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The Ph.D. Thesis has 115 pages and consists of an introduction, four chapters and a
bibliography with 59 titles of papers.

The numbering of the de�nitions, theorems and corollaries in this abstract follows the
one in the Ph.D. thesis.
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In the Ph.D. thesis the structure of some classes of orthogonal arrays in the Hamming
space H(n, q) has been investigated. Orthogonal arrays have numerous applications in
various sub�elds of mathematics, such as statistics [30, 48, 56], coding theory [1, 2, 20, 29],
and cryptography [4, 36, 57]. Moreover, they have applications in computer science and
physics as well.

The research in the thesis is performed in the Hamming space H(n, q), considered
as a �nite polynomial metric space. Polynomial techniques [21, 37, 38, 13] were used to
study the distance distribution of orthogonal arrays and to obtain some constraints on
the structure of the arrays.

The Hamming space is the space of all n-tuples over the alphabet (�eld) Q with
q elements. The dimension of H(n, q) is exactly n. In H(n, q) a Hamming metric is
introduced using the distance d(x, y), between two words of the space x, y ∈ H(n, q),
which is de�ned as the number of coordinates in which the two words di�er. An inner
product is introduced according to the following rule:

〈x, y〉 := 1− 2d(x, y)

n
.

The reversible function σ(d) = 1− 2d
n
is called standard substitution. We use it to convert

between distances and inner products σ−1(d) = 1− 2d
n
.

The �rst chapter of the thesis presents in detail the Krawtchouk polynomials and the
normalized Krawtchouk polynomials, which are the zonal polynomials of the �nite metric
space H(n, q).

Any non-empty (�nite) subset C ⊂ H(n, q) is called a code. The most important
parameters of a code are its dimension n, its cardinalityM = |C|, as well as the minimum
distance between two di�erent words in it d = d(C) = min{ d(x, y) : x, y ∈ C, x 6= y}.

Fazekas and Levenstein introduced the term τ -design in H(n, q).
De�nition 1.1.1 A code C ⊂ H(n, q) is called a τ -design if and only if for every

polynomial with real coe�cients f(t) of degree k ≤ τ and for every point y ∈ H(n, q) the
equality ∑

x∈C

f(〈x, y〉) = f0|C|,

holds where f0 is the �rst coe�cient in the expansion of the polynomial f(t) on the nor-

malized Krawchouk polynomials, i.e. f(t) =
n∑
i=0

fiQ
(n)
i (t).

The maximal non-negative integer τ ≤ n for which C is a τ -design is called the
strength of the design. Considered as combinatorial structures, the τ -designs are shown
to be exactly the orthogonal arrays in H(n, q).

De�nition 1.2.1 Let Q be an arbitrary alphabet (�eld) with q elements, and C be
a matrix with M rows and n columns with elements of Q. We will say that C is an
orthogonal array with q levels, strength τ and index λ, where 0 ≤ τ ≤ n, if each M × τ
submatrix of C contains all τ tuples over Q exactly λ times as rows. We will denote such
an orthogonal array C by (n,M, q, τ).

In Paragraph 1.2 the main properties of orthogonal arrays are presented. Some of
their characteristics are introduced. The main characteristic in this thesis is the distance
distribution of an orthogonal array with respect to a point of the Hamming space.
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De�nition 1.2.2 For every (n,M, q, τ) orthogonal array C ⊂ H(n, q) and for a �xed
point c ∈ H(n, q) we consider the (n+ 1)-tuple of non-negative integers

W = W (c) = (w0(c), w1(c), . . . , wn(c)),

where
wi(c) = |{x ∈ C|d(x, c) = i}|,

for i = 0, . . . , n. We call W = W (c) the distance distribution of the orthogonal array C
with respect to the point c (or the distance distribution of the point c when the array C is
implied).

In this work we will use di�erent notations depending on whether the point c belongs
to the array C or not. More precisely, for an internal point c ∈ C we will denote the
distance distribution of C with respect to the point c by

P = P (c) = (p0 ≥ 1, p1, . . . , pn),

whereas for an external point c ∈ H(n, q) \ C we will denote the distance distribution of
C with respect to the point c by

Q = Q(c) = (q0 = 0, q1, . . . , qn).

The research investigates orthogonal arrays and their combinatorial properties using
known polynomial techniques on τ -designs in polynomial metric spaces.

The main problem of coding theory, investigated in this work, is the following:
Problem 1.3.1 Find the minimal possible value for the cardinality M such that an

orthogonal array (n,M, q, τ) exists in H(n, q) for a �xed strength τ , columns n and levels
q, in other words to evaluate

B(n, q, τ) = min{M = |C| : exists (n,M, q, τ) orthogonal array in H(n, q)}.

It is known that the index λ of an orthogonal array can be calculated using the formula
λ = M/qτ . This means that we can restate the previous problem as follows.

Problem 1.3.2 Find the minimal possible value for the index λ such that an orthog-
onal array (n,M, q, τ) exists in H(n, q) for a �xed strength τ , columns n and levels q, in
other words to evaluate

Λ(n, q, τ) := min{λ = |C|/qτ : exists (n,M, q, τ) orthogonal array}.

Paragraph 1.3 describes well-known bounds for the cardinality of an orthogonal array
C ∈ H(n, q). These are the linear programming bound (or Delsarte bound)[24], the Rao
bound and the Hamming bound [49], [39] which in the Hamming space H(n, q) coincide.
Singleton bound [53] and Plotkin bound [47] are also introduced. The latter one is valid
for the binary Hamming space H(n, 2). Levenshtein's universal bounds (upper and lower)
are described in detail. [38].
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Finding all the possibilities for di�erent characteristics of a code is a standard technique
in coding theory and in combinatorics. The idea of �nding the distance distributions of
optimal codes and designs was �rst introduced by Delsarte in his Ph.D. thesis [21]. We
will apply one of the ways to calculate all the possibilities for the distance distribution of
a (n,M, q, τ) orthogonal array. This is a corollary of a more general approach proposed
by Boyvalenkov [9].

More precisely, the following theorem gives us the necessary technique for the initial
calculation of all the possibilities for the distance distribution with respect to an internal
or an external point for an orthogonal array with �xed parameters.(see [13], [14]).

Theorem 1.4.1 Let C ⊂ H(n, q) be a (n,M, q, τ) orthogonal array and let c ∈ H(n, q)
be �xed. Then

(a) if c ∈ C, the distance distribution of C with respect to c satis�es the system

n∑
i=0

pi

(
1− 2i

n

)k
= bk|C|, k = 0, 1, . . . , τ, (1)

(b) if c /∈ C, the distance distribution of C with respect to c satis�es the system

n∑
i=1

qi

(
1− 2i

n

)k
= bk|C|, k = 0, 1, . . . , τ, (2)

where bk is the �rst coe�cient in the expansion of the polynomial tk in terms of the
normalised Krawtchouk polynomials, i.e. tk = bk +

∑k
i=1 P

(n)
i (t).

Using Theorem 1.4.1 we �nd the sets of all the possible distance distributions with
respect to internal and external (for the array) points. For �xed n, M , τ ≤ n and q we
denote the set of all possible distance distributions with respect to an arbitrary internal
point by P (n,M, q, τ), and the set of all possible distance distributions with respect to
an arbitrary external point - Q(n,M, q, τ). The set of all possible distance distributions
regardless of the selected point is denoted by

W (n,M, q, τ) = P (n,M, q, τ) ∪Q(n,M, q, τ).

The next theorem gives us the opportunity to �x a point of the space and work on it
without loss of generality.

Theorem 1.4.4 The set W (n,M, q, τ) is exactly the set of distance distributions of
the orthogonal arrays with parameters (n,M, q, τ) with respect to the point 0 ∈ H(n, q).

Theorem 1.4.6 and Theorem 1.4.8 are also proved as well as their immediate
corollaries. This allow us to consider the distance distributions of orthogonal arrays with
respect to any �xed point of the space H(n, q).

In the second chapter, orthogonal arrays in the binary Hamming space H(n, 2) are
considered. Note that H(n, 2) is an antipodal metric space, i.e. for each point x ∈
H(n, 2) there is an unique x̄ ∈ H(n, 2) for which the condition d(x, x̄) = n is ful�lled.
Using this fact, in [28] we prove that orthogonal arrays with parameters (n,M, 2, 2k) and
(n+ 1, 2M, 2, 2k + 1) exist simultaneously.
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The thesis uses two main constructions for the study of orthogonal arrays. In the
�rst construction for an orthogonal array with �xed parameters (n,M, 2, τ), we cut o� an
arbitrary column and analyse the connections between the distance distributions of the
original and of the newly obtained arrays. In this construction the derived orthogonal
arrays have parameters (n− 1,M, 2, τ) and (n− 1,M/2, 2, τ − 1). The construction has
the following form.

C ′ − (n− 1,M, 2, τ)
W ′ = (w′0, w

′
1, . . . , w

′
n−1)︷ ︸︸ ︷

0
0 Y = (y0, y1, . . . , yn−1)
... C0 − (n− 1,M/2, 2, τ − 1)
0
1
1 X = (x1, x2, . . . , xn)
... C1 − (n− 1,M/2, 2, τ − 1)
1︸ ︷︷ ︸

C − (n,M, 2, τ)
W = (w0, w1, . . . , wn)

Construction 2.3.

In Paragraph 2.3 the set of distance distributions with respect to an internal point
P (n,M, 2, τ) is investigated. Using Theorem 2.3.1, Theorem 2.3.3, Theorem 2.3.4
and Theorem 2.3.6 an algorithm for reducing the elements in P (n,M, 2, τ) is described.

When working only with internal points, some of the orthogonal arrays obtained in
Construction 2.2 cannot be analysed. Therefore, in Paragraph 2.4 the theorems in Para-
graph 2.3 are generalised on the set of distance distributions W (n,M, 2, τ) with respect
to any arbitrary point of the space H(n, 2). In addition, the distance distributions of the
derived orthogonal arrays are described.

Theorem 2.3.4 Let C ⊂ H(n, 2) be a (n,M, 2, τ) binary orthogonal array with
distance distribution W ∈ W (n,M, τ, 2) with respect to an arbitrary point c ∈ H(n, 2).
Let c′ ∈ H(n − 1, 2) and C ′ be obtained from c and C by Construction 2.3, and let
W ′ ∈ W (n − 1,M, 2, τ) be the distance distribution of the array C ′ with respect to the
point c′. The system of linear equations∣∣∣∣∣∣∣∣∣∣

xi + yi = wi, i = 1, 2, . . . , n− 1
xi+1 + yi = w′i, i = 0, 1, . . . , n− 1
y0 = w0

xn = wn
xi, yi ∈ Z, xi ≥ 0, yi ≥ 0, i = 0, 1, . . . , n

. (3)

with variables X = (x1, x2, . . . , xn−1, xn) and Y = (y0, y1, . . . , yn−1) has the unique solu-
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tion:

X = (w′0 − w0,

1∑
j=0

(w′j − wj), . . . ,
n−2∑
j=0

(w′j − wj), wn),

Y = (w0, w1 − (w′0 − w0), w2 −
1∑
j=0

(w′j − wj), . . . , wn−1 −
n−2∑
j=0

(w′j − wj)).

In the same Paragraph, using the antipodallity of H(n, 2), we outline proofs for some
important theorems and corollaries. Using those we succeed in proving the important
for our research Theorem 2.4.16. This theorem gives us the distance distribution (with
respect to an arbitrary point x of space) of the orthogonal array with the same parameters
(n,M, 2, τ) which is isomorphic to C. Thus, we came to the conclusion that a given
distance distribution of an array, i.e. element of the setW (n,M, 2, τ), depends on another
distance distribution (element) of the same set.

A second algorithms is described in the thesis. It is used to reduce the set of distance
distributions with respect to an arbitrary pointW (n,M, 2, τ). This algorithm is generally
more powerful than Algorithm 1, but the main disadvantage is that the cardinality of
W (n,M, 2, τ) is greater than the cardinality of the set P (n,M, 2, τ) for big n.

A second construction is considered in Paragraph 2.5 - two columns from the �xed
orthogonal array C are cut o�. We obtain numerous orthogonal arrays with di�erent
parameters: (n − 1,M, 2, τ), (n − 2,M, 2, τ), (n − 1,M/2, 2, τ), (n − 2,M/2, 2, τ), as
well as several other orthogonal arrays with the same parameters as the original array
(n,M, 2, τ). The di�erent connections between their distance distributions are proved in
detail in Theorems 2.5.3 - 2.5.28. Where possible the distance distributions are explicitly
provided. A third algorithm has been developed that improves the results for reducing
the set of distance distributions W (n,M, 2, τ).

We should note that the results in the present work depend on the implementation of
the algorithms. Therefore, a number of optimizations that improve the performance of
our programs have been described in this thesis.

In Paragraph 2.8 all nonexistence results are described. Those are obtain by using the
previously mentioned algorithms.

Theorem 2.8.1 A binary orthogonal array with parameters (4, 96, 11) does not exist.
Theorem 2.8.2 A binary orthogonal array with parameters (4, 96, 10) does not exist.
The following results were also obtained.
Corollary 2.8.3 Binary orthogonal arrays with parameters (11, 192, 5) and (12, 192, 5)

do not exist.
Using Algorithm 2 the previous described results were improved upon.
Theorem 2.8.4 A binary orthogonal array with parameters (9, 96, 2, 4) does not

exist.
Corollary 2.8.5 A binary orthogonal array with parameters (10, 192, 2, 5) does not

exist.
Another series on which the algorithms were applied is (13, 224, 2, 5). On this input

Algorithm 1 gives the following result.
Theorem 2.8.6 A binary orthogonal array with parameters (13, 224, 2, 5) does not

exist.
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Corollary 2.8.7 A binary orthogonal array with parameters (12, 112, 2, 4) does not
exist.

Applying Algorithm 2 the following theorem and its corollaries are obtained.
Theorem 2.8.8 A binary orthogonal array with parameters (10, 112, 2, 4) does not

exist.
Corollary 2.8.9 A binary orthogonal array with parameters (11, 112, 2, 4) does not

exist.
Corollary 2.8.10 A binary orthogonal array with parameters (11, 224, 2, 5) does not

exist.
Corollary 2.8.11 A binary orthogonal array with parameters (12, 224, 2, 5) does not

exist.
In order to obtain a complete result on the considered series, it was necessary to use

the most powerful, but also the slowest of the described algorithms, namely Algorithm 3.
The following results were obtained.

Theorem 2.8.12 A binary orthogonal array with parameters (9, 112, 2, 4) does not
exist.

Corollary 2.8.13 A binary orthogonal array with parameters (10, 224, 2, 5) does not
exist.

Some already known results were also described. In this way we reached the exact
bounds for Λ(n, 2, τ) in the following cases:

Λ(9, 2, 4) = Λ(10, 2, 5) = 8, Λ(9, 2, 4) = Λ(10, 2, 5) = 8,

Λ(11, 2, 4) = Λ(12, 2, 5) = 8 Λ(12, 2, 5) = Λ(13, 2, 5) = 8.

Based on the outlined algorithms, we were able to achieve other already known results
for nonexistence. These are described at the end of Paragraph 2.8. Although we have not
achieved a result for existence or nonexistence, we have obtained a signi�cant reduction in
the number of elements in the set W (n,M, 2, τ) of possibilities for distance distributions
of the studied orthogonal array.

The second chapter is based on the following three publications [16], [17] and [43].

In the third chapter, orthogonal arrays over the ternary Hamming space H(n, 3) are
investigated. The sets of distance distributions W (n,M, 3, τ) and P (n,M, 3, τ) are anal-
ysed. An analogous (to the �rst in the binary case) construction with the removal of one
column from a ternary orthogonal array with �xed parameters (n,M, 3, τ) is described.
This construction is illustrated for ` = 1 below.

As can be seen, several derived orthogonal arrays with parameters (n − 1,M, 3, τ),
(n−1,M/3, 3, τ−1) and (n−1, 2M/3, 3, τ−1) are obtained from the orthogonal array C.
For these orthogonal arrays, connections can be found between their distance distributions
and the distance distribution of the �xed orthogonal array C. Theorem 3.2.2 gives us the
distance distributions of some of the investigated orthogonal arrays. Theorem 3.2.6 gives
a linear system that should be satis�ed by the distance distributions of the orthogonal
arrays (n− 1,M/3, 3, τ − 1) and (n− 1, 2M/3, 3, τ − 1) .
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C ′ −OA(n− 1,M, 3, τ)
W ′ = (w′0, . . . , w

′
n−1)︷ ︸︸ ︷

0
0 C0 −OA(n− 1,M/3, 3, τ − 1)
... Y = (y0, y1, . . . , yn−1)
0
1
...
1 C0 −OA(n− 1, 2M/3, 3, τ − 1)
2 Y = (y1, y1, . . . , yn)
...
2︸ ︷︷ ︸

C −OA(n,M, 3, τ)
W = (w0, w1, . . . , wn)

C ′ −OA(n− 1,M, 3, τ), W ′︷ ︸︸ ︷
0
0 C0 −OA(n− 1,M/3, 3, τ − 1)
... Y = (y0, y1, . . . , yn−1)
0
1
1 C1 −OA(n− 1,M/3, 3, τ − 1)
... Z = (z1, z2, . . . , zn)
1
2
2 C2 −OA(n− 1,M/3, 3, τ − 1)
... U = (u1, u2, . . . , un)
2︸ ︷︷ ︸

C −OA(n,M, 3, τ), W

Construction 3.2 (Figure 1).

Let us denote the three transpositions from the symmetric group S3 by σ0 = (12),
σ1 = (20) and σ2 = (01), respectively. Let us denote the two cycles by ρ = (012) and
ρ2 = (021), respectively. By the properties of orthogonal arrays if we permute the elements
in a �xed column we will obtain an orthogonal array with parameters (n,M, 3, τ). If we
�rst apply the three transpositions on the �xed `th column of the orthogonal array C with
distance distribution W ∈ W (n,M, 3, τ) with respect to the point c ∈ H(n, 3), we get
three isomorphic to C orthogonal arrays with parameters (n,M, 3, τ). Let us denote these
arrays by Cσ0 , Cσ1 and Cσ2 , respectively. In fact, the result of applying the permutation
σ0 = (12) over C results in the orthogonal array with the same distance distribution W
with respect to the point c of C. The distance distributions of the other two orthogonal
arrays obtained by permutations σ1, σ2 we denote byW

σ1 andW σ2 , respectively. Applying
one of the cycles in S3 over the `

th column of C results in an orthogonal array isomorphic
to one of the known ones with the same parameters.

The following theorem describes the distance distribution of the derived orthogonal
arrays.

Theorem 3.2.7 Let C ⊂ H(n, 3) be a (n,M, 3, τ) ternary orthogonal array, such
that

W = (w0, w1, . . . , wn) = (y0, y1 + y1, . . . , yn−1 + yn−1, yn)

= (y0, y1 + z1 + u1, . . . , yn−1 + zn−1 + un−1, zn + un) ∈ W (n,M, τ),

is the distance distribution of C with respect to an arbitrary point c ∈ H(n, 3). Then:

(a) The distance distribution W σ1 ∈ W (n,M, τ) of the ternary orthogonal array Cσ1

with respect to the point c is

W σ1 = (u1, y0 + z1 + u2, . . . , yn−2 + zn−1 + un, yn−1 + zn);
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(b) The distance distribution W σ2 ∈ W (n,M, τ) of the ternary orthogonal array Cσ2

with respect to the point c is

W σ2 = (z1, y0 + u1 + z2, . . . , yn−2 + un−1 + zn, yn−1 + un).

We formulated and proved Theorem 3.2.10, which is analogous to the binary case
Theorem 2.4.18. Based on Theorems 3.2.2-3.2.10 in Paragraph 3.2 an algorithm for
reducing the elements of the set W (n,M, 3, τ) is described.

When trying to generate the set W (n − 1, 2M/3, 3, τ − 1), we established that even
for relatively small parameters it has a very large cardinality. Even the set P (n −
1, 2M/3, 3, τ − 1) proves to be of a substantial size. That is the reason why in Para-
graph 3.3 we describe another algorithm. Its input is the set of the distance distributions
with respect to an internal point P (n,M, 3, τ). By applying this algorithm the following
theorem is proven.

Theorem 3.3.1 A ternary orthogonal array with (17, 108, 3, 3) does not exist.
In this way we conclude that in the ternary case we have 5 ≤ Λ(17, 3, 3).
The third chapter is based on the following two publications: [6] and [7].

In the last forth chapter we introduce the concept of energy of orthogonal arrays in
the Hamming space H(n, q).

De�nition 4.0.2 Let C be an orthogonal array (design) in H(n, q) with parameters
(n,M, q, τ). For each function (potential) h(t) : [−1, 1]→ (0,+∞) we de�ne h-energy (or
potential energy) of the orthogonal array C as follows:

E(n,C;h) :=
1

|C|
∑

x,y∈C,x6=y

h(〈x, y〉).

The two main problems when working with energies of orthogonal arrays aim to �nd
the minimum and the maximum value of the energy when the potential function h is
�xed.

Problem 4.0.3 Let the potential function h, the length of the vectors n, the strength
τ and the cardinality |C| = M = λqτ be �xed. Find the minimum possible energy
L(n,M ; τ ;h), such that an orthogonal (n,M, q, τ) array (τ -design) C exists in H(n, q),
i.e. evaluate

L(n,M ; τ ;h) := min{E(n,C;h) : |C| = M, C ⊂ H(n, q) å τ -design}.

Problem 4.0.4 Let the potential function h, the length of the vectors n, the strength
τ and the cardinality |C| = M = λqτ be �xed. Find the maximum possible energy
U(n,M ; τ ;h), such that an orthogonal (n,M, q, τ) array (τ -design) C exists in H(n, q),
i.e. evaluate

U(n,M ; τ ;h) := max{E(n,C;h) : |C| = M, C ⊂ H(n, q) å τ -design}.
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We use combinatorial techniques to evaluate the problems outlined above. For this
purpose, it is necessary to introduce the following de�nition.

De�nition 4.1.1 Let C ⊂ H(n, q) be an (n,M, q, τ) orthogonal array and x ∈ C
be a point in C such that with respect to x the array C has distance distribution P (x) =
(p0(x), p1(x), . . . , pn(x)). We call the energy of the distance distribution P (x) of the or-
thogonal array C with respect to its internal point x the value of the following expression

E(x,C;h) :=
1

|C|

n∑
i=1

pi(x)h(ti),

where ti = 1 − 2i
n
, i.e. ti runs the set Tn of inner products in H(n, q). This energy may

be referred as the energy of the point x ∈ C.
Let C = (n,M, q, τ) be an orthogonal array in H(n, q), and let P1(x1), P2(x2), . . .,

Ps(xs) be all the distinct distance distributions of C with respect to all the internal point
for C appearing k1, k2, . . . , ks times, respectively. We introduce the following theorem.

Theorem 4.1.2 Let C be a (n,M, q, τ) orthogonal array in H(n, q). Let P1(x1),
P2(x2), . . ., Ps(xs) be all the distinct distance distributions of points of C, appearing
k1, k2, . . . , ks times, respectively. Then the energy of C is

E(n,C;h) =
s∑
i=1

kiE(xi, C;h).

In other words, we have

E(n,C;h) ∈ E(M) :=
{ ∑
k1+k2+···+ks=M

kiE(xi, C;h)
}
.

Let the set of all the possible distance distribution with respect to an internal point
be P (n,M, τ) = {P1(x1), P2(x2), . . . , Ps(xs)}. We denote the minimal and the maximal
energy of a point of this set by

p = min{E(xi, C;h) : s = 1, 2, . . . , s}

and
P = max{E(xi, C;h) : s = 1, 2, . . . , s},

respectively
We are now in a position to state the general form of our combinatorial bounds on the

energy of the τ -designs of M points in H(n, q).
Theorem 4.2.1 Let p and P be the minimum and maximum, respectively, of the

possible energies of a distance distribution of an orthogonal array (τ -design) C ⊂ H(n, q).
Then

Mp ≤ L(n,M, τ ;h) ≤ U(n,M, τ ;h) ≤MP.

An important corollary of this theorem is the special case when the orthogonal array
C has an unique distance distribution. In this case we can calculate the exact energy of
the array C.
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Corollary 4.2.3 Let the parameters q, n, M and τ be such that every (n,M, q, τ)
orthogonal array in H(n, q) has the same (unique) distance distribution P = P (x), x ∈ C
with respect to all of its points. Then for every potential function h these designs have
optimal energy

E(n,C;h) = L(n,M, τ ;h) = U(n,M, τ ;h) = ME(x,C;h).

Most applications [20, 10] require special types of potentials (mainly absolute mono-
tonicity of h on [−1, 1)). In contrast, our bounds are valid for all potential functions
h.

The Universal bound for the energy of an orthogonal array is outlined in [12]. A
comparison between the two bounds is presented. The combinatorial bounds are better
in some cases.

The fourth chapter is based on the following publication [18].
All calculations and algorithms, made for the purposes of this thesis, are realised in

Maple. The current results can be found on the following web address [59] and the code
will be provided upon request.
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Scienti�c contributions

According to the author, the main contributions of the Ph.D. thesis are the following:

1. An algorithm (Algorithm 1) which reduces the set of distance distributions with
respect to the internal points P (n,M, 2, τ) of a binary (n,M, 2, τ) orthogonal array
was developed.

2. An algorithm (Algorithm 2 - main algorithm) which reduces the set of distance
distributions with respect to an arbitrary pointW (n,M, 2, τ) of a binary (n,M, 2, τ)
orthogonal array was developed.

3. An algorithm (Algorithm 3) which reduces the set of distance distributions with
respect to an arbitrary point W (n,M, 2, τ) of a binary (n,M, 2, τ) orthogonal array
by removing two columns was developed.

4. The exact value of the minimum possible index of an orthogonal array has been
found for the following parameters

Λ(9, 4, 2) = Λ(10, 4, 2) = Λ(11, 4, 2) = Λ(12, 4, 2) = 8

Λ(10, 5, 2) = Λ(11, 5, 2) = Λ(12, 5, 2) = Λ(13, 5, 2) = 8.

5. An algorithm (Algorithm 5) which reduces the set of distance distributions with
respect to an arbitrary pointW (n,M, 3, τ) of a ternary (n,M, 3, τ) orthogonal array
was developed.

6. An algorithm (Algorithm 6) which reduces the set of distance distributions with
respect to the internal points P (n,M, 3, τ) of a ternary (n,M, 3, τ) orthogonal array
was developed.

7. The lower bound for the minimal index of an orthogonal (17, 108, 3, 3) array has
been improved, i.e. it is proved that Λ(17, 3, 3) ≥ 5.

8. An algorithm (Algorithm 7) for obtaining bounds on the energy of orthogonal arrays
for a �xed potential was developed.

9. The following combinatorial bounds for the value of the energy of an orthogonal
array has been found

Mp ≤ L(n,M, τ ;h) ≤ U(n,M, τ ;h) ≤MP.
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Approbation of the results

The results which are outlined in this paper have been published in the following 6 articles:

[16] Boyvalenkov P., Kulina H., Marinova T., Stoyanova M., Nonexistence of binary
orthogonal arrays via their distance distributions, Problems of Information Transmis-
sion, Vol. 51(4), pages: 326�334 (2015), (Original Russian Text Published in Prob-
lemy Peredachi Informatsii, Vol. 51(4), pages: 23�31 (2015), ISSN: 0555-2923), Print
ISSN: 0032-9460, Online ISSN: 1608-3253, https://doi.org/10.1134/S003294601504002X,
Ref Web of Science, Impact Factor: 0.632 (2015), Quartile: Q3 (2015).

[18] Peter Boyvalenkov, Tanya Marinova, Maya Stoyanova, Mila Sukalinska, Distance
distributions and energy of designs in Hamming spaces, Serdica Journal of Computing,
Vol. 9, No. 2, pages: 139�150 (2015), ISSN: 1314-7897 (Online), ISSN: 1312-6555 (Print),
Ref zbMATH (Zbl 1387.94112).

[17] Peter Boyvalenkov, Tanya Marinova, Maya Stoyanova, Nonexistence of a few
binary orthogonal arrays, Discrete Applied Mathematics, Vol. 217(2), pages: 144�150
(2017), ISSN: 0166-218X, https://doi.org/10.1016/j.dam.2016.07.023, Ref Web of Science,
Impact Factor: 0.932 (2017), Quartile: Q3 (2017).

[43] Tanya Marinova, Maya Stoyanova, Nonexistence of (9, 112, 4) and (10, 224, 5) bi-
nary orthogonal arrays, Electronic Notes in Discrete Mathematics (containing the Pro-
ceedings of ACCT XV), Vol. 57, pages: 153-159 (March 2017), ISSN: 1571-0653, Ref Sco-
pus, SJR: 0.262 (2017), SNIP 0.401 (2017), http://doi.org/10.1016/j.endm.2017.02.026.

[7] Boumova S., Marinova T., Ramaj T., Stoyanova M., Nonexistence of (17, 108, 3)
ternary orthogonal array, Ann. So�a Univ., Fac. Math and Inf., Vol. 106, pages: 117-126
(2019), ISSN: 1313-9215 (print), ISSN: 2603-5529 (online), Ref MathSciNet (MR4125835).

[6] Boumova S., Marinova T., Stoyanova M., On ternary orthogonal arrays, Proceed-
ings Sixteenth International Workshop on Algebraic and Combinatorial Coding Theory,
ACCT XVI, September 2-9, 2018, Svetlogorsk (Kaliningrad region), Russia, pages: 102-
105 (2018).

The results from articles [17] and [43] have been announced at the XV International
Workshop on Algebraic and Combinatorial Coding Theory, ACCT�15, June 18-24, 2016,
Albena, Bulgaria.

Two of the publications ([16],[17]) have Impact factor, one has SJR ([43]), and two are
refereed in the scienti�c data bases - ZbMath and MathSciNet ([18], [7]).

The publications have been cited a total of 12 times, of which 10 are in Web of Science
or Scopus.

Assoc. Prof. Maya Stoyanova, Ph.D. is a co-author of all of the articles. Furthermore,
Prof. Peter Boyvalenkov, Doctor of Sciences, is a co-author of articles [16], [17] and [18].
Assoc. Prof. Silvia Boumova, Ph.D. is a co-author of papers [6] and [7]. Tedis Ramaj is
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a co-author of the latter one. Assoc. Prof. Hristina Kulina, Ph.D., and Mila Sukalinska
are co-authors of papers [16] and [18], respectively.

The results in this thesis were presented at the following national and international
forums:

• Jubilee Conference: 125 years of Mathematics and Natural Sciences at So�a Uni-
versity �St. Kliment Ohridski�, So�a, December 2014,

• National Coding Theory workshop with international participation �Professor Stefan
Dodunekov�, Veliko Tarnovo, November 2014,

• National Coding Theory workshop with international participation �Professor Stefan
Dodunekov�, village of Chi�ika, November 2015,

• Spring Scienti�c Session of FMI-SU, �Algebra, Geometry, and Topology� Depart-
ment, So�a, March 2015,

• Spring Scienti�c Session of FMI-SU, �Algebra, Geometry, and Topology� Depart-
ment, So�a, March 2016,

• Seminar of �Mathematical Foundations of Informatics� Department, IMI-BAS, So�a,
December 2015,

• Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory,
ACCT-15, Albena, June 2016,

• National Coding Theory workshop with international participation �Professor Stefan
Dodunekov�, village of Chi�ika, November 2019.
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