и Threshold Cherenkov detector (THC). Сигналите и от двата детектора са включени в тригера на частиците от снопа като праговият брояч THC се използва в режим на анти-съвпадение. Серия от сцинтилационни броячи, S1, S2, S3, V0 и V1^p, също са част от тригерната система и имат за цел да дефинират сноп с малка разходимост, насочен към мишената. В допълнение, траекторията на всяка частица от снопа се построява с помощта на информацията от три многонишкови пропорционални камери, наречени Beam Position Detectors: BPD-1, 2, и 3. Във всяка от тях позицията на дадена частица се определя чрез две напречни катодни равнини от нишки.

В конкретното изследване е използвана мишена-копие на мишената от T2K. Тя представлява графитен цилиндър с дължина 90 cm, съответстваща на 1.9 дължини на взаимодействие, и радиус на основата 1.3 cm. На Фиг. 2.2 е представена снимка на монтираната в експеримента NA61/ SHINE мишена-копие.

Продуктите на реакциите в мишената се регистрират от 5 време-проекционни камери (TPC). Две от тях, Vertex TPC-1 и 2, обозначени като VTPC-1 и VTPC-2, са поставени в два свръхпроводящи диполни магнита: VTX-1 и VTX-2. Закривяването на заредените частици в магнитното поле позволява технният импулс да бъде определен. Разделителната способност на детекторната система по импулс е $dp/p^2 = 0.3 \times 10^{-4}$ (GeV/c)⁻¹ за частици в енергетичен диапазон 4 – 100 GeV/c [12]. Камерите VTPC-1 и VTPC-2 са съставени от по две части, разположени отляво и отдясно на линията на началния сноп и не покриват централната част от пространството около нея. Получената празнина е с напречен размер по оста x от 24 сm. Тази нечувствителна зона се наблюдава чрез т. нар. Gap TPC, или GTPC. Този детектор е разположен между VTPC-1 и VTPC-2 и се намира в магнитното поле, създадено от магнитите VTX-1 и VTX-2. В GTPC се регистрират частици с голям импулс и с малък ъгъл на разлитане от мишената. След VTPC-2 и извън магнитното поле се намират две големи време-проекционни камери, разположени отляво и отдясно

Фиг. 2.2: Снимка на дългата мишена-копие на тази от експеримента Т2К, монтирана в експеримента NA61/SHINE.

на оста на началния сноп, MTPC-L и MTPC-R. Тези два детектора са с най-голям обем и играят ключова роля при определянето на енергетичните загуби в спектрометъра.

Работното вещество във време-проекционните камери на NA61/SHINE е газова смес Ar/CO_2 . Многонишкови пропорционални камери, намиращи се в горната част на всяка TPC камера, детектират електроните, получени вследствие на йонизацията от преминаването на заредени частици през газа в обема на детекторите. Регистрират се позицията на детектиране, времето на пристигане и броят на електроните. По тази информация се построяват следите на заредените частици в детекторите и се определят параметрите им: импулс, заряд, енергетични загуби. Разделителната способност на детекторната система по енергетични загуби е параметризирана по броя реконструирани точки (клъстери) в детекторите, N, и е $38\%/\sqrt{N}$ [13]. Чрез специфичните йонизационни загуби на частиците във време-проекционните камери се извършва идентификация на типа им.

След време-проекционните камери са поставени три стени от пластмасови сцинтилатори, които са детектори по време на прелитане: две странични TOF-Left (TOF-L) и TOF-Right (TOF-R), заедно с трета TOF-Forward (TOF-F) стена. В референтните изследвания за неутринни експерименти най-важен от трите е детекторът TOF-F, който покрива централната част от пространството около направлението на началния сноп. Той е изграден от 10 модула, всеки от които се състои от по 8 сцинтилационни летви, разположени вертикално в напречната на оста на налитащия сноп x-y равнина. В горната и долната част на всяка сцинтилационна летва има фотоелектронни умножители (PMT), чрез които се регистрира времето на пристигане на дадена частица в TOF-F детектора. Времето на прелитане през спектрометъра се измерва спрямо сцинтилационния детектор S1, чийто сигнал е част от тригера. Разделителната способност на TOF-F е около 110 ps [18]. Чрез времето на прелитане на дадена частица през детекторната система се определя квадратът на масата ѝ. По този начин детекторите по време на прелитане осигуряват допълнителна идентификация на типа частици.

2.2 Референтни измервания в NA61/SHINE на адронни добиви и сечения за взаимодействие

В колаборацията NA61/SHINE е възприета следната класификация на типовете ядрени взаимодействия според получените продукти на реакцията. Еластичен процес е този, при който не се раждат частици - входният и изходният канал на реакцията са идентични. Такъв процес е кохерентното разсейване на налитащата частица от цялото ядро. Нееластичните взаимодействия включват реакциите тип продукция и т. нар. квази-еластични разсейвания. Както вече бе споменато, при взаимодействия тип продукция в изходния канал на реакцията се съдържат нови адрони, различни от участващите във входния такъв. При квази-еластичните разсейвания ядрото, участвало в реакцията, фрагментира след взаимодействието, без това да доведе до нови

Сноп	Мишена	Година	Магнитно	Статистика	Резултати
			поле $[\text{GeV}/\text{c}]$	$[10^6]$	
	тънка	2007	20	0.7	$\pi^{\pm}, K^{+}, K^{0}_{s}, \Lambda$ множествености
					и $\sigma_{ m prod}$ $[7, 19, 20]$
протони	мишена-копие	2007	20	0.2	proof-of-principle на
с					измерванията с мишена-копия [21]
импулс	тънка	2009	20	5.4	$\pi^{\pm}, K^{\pm}, p, K^0_s, \Lambda$ множествености
31 GeV/c					и $\sigma_{\rm prod}$ [22]
	мишена-копие	2009	20	2.8	π^{\pm} добиви [23]
	мишена-копие	2010	20	9	π^{\pm}, K^{\pm}, p добиви [24]
	мишена-копие	2010	160	1.2	$\sigma_{\rm prod}$ (тази работа и [25])

Таб. 2.1: Списък на референтните измервания на адронни добиви и сечения за взаимодействие, които са проведени в NA61/SHINE и са свързани с експеримента T2K.

адрони в изходния канал на този процес. Сумата от сеченията за всяко от тези разсейвания дава пълното сечение за взаимодействие, σ_{tot} :

$$\sigma_{\rm tot} = \sigma_{\rm el} + \sigma_{\rm inel},\tag{2.1}$$

където $\sigma_{\rm el}$ и $\sigma_{\rm inel}$ са съответно сеченията за еластично и нееластично разсейване, а последното е сума от сеченията за квази-еластично разсейване, $\sigma_{\rm qe}$, и взаимодействие тип продукция, $\sigma_{\rm prod}$:

$$\sigma_{\rm inel} = \sigma_{\rm qe} + \sigma_{\rm prod}.\tag{2.2}$$

Класификацията на видовете ядрени взаимодействия, която се използва в NA61/SHINE, съвпада с тази, използвана в T2K.

През 2007, 2009 и 2010 година на експеримента NA61/SHINE са провеждани референти изследвания на адрон-ядрени реакции, свързани с генерирането на неутринния сноп в T2K. Те са систематизирани в Таб. 2.1. Използвани са протонни снопове с импулс 31 GeV/c и тънка графитна или мишена-копие на тази в T2K. Резултатите включват както диференциални адроннии добиви и множествености, така и сечения за нееластично взаимодействие или ваимодействие тип продукция. Тези резултати, с изключението на последния, който е публикуван неотдавна и е описан в тази работа, са постепенното прилагани в предсказанието на неутринния поток в T2K. Това води до поетапно намаляване на пълната неопределеност на предсказанието от над 10% до нива от около 4% в областта на пика на потока, което е демонстрирано на Фиг. 1.1.

С данни от NA61/SHINE на два пъти е оценявано сечението за взаимодействие тип продукция. С данни от 2007 и 2009 година, получени при бомбардиране на тънка мишена, са пресметнати следните стойности:

2007 :
$$\sigma_{\rm prod} = 229.3 \pm 1.9 (\text{stat}) \pm 9.0 (\text{sys}) \,\text{mb},$$
 (2.3)

$$2009: \ \sigma_{\rm prod} = 230.7 \pm 2.8(\text{stat}) \ \pm 1.2(\text{det}) \ ^{+6.3}_{-3.5}(\text{mod}) \text{ mb.}$$
(2.4)

Методът за тяхното получаване включва въвеждането на няколко Монте Карло корекции. Тези корекции са свързани със заложените в генераторите сечения за различни видове взаимодействия и правят резултатите силно зависими от използваните модели на процесите в симулациите. Оказва се, че доминиращият компонент в пълната неопределеност на пресметнатите сечения е Монте Карло моделирането на адрон-ядрените процеси. За да се избегне този ефект, през 2010 година, една част от данните на NA61/SHINE с мишената-копие са регистрирани при максималното възможно магнитно поле в спектрометъра. Силното 9 Т m магнитно поле закривява високо-енергетичните частици от снопа, които са оцелели при преминаването си през мишената, към време-проекционните камери. Тези частици са взаимодействали еластично или квази-еластично

в дългата мишена. При дадените условия е възможно да се определи отслабването на потока частици при преминаването му през дългата мишена и чрез него да се пресметне сечението за взаимодействие тип продукция. При този подход зависимостта от моделирането на физичните процеси в симулациите е намалена до минимум. Причината е, че в пресмятанията се използва една Монте Карло корекция, свързана с ефективността на детекторите и реконструкцията на следите. Анализът на тези данни е описан в представената дисертация.

Определяне на сечението за взаимодействие тип продукция в p + C реакции при 31 GeV/c импулс на налитащия сноп

3.1 Метод на пресмятане

През лятото на 2010 година в експеримента NA61/SHINE около 1.2 М събития са регистрирани при бомбардиране на 90 сантиметровата мишена-копие на тази от T2K с протони с импулс 31 GeV/c. Използвано е максималното магнитно поле в детекторната система на NA61/SHINE. Това позволява частиците от снопа, които са взаимодействали еластично и квази-еластично в мишената, да бъдат регистрирани във време-проекционните камери. Чрез определянето на техния дял от общия брой налитащи протони е пресметната вероятността протон да оцелее при преминаването си през дългата мишена. От тази вероятност се определя сечението за взаимодействие тип продукция, $\sigma_{\rm prod}$, чрез зависимостта

$$P_{\rm surv} = exp(-n\sigma_{\rm prod}z),\tag{3.1}$$

която в конкретния случай има вида

$$P_{\rm surv} = \frac{{\rm Брой \ селектирани \ TPC \ следи}}{{\rm Брой \ селектирани \ протони \ от \ снопа}} = e^{-Ln\sigma_{\rm prod}},$$
(3.2)

където P_{surv} е вероятността за оцеляване на частиците от снопа, L е дължината на мишената, n е броят разсейвателни центрове (въглеродни ядра) в единица обем от мишената. При изпълнението на тази изчистена задача е направен внимателен подбор на детектираните продукти на реакциите в мишената.

3.2 Подход при селекцията на ТРС следи

Многократните разсейвания в обема на дългата мишена ограничават възможността за определяне на типа на взаимодействията в нея по геометричното разпределение на продуктите, регистрирани в TPC камерите. Обикновено в NA61/SHINE се използва тъкмо такъв подход при оценка на сечението за взаимодействие тип продукция, но за изследвания с тънка мишена. В случая на дълга мишена, при селекцията на TPC следите е избран подход, основан на промяната на енергията, съответно импулса, на частиците при еластични и квази-еластични взаимодействия в мишената. Определена е долна граница за импулса на частиците от снопа, оцелели при преминаването си през 90 сантиметра графит. За целта са взети под внимание йонизационните загуби в дългата мишена и откатът на ядрото при квази-еластично взаимодействие. За да се оцени първият от тези два фактора са използвани симулации на преминаването на протони с импулс 31 GeV/c през графитната мишена-реплика с плътност 1.83 g/cm³. Определена е медианата на разпределението на симулираните енергетични загуби в мишената при еластични взаимодействия, за които процеси предадената енергия е пренебрежима. Използвана е именно тази характеристика на разпределението на енергетичните загуби, тъй като то е несиметрично, разтеглено към високи стойности на загубите.

За определянето на енергията на откат на мишената при еластични или квази-еластични реакции е използван предаденият четири-импулс, t. Всъщност кинетичната енергия на откат, T_R , може да се изрази чрез четири-импулса като

$$T_R = \frac{|t|}{2M} = \frac{p_{\text{beam}}^2 \theta^2}{2M},\tag{3.3}$$

където M е масата на разсейвателния център, p_{beam} е импулсът на началния сноп, а θ е ъгълът на разсейване между налитащата и отлитащата частици. В Изр. 3.3 е използвано приближението $|t| \sim p_{\text{beam}}^2 \theta^2$, което е приложимо за еластични или квази-еластични реакции, тъй като импулсът на частицата остава почти непроменен преди и след взаимодействието. От Изр. 3.3 следва, че кинетичната енергия на откат е най-голяма, когато е предадена на нуклон от ядрото. Такава реакция е квази-еластична и се нарича *knock-out*. Изчислено е, че максималната кинетична енергия на откат при квази-еластично разсейване е 459 MeV. Сравнена с нея, енергията на свързване на нуклона в ядрото от 8 MeV е пренебрежимо малка. Понеже мишената отговаря на около 2 дължини на взаимодействие, средно толкова взаимодействия се очакват за частици преминаващи през цялата ѝ дължина. Тогава долната граница за енергията на отлитащата от мишената еластично или квази-еластично разсеяна частица, E_{out} , е

$$E_{\text{out}} \ge E_{\text{beam}} - E_{\text{ion}} - 2T_R. \tag{3.4}$$

Изразена чрез импулс, Изр. 3.4 означава $p \ge 29.73$ GeV/c. По този начин е определена минималната допустима стойност на импулса на селектираните частици. Поставеното условие е и изискването в селекцията, което най-силно повлиява броя избрани TPC следи. Описаният похват за определяне на праговата стойност на енергията и импулса в еластични и квази-еластични взаимодействия може да бъде приложена за различни комбинации от налитащ сноп и мишени с различна дължина.

3.3 Прилагане на Монте Карло корекция

При определянето на сечението за взаимодействие тип продукция е използвана Монте Карло (MK) корекция, с която се ограничава влиянието на ефективността за регистрация и реконструкция на следите на частиците в детектора при анализа на данните. В текущото изследване тази корекция се дефинира като

$$C^{MC} = \frac{\text{Брой симулирани еластични и квази-еластични събития}}{\text{Брой селектирани, реконструирани събития}},$$
 (3.5)

където числителят е броят симулирани налитаци протони, които минават през цялата дължина на мишената и това не води до раждането на нови адрони в нея. Знаменателят е броят реконструирани Монте Карло събития, които преминават през същата селекция на еластични и квази-еластични процеси, която е приложена и за данните. Такъв тип МК корекция е възприета като "стандартна" в NA61/SHINE и обикновено се използва при пресмятането на адронни добиви в референтните изследвания, свързани с неутринни експерименти. За сравнение, при определяне на сечения за взаимодействие с данни от измервания с тънка мишена, Монте Карло корекциите са

Използван модел за изчисляване на корекцията	MK корекция C^{MC}	Получено сечение $\sigma_{\rm prod}$ [mb]	$\frac{1 - \frac{\sigma_{\text{prod}}^{\text{ref}}}{\sigma_{\text{prod}}}}{[\%]}$
QBBC	1.035	227.6	-
FTFP BERT	1.036	227.5	- 0.04
QGSP_BIC	1.042	226.8	- 0.4
Fluka 2011.2c.5	1.037	227.4	- 0.09

Таб. 3.1: Монте Карло корекция, сечение за взаимодействие тип продукция, получено с използването на съответната МК корекция, и относителна му неопределеност за генераторите GEANT4 версия 10.4.р03 и FLUKA 2011.2c.5. QBBC, FTFP_BERT и QGSP_BIC са използваните три физични списъка от GEANT4. Референтният модел е този от QBBC списъка.

няколко и включват оценки на заложените в генераторите сеченията за различни видове взаимодействия. Съответно получените резултати от измервания с тънки мишени имат силно изразена зависимост от избора на МК модел на взаимодействията.

За да се изчисли МК корекцията в това изследване са направени симулации на 6 $\times 10^6$ събития с пакета GEANT4 версия 10.4.р03 [26–28]. Референтният списък с физични модели на взаимодействията е QBBC, а от Изр. 3.5 е определена големината на корекцията: $C^{MC} = 1.035$. Тази корекция е приложена към вероятността за оцеляване от Изр. 3.2 и въвежда неопределеност на крайния резултат за сечението, свързана с избора на модел на взаимодействията в МК генератора. За изчисляването на тази неопределеност са използвани симулации с моделите, заложени в списъците FTFP BERT и QGSP BIC. Моделът на еластичните взаимодействия в QBBC за конкретната версия на GEANT4 е препоръчваният от GEANT4 колаборацията [29]. В другите два списъка, FTFP BERT и QGSP BIC, за моделирането на еластичните взаимодействия се използват еднакви модели, различни от този в QBBC. Нееластичните взаимодействия, които включват и квази-еластичните, и в трите физични списъка имат различни описания. При високи енерии обаче моделирането на нееластичните процеси в QBBC и FTFP ВЕКТ списъците съвпада. В допълнение към симулациите с пакета GEANT4 са направени такива и с генератора FLUKA 2011.2c.5 [30–32]. В предходни анализи на данни от измервания с тънка мишена в NA61/SHINE, в които също се определя сечението за взаимодействие тип продукция, за пресмятането на МК корекциите е използван генераторът GEANT4. В последния анализ на данни от NA61/SHINE с мишена-копие обаче МК корекциите са пресметнати чрез FLUKA2011. Още повече, в T2K, симулациите на адрон-ядрените взаимодействия в мишената се извършват с FLUKA. Поради тези причини и FLUKA генераторът е използван в настоящия анализ.

Пресметнатите МК корекции за всеки един от заложените в използваните генератори модели, сеченията за взаимодействие, получени чрез съответните МК корекции, и тяхното отклонение от номиналния резултат са дадени в Таб. 3.1. Сечението, получено с МК корекцията от симулациите с FLUKA, е в добро съответствие с всички останали. Максимално отклонение от номиналното сечение, получено с МК корекция от QBBC списъка, се наблюдава за QGSP_BIC и е в рамките на -0.4%.

3.4 Обсъждане на резултата и следствията от него

Сечението за взаимодействие тип продукция в реакцията p + C при 31 GeV/c импулс на налитащия протонен сноп е изчислена на базата на броя частици, които преминават през 90 сантиметрова графитна мишена, взаимодействат еластично и квази-еластично в нея и оставят следа във време-проекционните камери на експеримента NA61/SHINE. Полученият резултат, заедно със статистическата, систематична и моделна неопределеност е

$$\sigma_{\rm prod} = 227.6 \pm 0.8(\text{stat}) \,{}^{+1.9}_{-3.2}(\text{sys}) \,{}^{-0.8(\text{mod})}\,\text{mb}. \tag{3.6}$$

Фиг. 3.1: Разпределение на специфичните енергетични загуби като функция на импулса за частици, които са реконструирани в едно събитие с високоенергетичен кандидат на селекцията. Вляво е разпределението за отрицателно заредени частици, q<0, а отдясно за положително заредени такива, q>0. При малки импулси е невъзможно да се определи типът на частиците с информацията от това разпределение. За положително заредени частици с импулси около този на началния сноп от 31 GeV/с, се наблюдават две отделни области. Това са несинхронизирани с тригера частици, които са оцелели при преминаването си през мишената – закъснели протони (по-ниско) и π^+ (по-високо по оста за dE/dx).

Пълната относителна неопределеност на сечението е 2%. Един от основните източници на неопределеност са несинхронизираните с тригера, закъснели, частици. Те замърсяват сигнала от синхронизираната с тригера частица, тъй като продуктите, получени при взаимодействията на двете частици в мишената, не могат да бъдат разделени в ТРС камерите. Това води до премахването от селекцията на част от оцелелите в мишената частици, които са били синхронизирани с тригера. При конкретното набиране на данни с мишената-копие окабеляването на детектора, който маркира закъснели частици от снопа, създава проблеми и сигналът от този детектор не е използван в анализа на данните. Вместо това е предложен начин за количествено определяне на честотата на несинхронизирани с тригера частици от вероятността и синхронизираната, и закъснялата частица от снопа да оцелеят при преминаването си през дългата мишена. Последната може да се определи от броя събития, при които две високоенергетични частици, с импулс $p \ge 29.73$ GeV/c, преминават през детекторите. Такъв е случаят на частиците, показани при високи импулси на Фиг. 3.1. Направената оценка на вероятността несинхронизирана с тригера частица да попадне в мишената, която се отнася до разглежданото набиране на данни с мишената-копие, е около 2%. Свързаната с това неопределеност на сечението за взаимодействие тип продукция е под 1%. Сред другите главни източници на систематична неопределеност на резултата за сечението са зависимостта на софтуерната реконструкция на следите от прецизността на познаването на геометрията на детектора и неопределеността на измерването на плътността на мишената. От друга страна, моделирането на процесите в симулациите не е доминантен фактор в пълната неопределеност на сечението за взаимодействие.

Представената оценка за сечението за взаимодействие тип продукция е сравнена с предходни резултати на колаборацията NA61/SHINE и на други групи. Това сравнение е графично представено на Фиг. 3.2. В допълнение, в Таб. 3.2 са дадени числените стойности на сеченията от Фиг. 3.2 и техните неопределености. Наблюдава се съвпадение в рамките на 1σ между представения в тази работа резултат и сеченията, определени чрез анализ на данни от NA61/SHINE при измервания с тънки мишени при същия импулс на началния сноп [7, 22]. Текущата оценка на сечението обаче има най-малка неопределеност, което се дължи на слабата му зависимост от МК модела на взаимодействията в мишената. При обработката на данните от измервания с

Фиг. 3.2: Резултатът от текущия анализ, даден с червената точка, сравнен със сечения за взаимодействие тип продукция в p+C реакции при различни импулси на налитащия сноп. Представени са резултати от NA61/SHINE [7, 22, 29] и Carroll et al. [9].

Експеримент	$p_{\rm beam}$ [GeV/c]	$\sigma_{\rm prod} \ [{\rm mb}]$	$\Delta_{\text{total}} [\text{mb}]$
NA61/SHINE 2010	31	227.6	$^{+2.1}_{-3.4}$
$\rm NA61/SHINE~2007$	31	229.3	± 9.2
NA61/SHINE 2009	31	230.7	$^{+7.0}_{-4.6}$
NA61/SHINE 2016	60	226.9	$^{+4.1}_{-6.4}$
Carroll <i>et al.</i>	60	222	± 7

Таб. 3.2: Резултатът от текущия анализ сравнен със сечения за взаимодействие тип продукция от измервания с тънки мишени в NA61/SHINE [7, 22, 29] и от Carroll et al. [9] за p+C взаимодействия при различни импулси на налитащите частици. Дадената пълна неопределеност (Δ_{total}) представлява корен квадратен от сумата на квадратите на статистическата, систематичната и моделната неопределености.

тънка мишена сечението се определя чрез въвеждането на редица Монте Карло корекции, а при анализа на данните от измерванията с мишена-копие се използва една МК корекция, свързана с ефективността на детектора и процедурата по реконструкция. Силната зависимост на сечението от МК моделирането на адрон-ядрените взаимодействия при работа с тънка мишена може да се разглежда като аргумент за нуждата от допълнителни изследвания в тази област.

Предстои представеният резултат да бъде използван за претеглянето на честотата на взаимодействията тип продукция в мишената при симулациите на неутринния поток в T2K. Очаква се неопределеността на предсказанието на потока да се намали вследствие на по-малката неопределеност на измереното сечение. От друга страна, получените резултати с данни от измервания с тънка и дълга мишена са в добро съответствие. Следователно с настоящия нов резултат не може да се обясни отклонението, виж Фиг. 1.3, между предсказанията за потока неутрино при претегляне с данни от измервания с тънка мишена и мишена-копие. Всъщност в [23] е показано, че добро съответствие между измерените π^{\pm} добиви на повърхността на мишената-копие на мишената в T2K и Монте Карло предсказанията се получават при стойности на сечението за взаимодействие тип продукция от около 221 mb. Представеният в тази работа резултат е отместен на две стандартни отклонения от тази стойност.

Заключение

В настоящата работа е показано, че сечението за взаимодействие тип продукция може да се определи използвайки отслабването на начален сноп частици при преминаването му през мишена с известна дължина. Следвайки този подход са анализирани данни от експеримента NA61/SHINE, получени при бомбардиране на 90 сантиметрова графитна мишена-копие на тази от експеримента T2K с протонен сноп с импулс 31 GeV/c. Получената стойност за сечението за взаимодействие тип продукция е

$$\sigma_{\rm prod} = 227.6 \pm 0.8 (\text{stat}) {}^{+1.9}_{-3.2} (\text{sys}) - 0.8 (\text{mod}) \text{ mb.}$$

Този резултат е в добро съответствие с предходни измервания на колаборацията NA61/SHINE за p + C взаимодействия при 31 GeV/c импулс на началния сноп, възпроизведени при използването на тънка мишена. Спрямо тях обаче, представеният нов резултат има по-малка неопределеност. От тези обстоятелства следва, че за да се обясни несъответствието между предсказанията за неутринния поток при далечния детектор в T2K, получени с данни от тънка и мишена-копие, са необходими допълнителни проучвания на причините. Все пак, направената оценка на сечението за взаимодействие тип продукция е приложима към процедурата в T2K по претегляне на резултатите от симулациите на адрон-ядрените взаимодействия в мишената. По-малката неопределеност на представеното сечение в сравнение с предходни данни ще доведе и до по-малка неопределеност на предсказанието за неутринния поток, което е и основната цел на работата.

Научни приноси

5.1 Приноси на докторанта

В настоящата работа е описано изследването на взаимодействията протон-въглерод, наблюдавани в експеримента NA61/SHINE при бомбардиране на мишена-копие на тази от T2K с протони с енергия 31 GeV/c. Докторантът има водещ принос за получаването на следните основни резултати от това изследване:

- Създадена е възпроизводима процедура за пресмятането на сечението за взаимодействие тип продукция чрез измерването на отслабването на начален сноп частици при преминаването им през мишена с известна дължина.
- Направено е детайлно проучване на възможните систематични ефекти и произтичащите от тях неопределености при определяне на сечението, включително е оценена зависимостта от избора на модел на взаимодействията в Монте Карло генераторите.
- Предложен е метод за количествено определяне на честотата на несинхронизирани с тригера частици.
- Тествана е пълната последователност от софтуерни процедури при Монте Карло симулациите в NA61/SHINE. Няколко проблема бяха идентифицирани и решени в процеса. Част от коригираните софтуерни модули се използват и за реконструкцията на данни и бяха допълнително тествани преди и след калибровъчната процедура.

5.2 Публикации по темата на дисертацията

Публикации в списания:

- A. Acharya *et al.*, [NA61/SHINE Collaboration] "Measurement of the production cross section of 31 GeV/c protons on carbon via beam attenuation in a 90-cm-long target" DOI: 10.1103/PhysRevD.103.012006 Phys.Rev.D 103 (2021) 1, 012006 Corresponding author: Simona Ilieva
- N. Abgrall *et al.*,[NA61/SHINE Collaboration] "Measurements of π[±], K[±] and proton double differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS" DOI: 10.1140/epjc/s10052-019-6583-0 *Eur.Phys.J.C* **79** (2019) 2, 100 Забелязани независими цитирания:
 - P. Yang, M. Duan, F. Liu and R. Sahoo Adv. High Energy Phys. 2020 (2020) 9542196

- A. Aduszkiewicz *et al.*,[NA61/SHINE Collaboration] "Measurements of production and inelastic cross sections for p+C , p+Be , and p+Al at 60 GeV/c and p+C and p+Be at 120 GeV/c" DOI: 10.1103/PhysRevD.100.112001 *Phys.Rev.D* **100** (2019) 11, 112001
- A. Aduszkiewicz *et al.*,[NA61/SHINE Collaboration] "Measurements of hadron production in π⁺+C and π⁺+Be interactions at 60 GeV/*c*" DOI: 10.1103/PhysRevD.100.112004 *Phys.Rev.D* 100 (2019) 11, 112004
- A. Aduszkiewicz *et al.*, [NA61/SHINE Collaboration] "Measurements of total production cross sections for π⁺+C, π⁺+Al, K⁺+C, and K⁺+Al at 60 GeV/c and π⁺+C and π⁺+Al at 31 GeV/c" DOI: 10.1103/PhysRevD.98.052001 Phys.Rev.D 98 (2018) 5, 052001 Забелязани независими цитирания:

- P. Yang, Qi. Wang and F. Liu Int.J. Theor. Phys. 58 (2019) 2603-2618
- N. Marimuthu, R. Prajapati, M. K. Singh, V. Singh and S. S. R. Inbanathan Int.J. Mod. Phys. E 28 (2019) 08, 1950058

Доклади на конференции:

- S. Ilieva for the NA61/SHINE Collaboration, "Hadron production measurements for improving neutrino flux predictions with the NA61/SHINE spectrometer" 19th Lomonosov Conference on Elementary Particle Physics, 22-28 August 2019, Moscow, Russian Federation (C19-08-22) To be published expected April 2021
- S. Ilieva for the NA61/SHINE Collaboration, "ExB Electron Drift Effects in the NA61/SHINE Time Projection Chambers" VIII National Student Scientific Conference on Physics and Engineering Technologies, 31 October - 1 November 2019, Plovdiv, Bulgaria Journal of Physics and Technology 4 (2020) 1, pp. 60-64
- S. Ilieva for the NA61/SHINE Collaboration, "Hadron production measurements at NA61/SHINE for precise determination of accelerator neutrino fluxes" 70th International conference on Nuclear physics and elementary particle physics: Nuclear physics technologies, 11-17 October 2020, Online e-Print: 2011.00277 [hep-ex] To be published

Постери на докторантски училища:

- S. Ilieva for the NA61/SHINE Collaboration, "Hadron production measurements for neutrino experiments with the NA61/SHINE spectrometer" *Invisibles19 School*, 3-7 June 2019, Canfranc-Estación, Huesca, Spain
- S. Ilieva for the NA61/SHINE Collaboration, "Hadron production reference measurements for neutrino experiments with the NA61/SHINE spectrometer" 2019 European School of High-Energy Physics (ESHEP 2019), 4-17 September 2019, St. Petersburg, Russia

Публикации извън темата на дисертационния труд

- A. Acharya *et al.*, [NA61/SHINE Collaboration] "Measurements of π[±], K[±], p and p̄ spectra in ⁷Be+⁹Be collisions at beam momenta from 19A to 150A GeV/c with the NA61/SHINE spectrometer at the CERN SPS" DOI: 10.1140/epjc/s10052-020-08733-x *Eur.Phys.J.C* 81 (2021) 1, 73
- A. Blondel *et al.* "The SuperFGD Prototype Charged Particle Beam Tests" DOI: 10.1088/1748-0221/15/12/P12003 JINST 15 (2020) 12, P12003

A. Acharya *et al.*, [NA61/SHINE Collaboration] "Measurements of π⁻ production in ⁷Be+⁹Be collisions at beam momenta from 19A to 150AGeV/c in the NA61/SHINE experiment at the CERN SPS"
DOI: 10.1140/epjc/s10052-020-08514-6 *Eur.Phys.J.C* 80 (2020) 10, 961, *Eur.Phys.J.C* 81 (2021)

DOI: 10.1140/epjc/s10052-020-08514-6 *Eur.Phys.J.C* 80 (2020) 10, 961, *Eur.Phys.J.C* 81 (2021) 2, 144 (erratum)

- A. Aduszkiewicz *et al.*,[NA61/SHINE Collaboration] "Two-particle correlations in azimuthal angle and pseudorapidity in central ⁷Be + ⁹Be collisions at the CERN Super Proton Synchrotron" DOI: 10.1140/epjc/s10052-020-08675-4 *Eur.Phys.J.C* **80** (2020) 12, 1151
- A. Aduszkiewicz *et al.*,[NA61/SHINE Collaboration] "Measurements of Ξ⁻ and Ξ⁺ production in proton-proton interactions at √s_{NN} = 17.3 GeV in the NA61/SHINE experiment" DOI: 10.1140/epjc/s10052-020-8381-0 *Eur.Phys.J.C* 80 (2020) 9, 833
- A. Aduszkiewicz *et al.*,[NA61/SHINE Collaboration] "K*(892)⁰ meson production in inelastic p+p interactions at 158 GeV/c beam momentum measured by NA61/SHINE at the CERN SPS" DOI: 10.1140/epjc/s10052-020-7955-1 *Eur.Phys.J.C* 80 (2020) 5, 460
- A. Aduszkiewicz *et al.*, [NA61/SHINE Collaboration] "Search for an Exotic S = -2, Q = -2 baryon resonance in proton-proton interactions at $\sqrt{s_{NN}} = 17.3$ GeV" DOI: 10.1103/PhysRevD.101.051101 *Phys.Rev.D* **101** (2020) 5, 051101
- A. Aduszkiewicz *et al.*, [NA61/SHINE Collaboration] "Proton-Proton Interactions and Onset of Deconfinement" DOI: 10.1103/PhysRevC.102.011901 *Phys.Rev.C* 102 (2020) 1, 011901
- A. Aduszkiewicz *et al.*, [NA61/SHINE Collaboration] "Measurement of φ meson production in p+p interactions at 40, 80 and 158 GeV/c with the NA61/SHINE spectrometer at the CERN SPS" DOI: 10.1140/epjc/s10052-020-7675-6 *Eur.Phys.J.C* 80 (2020) 3, 199
- D. Damyanov, I. Pavlova, S. Ilieva, V. Gourev, V. Yordanov and T. Mishonov "Planck's constant measurement by Landauer quantization for student laboratories" DOI: 10.1088/0143-0807/36/5/055047 Eur. J. Phys. 36 (2015) 5, 055047 представена и с постер на 9th International Physics Conference of the Balkan Physical Union (BPU-9), 24-27 August 2015, Istanbul, Turkey

Библиография

- I. Esteban, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou JHEP 09 (2020) 178, arXiv:2007.14792 [hep-ph].
- [2] K. Abe et al., [T2K Collab.] Nucl. Instrum. Meth. A 659 (2011) 106-135, arXiv:1106.1238 [physics.ins-det].
- [3] P. D. Group et al. Progress of Theoretical and Experimental Physics **2020** no. 8, (2020).
- [4] K. Abe et al., [T2K Collab.] Phys. Rev. D 87 no. 1, (2013) 012001, arXiv:1211.0469 [hep-ex].
 [Addendum: Phys.Rev.D 87, 019902 (2013)].
- [5] L. Fields and P. Podlaski, [NA61/SHINE Collab.], "Report from the NA61/SHINE experiment at the CERN SPS," Tech. Rep. CERN-SPSC-2020-023. SPSC-SR-278, CERN, Geneva, Oct, 2020.
- [6] S. Denisov *et al. Nucl. Phys.* B61 (1973) 62.
- [7] N. Abgrall et al., [NA61/SHINE Collab.] Phys. Rev. C84 (2011) 034604.
- [8] G. Bellettini Nucl. Phys. **79** (1966) 609.
- [9] A. Carroll *et al. Phys. Lett.* **B80** (1979) 319.
- [10] K. Abe et al., [T2K Collab.] Phys. Rev. D 88 no. 3, (2013) 032002, arXiv:1304.0841 [hep-ex].
- T. Vladisavljevic, "Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data," in *Prospects in Neutrino Physics*, pp. 189–193. 4, 2018.
 arXiv:1804.00272 [physics.ins-det].
- [12] N. Abgrall et al., [NA61/SHINE Collab.] JINST 9 (2014) P06005, arXiv:1401.4699 [physics.ins-det].
- [13] S. Afanasev et al., [NA49 Collab.] Nucl.Instrum.Meth. A430 (1999) 210–244.
- [14] L. Aliaga et al., [MINERvA Collab.] Nucl. Instrum. Meth. A 743 (2014) 130-159, arXiv:1305.5199 [physics.ins-det].
- [15] D. Ayres et al., [NOvA Collab.], "The NOvA Technical Design Report," 10, 2007. FERMILAB-DESIGN-2007-01.
- [16] R. Acciarri *et al.*, [DUNE Collab.], "Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The Physics Program for DUNE at LBNF," 12, 2015. arXiv:1512.06148 [physics.ins-det].
- [17] C. Bovet, R. Maleyran, L. Piemontese, A. Placci, and M. Placidi, The Cedar Counters for Particle Identification in the SPS Secondary Beams: A Description and an Operation Manual. 1982. CERN-82-13.

- [18] M. Pavin, Measurements of hadron yields from the T2K replica target in the NA61/SHINE experiment for neutrino flux prediction in T2K. PhD thesis, University of Paris VI, 2017. CERN-THESIS-2017-233.
- [19] N. Abgrall et al., [NA61/SHINE Collab.] Phys. Rev. C85 (2012) 035210.
- [20] N. Abgrall et al., [NA61/SHINE Collaboration Collab.] Phys. Rev. C89 no. 2, (2014) 025205, arXiv:1309.1997 [physics.acc-ph].
- [21] N. Abgrall et al., [NA61/SHINE Collab.] Nucl. Instrum. Meth. A701 (2013) 99.
- [22] N. Abgrall et al., [NA61/SHINE Collab.] Eur. Phys. J. C 76 no. 2, (2016) 84, arXiv:1510.02703 [hep-ex].
- [23] N. Abgrall et al., [NA61/SHINE Collab.] Eur. Phys. J. C 76 no. 11, (2016) 617, arXiv:1603.06774 [hep-ex].
- [24] N. Abgrall et al., [NA61/SHINE Collab.] Eur. Phys. J. C79 no. 2, (2019) 100, arXiv:1808.04927 [hep-ex].
- [25] A. Acharya et al., [NA61/SHINE Collaboration Collab.] Phys. Rev. D 103 (Jan, 2021) 012006.
- [26] S. Agostinelli et al., [GEANT4 Collab.] Nucl. Instrum. Meth. A506 (2003) 250.
- [27] J. Allison et al., [GEANT4 Collab.] IEEE Trans. Nucl. Sci. 53 (2006) 270.
- [28] J. Allison et al., [GEANT4 Collab.] Nucl. Instrum. Meth. A835 (2016) 186–225.
- [29] A. Aduszkiewicz et al., [NA61/SHINE Collab.] Phys. Rev. D 100 no. 11, (2019) 112001, arXiv:1909.03351 [hep-ex].
- [30] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), 10, 2005. CERN-2005-010.
- [31] T. Böhlen, F. Cerutti, M. Chin, A. Fassò, A. Ferrari, P. Ortega, A. Mairani, P. Sala, G. Smirnov, and V. Vlachoudis Nucl. Data Sheets 120 (2014) 211–214.
- [32] G. Battistoni, S. Muraro, P. R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso, and J. Ranft AIP Conf. Proc. 896 no. 1, (2007) 31–49.

Благодарности

Писането на тази дисертация завършва етап на натрупване на знания, умения и опит, който обхваща няколко години. През този период много хора допринесоха за преодоляването на съпътстващите предизвикателства, за което бих искала да им благодаря.

Благодаря на научния си ръководител, доц. д-р Мариян Богомилов, за създаването на програмата на докторантурата и оказаната подкрепа за участие в различни дейности както в университета, така и извън него. Бих искала също да благодаря на д-р Димитър Колев за времето, което той отдели да ми помогне със симулациите и за многобройните ни дискусии, чийто обхват се простира далеч отвъд темата на представеното изследване. Благодарна съм и на двамата за напътствията и търпението през различните етапи на моето образование.

Благодаря на колегите си от NA61/SHINE за сътрудничеството и приятелското отношение. Специално благодаря и на членовете на групата по неутрино за споделения опит и практически съвети при работата по анализа.

Благодаря и на семейството и приятелите си за любовта, разбирането и подкрепата, които винаги са ми давали. В частност тази теза не би била възможна без тяхната опора!