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Chapter 1

Introduction

This work is in computable structure theory, and considers the relationship be-
tween definability and computability in mathematical structures. Computable
structure theory studies the interplay between complexity and structures.
It is an area inside computability theory and logic that is concerned with
the computable aspects of mathematical objects and constructions. We are
interested in questions like the following: How difficult is it to represent a
certain structure? Which structures can be represented computably? How
difficult is it to compute certain relations on a structure, or perform certain
constructions on it? We are particularly interested in answers that connect
computational properties with algebraic or combinatorial properties of the
structure.

We all know that in mathematics there are proofs that are more difficult
than others, constructions that are more complicated than others, and ob-
jects that are harder to describe than others. The objective of computable
mathematics is to study this complexity, to measure it, and to find out where
it comes from. This work concentrates on the complexity of structures. By
structures, we mean objects like rings, graphs, or linear orderings, which
consist of a domain on which we have relations, functions, and constants.

The goal of computable mathematics is to find the extent to which certain
classical results of mathematics are effectively true. In algebra this investi-
gation based on the intuitive notion of effectiveness dates back to van der
Waerden who in his 1930 book “Modern Algebra” defined an explicitly given
field as one the elements of which are uniquely represented by distinguishable
symbols with which we can perform the field operations algorithmically. In
his pioneering paper [vdW30] on non-factorability of polynomials from 1930,
van der Waerden essentially proved that an explicit field (F ;+, ⋅) does not
necessarily have an algorithm for splitting polynomials in F [x] into their
irreducible factors. The work of Church, Gödel, Kleene, Markov, Post, Tur-
ing and others in the next decade established the rigorous mathematical
foundations for the computability theory. In the 1950s, a famous problem,
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8 CHAPTER 1. INTRODUCTION

involving the interplay of algebra and computability, the word problem, was
resolved. It was shown independently by Novikov [Nov55] and Boone [Boo59]
that there exists a finitely presented group G such that the word problem for
G is undecidable. In 1956, Fröhlich and Shepherdson [FS56] used the precise
notion of a computable function to obtain a collection of results and examples
about explicit rings and fields. Rabin [Rab60] and Maltsev [Mal61, Mal62]
studied more extensively computable groups and other computable (also
called recursive or constructive) algebraic structures. Another spectacular
negative solution to a famous problem, which involves the interplay of number
theory and computability, Hilbert’s TenthProblem, was completed by Matiya-
sevich [Mat70] in 1970. Building on work of Davis, Putnam, and J. Robinson
(see [Mat93]), he established that there is no effective procedure to decide
whether a given Diophantine equation has a solution in integers. In the 1970s,
Metakides and Nerode [MN77, MN79] and other researchers from the West
initiated a systematic study of computability in mathematical structures and
constructions by using modern computability-theoretic tools, such as the
priority method, forcing method and various coding techniques. At the same
time and independently, computable model theory was developed in the he
Russian school in Moscow, and Siberian school of constructive mathematics.
In the past few decades there has been increasing interest in computable
structure theory, in connections with the algebra, analysis, topology, com-
puter science, etc. Detailed accounts of the history of the subject and the
state of the art can be found in [AK00] and [Mon].

In our work we want to measure the complexity of a structure, so we
attach to every structure a set of degrees that describes them: the degree
spectrum of a structure. Since computability theory is developed on the
natural numbers we need to work with structures with countable domains,
whose elements can be enumerated by natural numbers. Given a structure
A, a presentation (copy) of A is an isomorphic (or homomorphic) copy of A
whose domain is either the set of the natural numbers N or an initial segment
of N. The degree spectrum DS(A) is the set of all Turing degrees of the
atomic diagrams of all presentations of the structure A, a notion, introduced
by Richter [Ric81] and investigated by Knight [Kni86] and many others. Let
J be the set of all Turing jumps of the elements of the degree spectrum of a
structure A, a natural question is: if there is a structure A′ with a degree
spectrum J . Thus, we come to the definition of the notion of jump of a
structure. It is an analogue of the notion of Turing jump. One can compare
the complexity of structures using Muchnik reducibility between structures —
for structures A and B, A ≤w B ⇐⇒ DS(B) ⊆DS(A), i.e. since the degree
spectrum is upwards closed, every presentation of B computes a presentation
of A. So, for the jump A′ of the structure A, we always have A <w A′.
The jump A′ has more computational power that the structure A. The Σc

2

definable relations in A are exactly the Σc
1 definable in A′. Since the jump

of a structure is an analogue of the Turing jump in the structure of the
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Turing degrees DT , a natural question here is if there are any jump inversion
theorems such as Friedberg’s?

In Chapter 2. of our work we introduce the basic notions, methods and
facts that we need. We begin with the partial computable functions, c.e. sets
and the structure of Turing degrees. We show some basic properties of the
Turing reducibility and the notion of Turing jump. One of the important
methods used in computable structure theory is the method of forcing,
introduced first by Cohen. We demonstrate the forcing method and present
the standard construction of 1-generic set. We prove some basic properties
of the 1-generic sets and Friedberg’s [Fri57] jump inversion theorem. The
last theorem we generalize for structures in Chapter 3., using the forcing
method. Next we consider the notion and the properties of enumeration
reducibility. Enumeration reducibility captures a natural relationship between
sets of natural numbers in which positive information about one set is used to
produce positive information about another set. The structure of enumeration
degrees is an extension of the structure of Turing degrees. We introduce the
notion of strong minimal cover and show some properties of the relativized
variant of 1-genericity for the enumeration reducibility, since we use these
properties in Chapter 7. The most common measure of the computational
complexity of a structure is through degree spectra. We present the properties
of the degree spectra and the enumeration degree spectra. Another way to
characterize the complexity of a structure A is to analyze the definable sets in
A. This gives a finer measure as it may happen that two structures have the
same degree spectra but greatly differ in their definability power and model
theoretic properties. We present the normal form of relatively intrinsically
Σ0
α relations in a given countable structure for a computable ordinal α, by

computable infinitary Σc
α formulas.

In Chapter 3. we answer to the following questions:

(1) How to define the jump of a structure as an analogue of the Turing
jump in the degree structure DT of Turing degrees? Are there any
typical structural properties such as jump inversion theorems? Is the
set of all jumps of the elements of the degree spectrum of a structure
also a spectrum of another structure?

The idea of the jump of a structure is first considered by Soskov and his
student Baleva [Bal06] in the context of s-reducibility between structures, a
reducibility based on relative search computability of Moschovakis [Mos69].
We define the jump A′ of the structure A by considering the Moschovakis
extension of A together with a new predicate, an analogue of the Kleene’s
Halting set, which codes all the sets, definable by computable infinitary Σc

1

formulas with parameters. This changes the domain of the structure, but keeps
the language finite, if the original is finite. Montalbán later, independently,
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gives another definition of the jump of a structure. Montalbán’s approach
[Mon09, Mon12, HM12] is to keep the domain of the structure the same and
to add a complete set of relations definable by computable infinitary Πc

1

formulas. In [Mon12, Mon] he changed the added complete set of relations
by those, definable by computable infinitary Σc

1 formulas and received an
equivalent notion as ours. Morozov [Mor04] and later Puzarenko [Puz09]
also define the jump but for an admissible structure. Stukachev extends that
definition to all structures in the terms of Σ-definability in hereditarily finite
extension of the structure. Vatev [Vat13, Vat14, Vat15] extends the notion of
jump of a structure to the α-th jump of a structure for arbitrary computable
ordinal α.

We prove a jump inversion theorem, an analogue of the classical Friedberg’s
jump inversion theorem [Fri57]. We present a relativized version of the
theorem to all structures. That is, if A ≥w B′ then there is a structure C ≥w B
such that A ≡w C′. In the proof we use Marker extensions. Actually, our proof
is in the terms of degree spectra, i.e. if DS(A) ⊆DS(B′), then there exists a
structure C with the property DS1(C) =DS(A) and DS(C) ⊆DS(B). This
jump inversion theorem was proved later by Stukachev [Stu09, Stu10] for the
notion of Σ-equivalence. Another way to formulate the jump inversion on
structures is: for every structure A, if Y ⊆ N computes a copy of the jump A′,
then there isX ⊆ N such thatX ′ ≡T Y andX computes a copy ofA. Montalán
[Mon09, Mon12, Mon] call this the second jump inversion theorem. In other
words: the jump spectrum of A is the spectrum of A′, i.e. DS1(A) =DS(A′).
We prove this result with Soskov [SS07, SS09a] and independently later
Montalbán [Mon09]. This result for any computable successor ordinal appears
in some form in Goncharov, Harizanov, et.al. [GHK+05]. They proved the
result above only as a tool to get other results to build a structure that is
∆α-categorical but not relatively so. They do not mention the jump of a
structure. Based on their method Vatev [Vat13, Vat14, Vat15] extends the
jump inversion of a structure for arbitrary successor ordinal α. Soskov [Sos13]
gives an example that the jump inversion theorem does not hold for a limit
ordinal. We also present some applications of the jump inversion theorem
which show that this a general method for lifting results from n = 1 to the
arbitrary n ∈ N.

Chapter 4. There is a more precise notion of jump inversion, but not all
structures admit it. A structure A admits strong jump inversion whenever X ′

computes a copy of A′ then X computes a copy of A. The result of Downey
and Jockusch [DJ94] shows that every Boolean algebra admits strong jump
inversion. Lerman and Schmerl [LS79] prove that for every ℵ0-categorical
theory T , if T ∩Σ2 is c.e., then every model of T admits strong jump inversion.
Some equivalence structures and some abelian p-groups admits strong jump
inversion. More recently, D. Marker and R. Miller [MM17] have shown that all
countable models of the theory of differentially closed fields of characteristic
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0 (DCF0) admit strong jump inversion.
Not all structures admit strong jump inversion. Jockush and Soare [JS91]

show that there are low linear orders without computable copies, and hence
they do not admit a strong jump inversion. We are looking for model theoretic
conditions which are sufficient for a structure to admit strong jump inversion.
In Chapter 4. we answer to the following question.

(2) Are there any model theoretical conditions that are sufficient for a
structure to admit strong jump inversion?

With Calvert, Frolov, et.al., [CFH+18], we establish a general result
with sufficient conditions on a structure A, which guarantee strong jump
inversion of A, expressed in terms of saturation and enumeration properties
of sets of types having formulas of low arithmetic complexity, as computable
enumeration R of the B1-types, where these are made up of formulas that
are Boolean combinations of existential formulas, effective type completion,
and R-labeling of A. When a structure A admits strong jump inversion,
and A is low relative to an oracle X, we also consider the complexity of the
isomorphisms between A and its X-computable copies.

Our general result applies to structures from some familiar classes, in-
cluding certain classes of linear orderings, and trees. While we do not get
the result of Downey and Jockusch for arbitrary Boolean algebras, we do get
a result for Boolean algebras with no 1-atom, with some extra information
on the complexity of the isomorphism. Such an isomorphism can be chosen
to be ∆0

3 relative to X. This is interesting because Knight and Stob estab-
lished in 2000 that any low Boolean algebra has a computable copy and a
corresponding ∆0

4 isomorphism, and this bound has been proven to be sharp.
We apply also our general conditions on the models of elementary first order
theory T such that T ∩Σ2 is computably enumerable and for each tuple of
variables x, there are only finitely many B1-types in variables x consistent
with T . Our general result includes the result of Marker and Miller. As a
side result, we get that the saturated model of DCF0 has a decidable copy.

Chapter 5. In many branches of mathematics, there is work classifying
a collection of objects, up to isomorphism or other important equivalence, in
terms of nice invariants. In descriptive set theory, there is a body of work using
the notion of “Borel embedding” to compare the classification problems for
various classes of structures (fields, graphs, groups, etc.). A Borel embedding
of one class K into another class K′ is a Borel function from K to K′ that
preserves the isomorphism types. There are some familiar examples of classes
of structures K,K′ with a Turing computable embedding Θ from K to K′.
The Turing operator Θ takes structures in K to structures in K′ such that
for A1,A2 ∈ K, A1 ≅ A2 iff Θ(A1) ≅ Θ(A2). If B = Θ(A), then A is coded
in some way in B. The effective decoding is given by Medvedev reducibility
(≤s), a uniform variant of Muchnik reducibility. A ≤s B if there is a Turing
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operator Φ, for a copy of B it gives a copy of A. There is a more precise
notion of decoding, introduced by Montalbán [Mon14, Mon], - an effective
interpretation, using computably infantry Σc

1 formulas, which preserves the
isomorphic copies. Every countable structure could be effectively interpreted
in a graph. Under Borel embeddings and Turing computable embeddings,
the class of linear orderings is maximally complicated, just like the class
of graphs. It is natural to ask whether for an arbitrary graph G, there is
a linear ordering L such that every copy of G computes a copy of L, and
G is effectively interpreted in L. A class K is said to be on top for Turing
computability if any other class of structures Turing-computably embeds in
K. The class of 2-step nilpotent groups lies on the top of Borel and Turing
computable embeddings. Maltsev [Mal60] gave a computable definition of
fields, even rings, in this class, using parameters. The question is: if the
class of fields is effectively interpreted in the class of 2-step nilpotent groups
without parameters? And since the class of fields are on the top of effective
interpretability, is the class of of 2-step nilpotent groups on the top as well?

In Chapter 5. we answer the following question.

(3) For the known effective codings of one class of structures into another
class, is there an effective or more difficult decoding for some special
classes as linear orderings and 2-step nilpotent groups, which are on
the top of Turing computable embeddings?

Historically Borel reducibility is introduced by Friedman and Stanley
[FS89]. The effective version is the Turing-computable reducibility [CCKM04,
KMVB07], introduced by Julia Knight and her students. R. Miller proposed
a notion of effective interpretability, based on computable functor—a pair
of Turing operators, the first one gives the Medvedev reduction and the
second the preserving the isomorphism, between copies. Harrison-Trainor,
Melnikov, R. Miller, and Montalbán [HTMMM17] prove that these the two
notions of effective uniform interpretability coincide. Harrison-Trainor, R.
Miller, and Montalbán [HTMM18] show similar result for Borel functors and
interpretations by infantry Lω1,ω formulas..

With Knight and Vatev [KAV19], we give examples of graphs that are
not Medvedev reducible to any linear ordering, or to the jump of any linear
ordering. We observe that any graph can be coded in the second jump of a
linear ordering, so we have a Medvedev reduction. For the known Turing
computable embedding of graphs in linear orderings, due to Friedman and
Stanley [FS89], we show that there is no uniform effective interpretation,
defined even by Lω1ω formulas. Our conjecture is that there is no effective
uniform way for coding graphs in linear orders with uniform effective decoding,
even with decoding defined by Lω1ω formulas. In support of this Montalbán
and Harrison-Trainor [HT] independently have proved recently that for the
Friedman and Stanley’s embedding there is no uniform decoding.
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Our second result here is positive. With Alvir, Calvert, et.al. [ACG+20],
we consider an effective uniform interpretation of fields in some 2-step nilpo-
tent groups. We improve on and generalize a 1960 result of Maltsev. For a
field F , we denote by H(F ) the Heisenberg group with entries in F . Maltsev
[Mal60] showed that there is a copy of F defined in H(F ), using existential
formulas with an arbitrary non-commuting pair (u, v) as parameters. We
show that F is effectively interpreted in H(F ) using computable Σ1-formulas
with no parameters. We give two proofs. The first is an existence proof,
relying on a result of Harrison-Trainor, Melnikov, R. Miller, and Montalbán
[HTMMM17] based on a computable functor. This proof allows the possibility
that the elements of F are represented by tuples in H(F ) of no fixed arity.
The second proof is direct, giving explicit finitary existential formulas that
define the interpretation, with elements of F represented by triples in H(F ).
Looking at what was used to arrive at this parameter-free interpretation of F
in H(F ), we give some general conditions, sufficient to eliminate parameters
from interpretations.

For an algebraically closed field C of characteristic 0, let SL2(C) be a
special linear group of 2 × 2 matrices over C with determinant 1. Clearly,
SL2(C) is defined in C without parameters. With Alvir, Knight, R. Miller,
[AKMS] we define an interpretation of the field C in SL2(C) using finitary
existential formulas with two parameters. There are old model theoretic
results, due to Poizat [Poi01], that give uniform definability of a copy of C
in SL2(C) using elementary first order formulas without parameters. So,
we have, not necessarily an effective interpretation without parameters, but
one that is defined by elementary first order formulas. We do not know the
complexity of the formulas.

Chapter 6. We are interested also in effective variants of some model
theoretic popular constructions, such as the ultraproducts and ultrapowers.
Cohesive powers of computable structures, introduced by Dimitrov, [Dim09],
can be viewed as effective ultrapowers over effectively indecomposable sets
called cohesive sets, where cohesive sets play the role of ultrafilters. It is
possible a computable structure to have copies which are not computable.
For example the linear order on the natural numbers has a presentation in
which the successor relation is not computable. So here the question is: given
two isomorphic structures, are their cohesive powers elementary equivalent?
Or more specific: for any two copies of a computable linear order do their
cohesive powers have the same order type?

In Chapter 6. we answer the following question.

(4) For any two copies of a computable order type, do their cohesive powers
has the same order type?

First Skolem constructed a countable nonstandard model of the true
arithmetic using similar construction. Various countable nonstandard models
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of fragments of arithmetic have been later studied by Feferman, Scott, Ten-
nenbaum, Hirschfeld, Wheeler, Lerman, McLaughlin and others (see [FST59]).
An effective version of cohesive powers of computable structures, based on
partial computable functions has been introduced by Dimitrov, [Dim09], in
relation to the study of automorphisms of the lattice L∗(V∞) of effective
vector spaces.

With Dimitrov, Harizanov, Morozov, Shafer and Vatev [DHM+19] and
[DHM+20] we consider some properties of cohesive powers of linear orders.
We show that if A is a computable structure that is ultrahomogeneous in a
uniformly computable way, then A is isomorphic to its cohesive powers. We
investigate the isomorphism types of cohesive powers for familiar computable
linear orders L. From [Dim09] it follows that the cohesive power of a linear
order is a linear order. If L is a computable copy of ω that is computably
isomorphic to the standard presentation of ω, then every cohesive power of
L has order-type ω + ζη (ζ-the order type of integers, η - the order type
of rationals). There is a computable copy L of ω that is not computably
isomorphic to the standard presentation of ω, but every cohesive power
of L has order-type ω + ζη. However, there are computable copies of ω,
necessarily not computably isomorphic to ω, having cohesive powers of order-
type ω + η, i.e. not elementarily equivalent to ω + ζη. Our general result
is that if X ⊆ N ∖ {0} is either a Σ0

2 set or a Π0
2 set, thought of as a set

of finite order-types, then there is a computable copy of ω with a cohesive
power of order-type ω + σ(X ∪ {ω + ζη + ω∗}), where σ(X ∪ {ω + ζη + ω∗})
denotes the shuffle sum of the order-types in X and the order-type ω+ζη+ω∗.
Furthermore, if X is finite and non-empty, then there is a computable copy
of ω with a cohesive power of order-type ω + σ(X).

Chapter 7. Enumeration reducibility, introduced by Friedberg and
Rogers [FR59], is a positive reducibility. The structure of the Turing degrees
DT , properly embeds into the structure of enumeration degrees De, and
forms an automorphism base for De. The images of the Turing degrees are
the total degrees. There are cases that De is more useful analyzing the
complexity of objects studied in effective mathematics. An early example of
this phenomenon was given by Richter [Ric81], who proved that we cannot
associate a Turing degree to every countable linear ordering. In fact, the
only countable linear orderings that have a Turing degree are the ones with
computable presentations. In search for an answer to a similar question—“Does
every continuous function on the unit interval have a name of least Turing
degree?” —Miller [Mil04] introduced the continuous degrees to measure of the
complexity of continuous functions, and, more generally, points in computable
metric spaces. He proved that the Turing degrees properly embed into the
continuous degrees, and that the continuous degrees, in turn, properly embed
into the enumeration degrees. Recently, it was shown that the total degrees
are definable in the structure De [CGL+16]. We are interested of the question
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are there more substructures of De with interesting properties.
In Chapter 7. we will answer the following question.

(5) Are there any substructures with interesting properties in the degree
structure De of the enumeration degrees, other than the total and the
continuous degrees?

With Andrews, Ganchev, et.al. [AGK+19] we investigate the properties
of a substructure of the enumeration degrees: the cototal degrees. A set
A ⊆ N is cototal if it is enumeration reducible to its complement, A. The skip
of A is the uniform upper bound of the complements of all sets enumeration
reducible to A. These are closely connected: A has cototal degree if and only
if it is enumeration reducible to its skip. We study cototality and related
properties, using the skip operator as a tool in our investigation. We give
many examples of classes of enumeration degrees that either guarantee or
prohibit cototality. Our study of cototality is motivated by two examples of
cototal sets that were pointed out to us by Jeandel [Jea15]. He shows that
the set of non-identity words in a finitely generated simple group is cototal.
Jeandel also gives an example from symbolic dynamics: The set of words
that appear in a minimal subshift is cototal.

The complement of a graph of a total function is cototal and these degrees
that contain such set we call graph-cototal. An enumeration degree is weakly-
cototal if it contains a set A such that A has total enumeration degree. We
have

graph-cototal Ô⇒ cototal Ô⇒ weakly cototal.

We show that these three properties are distinct. The harder separation is to
construct a cototal degree that is not graph-cototal, where we use a priority
method with an infinite-injury argument relative to 0′.

We show that every Σ0
2-set is cototal, in fact, graph-cototal. We show

also that the complement of a maximal independent subset of a computable
graph is cototal, and that every cototal degree contains the complement of a
maximal independent subset of ω<ω. Ethan McCarthy [McC18] proves that
the same is true of complements of maximal antichains in ω<ω. We show that
joins of nontrivial K-pairs are cototal. And that the natural embedding of
the continuous degrees, introduced by Miller [Mil04], into the enumeration
degrees maps into the cototal degrees. Finally, we note that Harris [Har10]
proved that sets with a good approximation have cototal degree. Recently
Miller and M. Soskova proved that the cototal enumeration degrees are
exactly the enumeration degrees of sets with good approximations and that
the cototal enumerations degrees are dense.

In some ways, the skip is analogous to the jump operator in the Turing
degrees. For example, a standard diagonalization argument shows that
A◊ ≰e A. We restate the well-known fact that A ≤e B if and only if A◊ ≤1 B

◊,
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mirroring the jump in the Turing degrees. We prove a skip inversion theorem,
as analogues of Friedberg’s jump inversion theorem. The biggest difference
between the skip and the Turing jump is that it is not always the case that
A ≤e A

◊ (because not all enumeration degrees are cototal). In fact, there is
a set that is its own double skip. We investigate the properties of the skip
operator for the class of enumeration degrees of 1-generic sets and skips of
nontrivial K-pairs.

We have some open questions arising from this investigation. The main
problem is: which cototality notions are first-order definable in the enumer-
ation degrees? Is the skip first-order definable in the enumeration degrees?
Kalimullin [Kal03] showed that the enumeration jump is first-order definable.
Note that a positive answer to the second question would imply, that the
cototal degrees are definable. Another open question: Is there a continuous
enumeration degree that is not graph-cototal?

The answers to the questions (1) — (5) are the original contributions of
the work. They are from ten papers: [Sos07, SS07, SS09a, SS09b, CFH+18,
KAV19, ACG+20, DHM+19, DHM+20, AGK+19] in the references, eight are
published, [ACG+20, DHM+20] are submitted for publication. The papers
with IF (3,303) are [AGK+19] in Transactions of the American Mathematical
Society, [KAV19] in the Journal of Symbolic Logic, [SS09a, CFH+18] in
Journal of Logic and Computation. With SJR (0,720) in Lecture Notes in
Computer Science are [Sos07, DHM+19] and in Proceedings of the Panhellenic
Logic Symposium are [SS07, SS09b]. In all joint papers the authors have
equal participation. The author has 78 citations (without auto citations),
from them on the topics of the dissertation are 48, (29 with IF or SJR, 9
in monographs, 2 in dissertations, 2 without either IF or SJR and 6 are not
published yet).

I would like to thank all my colleagues of the Department of Mathematical
Logic and its Applications of our Faculty. Especially to my teacher Dimitar
Skordev, from whom I learned what is worth in mathematics. I am thankful to
Ivan Soskov, Angel Ditchev, Stela Nikolova, Tinko Tinchev, Lyubomir Ivanov
and Dimiter Vakarelov for the helpful logic discussions and observations
during my whole life. I thank also to my young colleagues Mariya Soskova
and Hristo Ganchev for the beautiful mathematics that they are doing, to
my student Stefan Vatev who was always open for discussions. I am thankful
also to all my coauthors. And to my co-editors and friends Barry Cooper
and Andrea Sorbi. I am thankful to Ted Slaman, Antonio Montalbán, Andy
Lewis-Pay, Iskander Kalimullin and Katia Fokina, from whom I learned a
lot. Finally thanks to my friends Simeon Zamkovoy, Gergana Eneva, Nadja
Zlateva and Evgenia Velikova for the whole support.



Chapter 2

Preliminaries

The numbering of the definitions, the propositions, the theorems, etc. are
from the dissertation.

2.1 Turing reducibility

The concept of Turing reducibility goes back to Turing [Tur37, Tur39]. Turing
wanted to formally capture the notion of an algorithmically computable
function as a computable by a mathematical abstract system - Turing machine.

In today’s language, we would say that a function f ∶ N → N is partial
computable if there is a computer program that on input n halts and outputs
f(n), or does not halt, if f is not defined. A partial computable function is
computable if it stops on every input, i.e. if is total. A set A ⊆ N is computably
enumerable (c.e.) if A is a domain of a partial computable function.

In 1939 Turing extended his model of computability by Turing machine
to allow for questions to an oracle, i.e. the Turing machine is allowed to use
the function f as a primitive function during its computation; that is, the
program can ask questions about the value of f(n) for different n’s and can
use the answers to make decisions while the program is running. The function
f is called the oracle of this computation. For a partial function f ∶ N→ N
we define ϕfe to be the function computed by the e-th Turing machine using
as oracle the function f . We shall assume that if during a computation, the
oracle f is called with an argument outside its domain, then the computation
is unsuccessfully. For B ⊆ N we define ϕBe to denote the function computed
by the e-th Turing machine using as oracle the set B, and actually we mean
ϕχBe , where χB is the characteristic function of B.

Definition 2.1.1. A partial function f is Turing reducible to a partial
function g (denoted f ≤T g) if f = ϕge for some e. We say that a set of natural
numbers A is computable from or Turing reducible to a set of natural numbers
B (denoted A ≤T B) if and only if the characteristic function of the set A is
ϕBe for some natural number e.

17
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The relation ≤T is a preorder on the subsets of the natural numbers and
induces an equivalence relation: A ≡T B if and only if A ≤T B and B ≤T A.
The equivalence class of a set A under this relation is the Turing degree of
A, denoted by dT (A). The Turing degrees are ordered by dT (A) ≤ dT (B) if
and only if A ≤T B. The least upper bound of two degrees dT (A) ∨ dT (B) is
dT (A⊕B), where A⊕B = {2n ∣ n ∈ A}∪ {2n+ 1 ∣ n ∈ B} is the disjoint union
of A and B, also known as join of A and B. The set 0 of all computable sets
is the smallest degree. Finally relativizing the halting problem (The Kleene
set) K = {e ∣ ϕAe (e) ↓},to any set A, we have KA = {e ∣ ϕAe (e) ↓}, denoted by
A′. The set KA we call the jump A′ of A and induces over degree structure
the jump operation which maps a degree a to a degree a′, such that a < a′

(see below).
Post and Kleene [KP54] established basic algebraic facts about the struc-

ture of the Turing degrees DT : it is an uncountable upper semi-lattice with
least element and jump operation. They showed that every countable partial
ordering can be embedded in the Turing degrees. Their successors, including
Shoenfield, Spector, Sacks, Jockusch, Posner and many others, developed
more sophisticated methods and showed further structural properties, for
example the existence of minimal elements in the structure. The theory of
the Turing degrees was revealed as mathematically non-trivial, rich in ideas
and results. The next generation of researchers had sufficient tools to tackle
problems related to first order definability in the structure. The general
question is which interesting relations on DT are actually definable in terms
of relative computability alone. The most notable result in this direction is
by Slaman and Shore [SS99]: they showed that the jump operation is first
order definable in DT . Their solution relies on a methodology introduced by
Slaman and Woodin [SW86] to analyze the automorphism group of DT .

All of the following properties could be found in [Rog67, Soa87, Odi99,
Coo04].

A stronger reducibility is the many-one reducibility (m-reducibility),
which gives a very natural way of comparing the computability of different —
possibly incomputable — sets of natural numbers A and B. The set A is many-
one reducible (m-reducible) to B (A ≤m B) if there is a computable function
h with the property (∀n)(n ∈ A ⇐⇒ h(n) ∈ B). Let A ≤1 B ⇐⇒ A ≤m B
by an one to one computable function.

It is clear that if B is computable (c.e) and A ≤m B then A is computable
(c.e.). Moreover, A is c.e. iff A ≤m K. We call such sets as K complete sets
for the c.e. sets.

The set A is computably enumerable (c.e.) in B iff for some e A =
dom(ϕBe ) =WB

e .
One can easily proof from the definitions the following properties:

1. A ≤T B ⇒ A is c.e. in B.

2. A is c.e. in B and B ≤T C ⇒ A is c.e. in C.
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Theorem 2.1.2 (Post). A ≤T B ⇐⇒ A is c.e. in B and A is c.e. in B.

The Turing jump A′ =KA of a set A has the following properties.

Proposition 2.1.3. 1. KA is c.e. in A.

2. If B is c.e. in A then B ≤m KA.

3. A <T A′.

Proposition 2.1.4.

A ≤T B ⇐⇒ A′ ≤m B′ ⇐⇒ A′ ≤1 B
′.

Corollary 2.1.5 (Monotonicity of the jump).

A ≤T B ⇒ A′ ≤T B′.

Definition 2.1.6. (dT (A))′ = dT (A′).

Since A <T KA, then dT (A) < dT (A′).
The computably enumerable sets, and correspondingly degrees, appear

in many other branches of mathematics. The solution to Hilbert’s tenth
problem by Davis, Putnam, Robinson and Matiyasevich [Mat93] essentially
relies on the existence of a computably enumerable set that is not computable.
Friedberg and Muchnik developed a powerful method used to construct c.e.
degrees with specific properties, the priority method. we will use this method
in Chapter 7.

A recent result of Sleman and Soskova [SS18] shows a relationship between
the local structure DT (≤ 0′) = {a ∣ a ≤ 0′} and first order arithmetic, similar
to the one proved by Slaman and Woodin[SW05] for the global structure DT
and second order arithmetic.

The jump hierarchy, also known as the high/low hierarchy, was introduced
independently by Cooper (see [Coo04]) and Soare [Soa74]. The jump classes
are: Hn = {a ∣ a ≤ 0′ & a(n) = 0(n+1)} of highn degrees and Ln = {a ∣ a ≤
0′ & a(n) = 0(n)} of lown degrees.

2.2 Genericity and forcing

In this section, we give an introduction to the forcing method in computable
structure theory. We consider 1-generics, which have relatively low computa-
tional complexity. The notion of forcing was introduced by Cohen to prove
that the continuum hypothesis does not follow from the ZFC axioms of set
theory. Every finite mapping τ ∶ [0;n − 1] Ð→ N we call a finite part. We
denote by ∣τ ∣ = n the length of the interval, where τ is defined.
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Definition 2.2.2. The set G is 1-generic, if for every c.e. set S of finite
parts:

(∃σ ⊆ G) (σ ∈ S ∨ (∀ρ ⊇ σ)(ρ ∉ S))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ decides S

.

We call such sets generic sets for short. For n-generic sets the difference
is that the set of finite parts S is Σ0

n, not only c.e.(Σ0
1).

A set of finite parts S is called dense in G, if (∀σ ⊆ G)(∃ρ ∈ S)(σ ⊆ ρ).
Equivalently, G is generic, if whenever S is dense in G, then G meets S, i.e.
(∃σ ⊆ G)(σ ∈ S).

If G is generic then G is not c.e., and for every c.e. V ⊆ N if V ≤T G, then
V is computable. The only sets that are c.e. in all generic sets are the ones
that are already c.e.

The set G models the formula Fe(x):

G ⊧ Fe(x) ⇐⇒ {e}G(x) ↓ ⇐⇒ x ∈WG
e .

The finite part σ forces formula Fe(x):

σ⊩Fe(x) ⇐⇒ {e}σ(x) ↓ .

We use these relations in Chapter 3. Here are some properties of these
relations, following from the definitions.

1. σ ⊆ G&σ⊩Fe(x)⇒ G ⊧ Fe(x).

2. σ ⊆ ρ&σ⊩(¬)Fe(x)⇒ ρ⊩(¬)Fe(x).

3. G ⊧ Fe(x)⇔ (∃σ ⊆ G)(σ⊩Fe(x)).
Lemma 2.2.5. The set {(σ, e, x) ∣ σ⊩Fe(x)} is c.e.

G ⊧ ¬Fe(x) ⇐⇒ G ⊭ Fe(x) ⇐⇒ ¬{e}G(x) ↓ .
σ⊩¬Fe(x) ⇐⇒ (∀ρ ⊇ σ)(ρ⊮Fe(x)).

Theorem 2.2.6. Let G be a generic set. Then

G ⊧ ¬Fe(x) ⇐⇒ (∃σ ⊆ G)(σ⊩¬Fe(x)).

Corollary 2.2.7 (Truth lemma). If G is generic, then

G ⊧ (¬)Fe(x) ⇐⇒ (∃σ ⊆ G)(σ⊩(¬)Fe(x)).

Notice that {(σ, e, x) ∣ σ⊩¬Fe(x)} ≤T ∅′.
Corollary 2.2.8. For every generic G we have G′ ≡T G⊕∅′.

In Chapter 3. we prove the Friedberg’s jump inversion theorem for the
structures. Here is the original theorem.

Theorem 2.2.9 (Friedberg’s jump inversion theorem). [Fri57] Let ∅′ ≤T B.
There exists a generic G, such that G′ ≡T B, and hence B ≡T G′ ≡T G⊕∅′.
Corollary 2.2.10. There exists a generic G ≢T ∅ such that G′ ≡T ∅′.
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2.3 Enumeration reducibility

Enumeration reducibility was defined by Friedberg and Rogers [FR59] in the
late 1950’s to capture a notion of reducibility between sets in which only
positive information about membership in the set is either used or computed.
This notion turns out to be as natural as Turing reducibility in a number of
settings, e.g., in group theory and computable model theory.

A set A is enumeration reducible to a set B if there is an effective uniform
way, given by an enumeration operator, to obtain an enumeration of A
given any enumeration of B. The enumeration operators are interesting in
themselves, as they give the semantics of the type free λ-calculus in graph
models, suggested by Plotkin [Plo72] in 1972. The interest in enumeration
reducibility is also supported by the fact that the structure of the enumeration
degrees contains the structure of the Turing degrees without being elementary
equivalent to it. Contemporary defninability results [CGL+16, GS15, GS12,
SS12] in the theory of the enumeration degrees show that the structure is
useful for the study of the structure of Turing degrees.

Definition 2.3.1. Let A and B be sets of natural numbers. The set A is
enumeration reducible to the set B, written A ≤e B, if there is a c.e. set We,
such that:

A =W (B) = {x ∣ (∃D)[⟨x,D⟩ ∈We & D ⊆ B]},

where D is a finite set coded in the standard way.

The definition above associates an effective operator on sets to every c.e.
setWe, the aforementioned enumeration operator. Let {Γe}e∈ω be an effective
list of all enumeration operators.

Just like Turing reducibility, enumeration reducibility is a pre-order on the
natural numbers, it induces an equivalence relation ≡e and a degree structure
De. The structure of the enumeration degrees is also an upper semi-lattice.
The set A⊕B is a least upper bound of A and B with respect to ≤e. Two
sets A and B are enumeration equivalent (A ≡e B) if A ≤e B and B ≤e A.
The equivalence class of a set A under this relation is its enumeration degree
de(A). The set De consisting of all enumeration degrees, together with the
naturally induced partial order and least upper bound operation is the upper
semi-lattice of the enumeration degrees. It has a least element 0e consisting
of all computably enumerable sets. For an introduction to the enumeration
degrees the reader might consult Cooper [Coo90].

There is a strong relationship between the relations that we defined:
A ≤T B if and only if A⊕A is c.e. in B if and only if A⊕A ≤e B⊕B. The set
A⊕A codes in a positive way the positive and negative information about a
set A. This suggests a relationship between Turing reducibility, enumeration
reducibility and the relation “c.e. in” formally expressed as follows.
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Proposition 2.3.3. Let A and B be sets of natural numbers.

1. A ≤T B if and only if A⊕A ≤e B ⊕B.

2. A is c.e. in B if and only if A ≤e B ⊕B.

This gives the natural embedding ι of the Turing degrees into the enu-
meration degrees ([Med55, Myh61]):

ι(dT (A)) = de(A⊕A).

A set A is called total if and only if A ≡e A⊕A. Examples of total sets are
the graphs of total functions. An enumeration degree is total if it contains a
total set. The enumeration degrees in the range of ι coincide with the total
enumeration degrees.

The following theorem by Selman shows that the total enumeration
degrees play an important role in the structure: an enumeration degree can
be characterized by the set of total degrees above it.

Theorem 2.3.4. [Sel71] For any A,B ⊆ N the following are equivalent:

1. A ≤e B;

2. {X ∣ B is c.e. in X} ⊆ {X ∣ A is c.e. in X};

3. {x ∈ De ∣ x is total & de(B) ≤ x} ⊆ {x ∈ De ∣ x is total & de(A) ≤ x}.

Finally, we give the definition of a jump operator for the enumeration
degrees, originally due to Cooper and studied by McEvoy [Coo84, McE85].

Definition 2.3.5. Let KA = {⟨e, x⟩ ∣ x ∈ Γe(A)}. The set

A′
e =KA ⊕KA

is called the enumeration jump of A and de(A)′ = de(A′
e).

Note that KA = ⊕e∈ωΓe(A) = {⟨e, x⟩ ∣ x ∈ Γe(A)}. It is clear that KA ≡e A.
Denote by A+ = A⊕A. The enumeration jump is monotone and agrees with
the Turing jump in the following sense: (A′)+ ≡e (A+)′e, and A′ ≡T (A+)′e
[Coo84, McE85].

We will use Soskov’s jump inversion theorem for the enumeration jump:

Theorem 2.3.6. [Sos00] For every enumeration degree a there exists a total
enumeration degree b, such that a ≤ b and a′ = b′.

The pioneering work on the enumeration degrees dates back to Case
[Cas71] and Medvedev [Med55]. In particular, Case shows that De is not a
lattice as a consequence of the exact pair theorem and Medvedev proves the
existence of quasi-minimal degrees: a degree is quasi-minimal if it bounds no
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nonzero total enumeration degree. Cooper laid the foundations of the study of
the enumeration degrees in his survey paper [Coo84] from 1990. He established
many important algebraic properties of the global and local structure, such as
the lack of minimal elements, which shows that the theory of the enumeration
degrees is different from the theory of the Turing degrees. McEvoy [McE85],
a student of Cooper, defined the enumeration jump operation, which maps
an enumeration degree a to a total enumeration degree a′, such that a <e a′.
McEvoy then showed that the embedding ι preserves the jump operation.
Kalimullin obtained a definable class of pairs of enumeration degrees which
came to be known as Kalimullin pairs, or K-pairs. Kalimullin [Kal03] showed
that the enumeration jump is definable in De. Ganchev and M. Soskova
[GS15] give an alternative proof of the definability of the enumeration jump.
Their proof is an instance of a more general phenomenon: they introduce
the notion of a maximal K-pair and conjecture that a nonzero enumeration
degree is total if and only if it is the least upper bound of the elements
of a maximal K-pair. They show that if this conjecture is true than this
would imply the first order definability the image (under the embedding
of DT in De) of the relation on Turing degrees “c.e. in”. In [GS12] they
show that the first order theory of true arithmetic can be interpreted in
De(≤ 0′e), using coding methods based on K-pairs, settling an open problem
from Cooper’s 1990 survey paper. In [GS15] they show further that the
class of low enumeration degrees is first order definable. More importantly,
they show that their conjecture for the first order definability of the total
Σ0

2 degrees in De(≤ 0′e) using maximal K-pairs is true for the local structure
De(≤ 0′e), thus settling the local version of Rogers’ 1967 question. The full
answer to Rogers’ 1967 question is finally obtained through the collaboration
of Cai, Ganchev, Lempp, Miller and M. Soskova, confirming Ganchev and
Soskova’s conjecture.

Theorem 2.3.7 (Cai, Ganchev, Lempp, Miller, M. Soskova). [CGL+16]
The total enumeration degrees are first order definable in De. A nonzero
enumeration degree is total if and only if it is the least upper bound of the
members of a maximal Kalimullin pair.

Recent work [GS18] of Ganchev and M. Soskova shows that all classes
of high enumeration degrees Hn = {a ∣ a ≤ 0′e & a(n) = 0

(n+1)
e } and low

enumeration degrees Ln = {a ∣ a ≤ 0′e & a(n) = 0
(n)
e } are definable in De, for

each n ≥ 1.
The relationship between enumeration degrees and abstract models of

computability inspires a new direction in the field of computable structure
theory. You could see more in our expository paper with M. Soskova [SS17].

In the last chapter we show our latest results on a subclass of the enumer-
ation degrees — the cototal degrees. Call a set A ⊆ N cototal if A ≤e A and
call an enumeration degree cototal if it contains a cototal set. We introduce
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an analog of jump operation - the skip operator. We investigate the skip
for the class of enumeration degrees of 1-generic sets, studied by Copestake
[Cop88]. We define a relativized form of 1-genericity, suitable for the context
of the enumeration degrees. We use the notation “relative to ⟨X⟩” to denote
“relative to the enumeration degree of X” (not of X⊕X as in Turing degrees).

Definition 2.3.8. Let G and X be sets of natural numbers. G is 1-generic
relative to ⟨X⟩ if and only if for every set of finite parts S such that S ≤e X:

(∃σ ⊆ G)(σ ∈ S ∨ (∀τ ⊇ σ)[τ ∉ S]).

If X = ∅, then we call G simply 1-generic and if X =K, then G is 2-generic.

Note that G is 1-generic relative to X in the usual sense if and only if G
is 1-generic relative to ⟨X ⊕X⟩ in the sense of the definition above.

Definition 2.3.9. An enumeration degree a is quasiminimal if it is nonzero
and the only total enumeration degree bounded by a is 0e.

McEvoy [McE85] proved that the enumeration jump restricted to the
quasiminimal degrees has the same range as the unrestricted jump operator.
Relativizing the notion of quasiminimality, we get the following two notions:

Definition 2.3.10. An enumeration degree a is a quasiminimal cover of an
enumeration degree b if b < a and there is no total enumeration degree x
such that b < x ≤ a. The degree a is a strong quasiminimal cover of b if
b < a and every total enumeration degree x bounded by a is below b.

The next proposition exhibits two important properties of generic enu-
meration degrees.

Proposition 2.3.11. Let G be 1-generic relative to ⟨X⟩.

1. de(G⊕X) is a strong quasiminimal cover of de(X).

2. G is 1-generic relative to ⟨X⟩.

2.4 Degree spectra

The Turing degree spectrum of a countable structure A provides a natural
measure of the complexity of the isomorphism type of that structure. The
spectrum of A is introduced by Richter [Ric81], as the set of those Turing
degrees a such that for some copy B of A (that is, for some B ≃ A with
domain N), the atomic diagram of B has Turing degree a.

Let A = (A,R1, . . . ,Rk) be a countable relational structure. If in the
language of the structure there are some functions symbols we represent them



2.4. DEGREE SPECTRA 25

by their graphs. An enumeration of A is a total surjective mapping of N onto
∣A∣. Given an enumeration f of A and a subset of B of ∣A∣a, let

f−1(B) = {⟨x1, . . . , xa⟩ ∣ (f(x1), . . . , f(xa)) ∈ B}.

Denote by f−1(A) = f−1(R1)⊕ ⋅ ⋅ ⋅ ⊕ f−1(Rk)⊕ f−1(=). By D(A) we denote
the atomic diagram of A.

Definition 2.4.1. The degree spectrum of A is the set

DS(A) = {dT (f−1(A)) ∣ f is an enumeration of A}.

If a is the least element of DS(A), then a is called the degree of A.

We use the following two simple properties of the degree spectra. They
are proved by Soskov in [Sos04] for enumeration degree spectra. Suppose
that A is infinite and the domain of A is the set of the natural numbers.

Proposition 2.4.2. Let f be an arbitrary enumeration of A. Then there
exists an injective enumeration g of A such that g−1(A) ≤T f

−1(A).

One noticeable difference with the standard definition of Turing degree
spectra is that in the definition of the degree spectra, we use the surjective
enumerations, instead of bijective enumerations. Proposition 2.4.2 shows that
from the point of view of the existence of a degree of a structure this difference
does not matter. But the advantage is that the spectrum is always upwards
closed (see Proposition 2.4.3). Knight proved in [Kni86], that the spectrum
with injective enumerations is closed upwards only in nontrivial structures.
In a trivial structure there is a finite tuple such that every permutation of
the domain fixing that tuple is an automorphism of A.

Proposition 2.4.3. For every structure A the degree spectrum DS(A) is
upwards closed.

For every computable ordinal α, following Knight [Kni86] we define the
α-th jump spectrum DSα(A) of a structure A to be the set of all αth jumps of
the elements of the degree spectrum of A. If a is the least element of DSα(A),
then a is called the α-th jump degree of A. We show in Chapter 3. that the
first jump spectrum is always upwards closed. Richter’s [Ric81] proved, as
we mention in the introduction that the Turing degree spectrum DS(A) of a
linear ordering has a degree then it is computable, i.e. this degree should be
0-the set of all computable sets. Knight [Kni86] extended Richter’s result to
show that the only possible first jump Turing degree of a linear ordering is
0′, so not every linear ordering has a first jump degree. Downey and Knight
[DK92] proved next that for every computable ordinal α there exists a linear
order A such that A has αth jump degree equal to 0(α) but for all β < α
there is no βth jump degree of A. Slaman [Sla98] and independently Wehner
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[Weh98] gave an example of a structure A whose Turing degree spectrum
consists of all nonzero Turing degrees, DS(A) = {a ∣ 0 < a}. We give very
simple proofs of the last two results in Chapter 3. as an application of the
jump inversion theorem for structures.

The enumeration degree spectrum DSe(A) of a countable structure A is
introduced by Soskov [Sos04] as the set of all enumeration degrees generated
by the presentations (homomorphic copies in N) of A. It is also closed
upwards with respect to total degrees, i.e. if a ∈DSe(A), b is a total e-degree
and a ≤ b, then b ∈DSe(A). The minimal degree of DSe(A), if it exists, is
called e-degree of A.

Just like Turing reducibility can be expressed in terms of enumeration
reducibility, the Turing degree spectrum of a structure A corresponds to the
enumeration degree spectrum of a structure, denoted by A+, which codes in
a positive way both the positive and negative facts about the predicates in
A. If A = (A,R1, . . . ,Rk) then let A+ = (A,R1, . . . ,Rk,¬R1, . . . ,¬Rk). The
image of the Turing degree spectrum of A under the natural embedding is
exactly DSe(A+).

Co-spectrum CS(A) of a structure A is the set of all lower bounds of the
enumeration degree spectrum of the structure A. If CS(A) has a greatest
element, then it is the co-degree of A. For every computable ordinal α we
denote by CSα(A) the co-spectrum of DSα(A).

An application of Selman’s theorem shows that the co-spectrum of A
depends only on the total elements of the spectrum of A. Soskov [Sos04]
proved that for every computable ordinal α and b ∈DSα(A) there exist total
e-degrees f0 and f1 such that : f0

(α) ≤ b and f1
(α) ≤ b, and f0

(β), f1
(β) /∈

CSβ(A) for β < α, and {x ∣ x ∈ De & x ≤ f0
(β) & x ≤ f1

(β)} = CSβ(A)
for every β + 1 < α. He shows that there exist quasi minimal enumeration
degrees for the degree spectrum, i.e. an e-degree q /∈ CS(A), and every total
x ≤ q→ x ∈DS(A), and every total x ≥ q→ x ∈ CS(A). This is an analogue
of a quasi minimal degree in De.

Kalimullin [Kal09b], building on Wehner’s result, transfers these ideas to
enumeration degree spectra: There is a structure A such that DSe(A) = {a ∣
a ∈ De & a > 0e}.

The co-degree and e-degree of a structure are closely related to what
Knight [Kni98] and Montalbán [Mon] call the “enumeration degree of a
structure”. A set X ⊆ N is the “enumeration degree” of a structure A if every
enumeration of X computes a copy of A, and every copy of A computes
an enumeration of X. Thus by Selman’s theorem the enumeration degree
of X is the co-degree of the structure A+. This co-degree, however has an
additional property: DS(A+) is exactly the set of total enumeration degrees
above de(X).

Soskov [Sos04], building on results of Downey and Jockusch [DJ94], and
Coles, Downey and Slaman [CDS00] proved that for a torsion free abelian
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group G the enumeration degree of the characteristic of the group S(G) is a co-
degree of G. Moreover he showed that the first jump degree (the smallest one
in DS1(G)) is the enumeration jump of this co-degree. Another consequence
of this is that every principal ideal of enumeration degrees is a co-spectrum
of a structure, namely the co-spectrum of some torsion free abelian group
of rank one. Further Soskov proved [Sos04] that every countable ideal of
enumeration degrees is the co-spectrum of a structure.

Understanding which subsets of the Turing degrees can be realized as
degree spectra is an important open problem in the area. A natural question
here: is every set of degrees that is upwards closed with respect to total
elements the enumeration spectrum of a structure? The answer is, of course,
‘No’. One way to see this is via the notion of a base and its relationship to
the existence of a degree.

A subset B ⊆ C of a set of enumeration degrees C is a base of C if
(∀a ∈ C)(∃b ∈ B)(b ≤ a). Using generic enumerations and an argument much
like that used in Selman’s theorem we can show the following.

Theorem 2.4.6. [Sos04] A structure A has an e-degree if and only if DSe(A)
has a countable base.

In particular the union of two cones above incomparable degrees (and
even countable cones) cannot be the enumeration degree spectrum of a
structure (just like it cannot be the Turing degree spectrum of a structure).
Nevertheless, degree spectra play well with co-spectra and behave structurally
with respect to their elements just like the cone of total degrees above a fixed
enumeration degree.

2.5 Definability in a structure

Another way to characterize the complexity of a structure A is to analyze
the definable sets in A. This gives a finer measure as it may happen that two
structures have the same degree spectra but greatly differ in their definability
power and model theoretic properties.

2.5.1 Relatively intrinsically Σ0
α relations

Let A = (A,R1,R2, . . . ,Rk) be a countable structure. For simplicity we
suppose that A = N.

Definition 2.5.6. A relation R on A is relatively intrinsically Σ0
α in a

structure A if for each (B, P ) ≃ (A,R) the relation P is Σ0
α in the atomic

diagram D(B), which in our terms means that for every enumeration f of A,
f−1(R) ∈ Σ0

α(f−1(A)).

For example, consider a linear ordering A = (A,<), and S-successor
relation. S is relatively intrinsically Π0

1 in A, since ¬S(x, y) ⇐⇒ x /<
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y ∨ ∃z(x < z & z < y) is relatively intrinsically Σ0
1 in A. The “block” re-

lation B(x, y) ⇐⇒ there are finitely many elements z1, . . . , zn such that
S(x, z1),S(z1, z2), . . . , S(zn, y) is relatively intrinsically Σ0

2 in A, and there
is no Σ0

2 first order formula, which defines B. But B can be defined by a
computable infinite disjunction of such formulas as we shall see in the next
subsection.

2.5.2 Computable infinitary formulas

Let L be a fixed computable language. Some mathematical properties, such
as the Archimedean property (true of subfields of the ordered field of reals),
are expressed in a natural way by an infinitely long formula. We consider
formulas of Lω1,ω (see Keisler [Kei71]). Here ω1 indicates that the disjunctions
and conjunctions are over only countable sets, and ω indicates that there is
only finite nesting of quantifiers. For example, in the language of ordered
fields, there is a sentence, which adding it to the axioms of ordered fields, the
models are exactly the Archimedean ordered fields (∀x)⋁n(x < τn), where
τn = 1 + 1 + ⋅ ⋅ ⋅ + 1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

.

The computable infinitary Σα and Πα formulas, denoted by Σc
α and Πc

α,
(see [AK00]) with free variables among x1, . . . , xl, are defined by transfinite
induction on α as follows.

The Σc
0 and Πc

0 formulas are quantifier free formulas on x1, . . . , xl.
For α > 0, a Σc

α formula is the disjunction of a c.e. set of formulas of the
form ∃y1 . . .∃ymΨ(x1, . . . , xl, y1, . . . , ym), where Ψ is a Πc

β formula, for some
β < α, with free variables among x1, . . . , xl, y1, . . . , ym.

A Πc
α formula is the conjunction of a c.e. set of formulas of the form

∀y1 . . .∀ymΨ(x1, . . . , xl, y1, . . . , ym), where Ψ is a Σc
β formula, for some β < α,

with free variables among x1, . . . , xl, y1, . . . , ym.

Definition 2.5.7. A relation R ⊆ ∣A∣l is definable in a structure A by a Σc
α

formula Φ(x1, . . . , xl,w1, . . . ,wr), if there are parameters t1, . . . , tr ∈ ∣A∣ such
that for every a1, . . . , al ∈ ∣A∣ the following equivalence holds:

(a1, . . . , al) ∈ R ⇐⇒ A ⊧ Φ(x1/a1, . . . , xl/al,w1/t1, . . . ,wr/tr).

Ash, Knight, Manasse and Slaman [AKMS89] and independently Chisholm
[Chi90] prove that the relatively intrinsically Σ0

α relations in the structure A
are the definable ones by a Σc

α formula with finitely many parameters in A.

Theorem 2.5.8. Let R be a relation on the structure A. The following are
equivalent:

1. R is relatively intrinsically Σ0
α in a structure A.

2. R is definable by a Σc
α formula with finitely many parameters in A.
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Antonio Montalbán extends in his book [Mon] this result for α = 1 not only
for relations with a fixed number of arguments but also of those R ⊆ ∣A∣<ω. For
example over a Q-vector space V , the relation LD ⊆ V <ω of linear dependence
is always c.e. in V . To enumerate LD in a D(V )-computable way, go through
all the possible non-trivial Q-linear combinations q0v0+⋅ ⋅ ⋅+qkvk of all possible
tuples of vectors ⟨v0, . . . , vk⟩ ∈ V <ω, and if you find one that is equal to 0⃗,
enumerate ⟨v0, . . . , vk⟩ into LD. It is clear that we could write a Σc

1 formula
that define this relation but the free variable will not be fixed.

In the definition of effective interpretation 5.1.10 the interpretation is
defined by formulas that have no specific arity. So, we use generalized Σc

1-
definition of a relation. Here, the arity of a formula is the number of its free
variables.

Definition 2.5.9 (Generalized Σc
1-definition). Let R ⊆ ∣A∣<ω, and let

ϕn(xn)n∈ω be a computable sequence of Σc
1 formulas, where ϕn(xn) has arity

n. If for each n, ϕn(xn) defines R ∩An, then we say that ⋁nϕn(xn) is a
generalized Σc

1 definition of R.

Montalbán [Mon] proved that the result of Theorem 2.5.8 holds for such
relations R ⊆ ∣A∣<ω, i.e. R is relatively intrinsically Σ0

1 in a structure A if and
only if R is definable by generalized Σc

1 formulas in A with parameters. He
called these relations relatively intrinsically c.e. (r.i.c.e.).We use this theorem
in Chapter 5.
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Chapter 3

Jump of a structure

The notion of jump of a structure is an analogue of the jump operation
in the degree structures. It contains information about the sets definable
by computable infinitary Σc

1 formulas. This notion has been independently
defined various times in the last few years, as we explained in Chapter 1.

In [Sos07, SS07, SS09a], with Soskov, we prove two jump inversion the-
orems. The first one is an analogue of the Friedberg’s Jump inversion
theorem. Stukachev [Stu09, Stu10] shows a similar result for the Σ definabil-
ity. The second theorem shows that every jump degree spectrum DS1(A)
is a degree spectrum of the structure - the jump of A. Independently, later
Montalbán [Mon09] proved similar result.

I want to mention that Goncharov, Harizanov, Knight, McCoy, R. Miller
and Solomon [GHK+05] give an idea how the jump inversion - Friedberg’s
style could be generalized for a computable successor ordinal. They only do it
for graphs, but we know [HKSS02] any degree spectrum can be realized as the
degree spectrum of a graph. They proved the result above only as a tool to
get get other results about and relative intrinsically relations. Vatev [Vat14]
uses this idea and proves the jump-inversion theorem for any computable
successor ordinal. Soskov proves in [Sos13] that such theorem is not true for
computable limit ordinals.

3.1 Jump of a structure

Let A = (A;R1, . . . ,Rs) be a countable structure and let equality be among
the predicates R1, . . . ,Rs. We suppose that the domain A of A is infinite.

Following Moschkovakis [Mos69] the least acceptable extension of the
structure A is defined as follows.

Let 0 be an object which does not belong to A and Π be a pairing
operation chosen so that neither 0 nor any element of A is an ordered pair.
Let A∗ be the least set containing all elements of A0 = A ∪ {0} and closed
under Π.

31
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We associate an element n∗ of A∗ with each natural number n ∈ N by
induction:

0∗ = 0;
(n + 1)∗ = Π(0, n∗).

The set of all elements n∗ defined above will be denoted by N∗.
Let L and R be the functions on A∗ satisfying the following conditions:

L(0) = R(0) = 0;
(∀t ∈ A)(L(t) = R(t) = 1∗);
(∀s, t ∈ A∗)(L(Π(s, t)) = s & R(Π(s, t)) = t).

The pairing function allows us to code finite sequences of elements: let
Π1(t1) = t1, Πn+1(t1, t2, . . . , tn+1) = Π(t1,Πn(t2, . . . , tn+1)) for every
t1, t2, . . . , tn+1 ∈ A∗.

For each predicate Ri of the structure A define the respective predicate
R∗
i on A∗ by

R∗
i (t) ⇐⇒ (∃a1 ∈ A) . . . (∃ari ∈ A)(t = Πri(a1, . . . , ari) & Ri(a1, . . . , ari)).

Definition 3.1.1. Moschovakis’ extension of A is the structure

A∗ = (A∗;A0,R
∗
1 , . . . ,R

∗
s ,GΠ,GL,GR,=),

where GΠ, GLand GR are the graphs of Π, L and R respectively.

Lemma 3.1.2. Let f be an enumeration of A. There exists an enumeration
f∗ of A∗ such that (f∗)−1(A∗) ≡T f

−1(A).

Proposition 3.1.3. DS(A) =DS(A∗).

Let f be an enumeration of A. Given natural numbers e and x let

f ⊧ Fe(x) ⇐⇒ x ∈W f−1(A)
e

and let
f ⊧ ¬Fe(x) ⇐⇒ f /⊧ Fe(x).

Given a finite part δ and R ⊆ An, let δ−1(R) be the finite function on the
natural numbers taking values in {0,1} such that

δ−1(R)(u) ≃ 1 ⇐⇒ (∃x1, . . . xn ∈ dom(δ))(u = ⟨x1, . . . , xn⟩ &
(δ(x1), . . . , δ(xn)) ∈ R) and
δ−1(R)(u) ≃ 0 ⇐⇒ (∃x1, . . . xn ∈ dom(δ))(u = ⟨x1, . . . , xn⟩ &
(δ(x1), . . . , δ(xn)) /∈ R).

(3.1.1)

By δ−1(A) we shall denote the finite function δ−1(R1)⊕ ⋅ ⋅ ⋅ ⊕ δ−1(Rs).
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Definition 3.1.4. For any e, x ∈ N and for every finite part δ, define the
forcing relations δ ⊩ Fe(x) and δ ⊩ ¬Fe(x) as follows:

δ ⊩ Fe(x) ⇐⇒ x ∈W δ−1(A)
e

δ ⊩ ¬Fe(x) ⇐⇒ (∀τ ⊇ δ)(τ /⊩ Fe(x)).

The following two properties of the forcing relation are obvious:

(F1) δ ⊩ (¬)Fe(x) & δ ⊆ τ ⇒ τ ⊩ (¬)Fe(x).

(F2) For every enumeration f of A,

f ⊧ Fe(x) ⇐⇒ (∃τ ⊆ f)(τ ⊩ Fe(x)).

Definition 3.1.5. An enumeration f of A is generic if for every e, x ∈ N:

(∃τ ⊆ f)(τ ⊩ Fe(x) ∨ τ ⊩ ¬Fe(x)).

Note, that this is equivalent to Definition 2.2.2 for a 1-generic set, only
take G = f−1(A) and S to be the set of finite parts {τ ∣ τ ⊩ Fe(x)}. It is
clear that S is c.e.

We know from Theorem 2.2.6 that for every generic enumeration f of A
for all e, x ∈ N,

f ⊧ ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ ⊩ ¬Fe(x)).

With each finite part τ /= ∅ such that dom(τ) = {x1, . . . , xn} and τ(x1) =
s1, . . . , τ(xn) = sn, we associate the element τ∗ = Πn(Π(x∗1 , s1), . . . ,Π(x∗n, sn))
of A∗. Let τ∗ = 0 if τ = ∅.

Define KA = {Π3(δ∗, e∗, x∗) ∣ (∃τ ⊇ δ)(τ ⊩ Fe(x)) & e∗, x∗ ∈ N∗}.

Definition 3.1.6. The jump of the structure A is the following structure:

A′ = (A∗;A0,R
∗
1 , . . . ,R

∗
s ,GΠ,GL,GR,=,KA).

The following proposition follows directly from Lemma 3.1.2.

Proposition 3.1.7. Let f be an enumeration of A. Then

(f∗)−1(A′) ≡T f−1(A)⊕ (f∗)−1(KA).
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3.2 Every Jump Spectrum is Spectrum

Theorem 3.2.1. For every structure A there exists a structure B such that
DS1(A) =DS(B).

Let B = A′ defined above. We shall prove that DS1(A) = DS(B). We
divide the proof into two parts.

Proposition 3.2.2. DS1(A) ⊆DS(B).

Let g be an enumeration of A such that g−1(A)′ ∈DS1(A). By Proposi-
tion 2.4.2, there exists an injective enumeration f of A such that f−1(A) ≤T
g−1(A). Since f−1(A)′ ≤T g−1(A)′ and DS(B) is closed upwards, it is suffi-
cient to show that dT (f−1(A))′ ∈ DS(B). For we show that (f∗)−1(B) ≤T
f−1(A)′ and use once more the fact that DS(B) is closed upwards. We
use the following idea. Since the natural numbers are represented in A∗ we
computably transfer all the natural numbers and finite parts in N∗. We prove
that (f∗)−1(KA) is c.e. in f−1(A). From here it follows that (f∗)−1(KA) ≤T
f−1(A)′. Therefore, by Proposition 3.1.7, (f∗)−1(B) ≤T f−1(A)′.

Now we turn to the proof of the reverse inclusion. We shall need the
following property of the jump spectrum:

Lemma 3.2.3. Every jump spectrum is closed upwards.

Proposition 3.2.4. DS(B) ⊆DS1(A).

Let a ∈ DS(B) and m be an enumeration of B such that m−1(B) ∈ a.
By Proposition 2.4.2, there exists an injective enumeration f of B such that
f−1(B) ≤T m−1(B). We construct an enumeration g of the structure A such
that g−1(A)′ ≤T f−1(B). Then, by Lemma 3.2.3, a ∈ DS1(A). Using the
above idea we computably transfer all the natural numbers and finite parts
in N∗. We construct the enumeration g of A as 1-generic enumeration using
the forcing method and such that the transfer g# of g in N∗ is computable
in f−1(B).

3.3 Jump Inversion Theorem

Naturally, once we have a jump of a structure, the question of jump inversion
arises: Given a structure A with DS(A) consisting of total degree above 0′,
is there a structure C such that DS1(C) =DS(A). We prove an even more
general Friedberg’s style Jump inversion theorem. Let A and B be structures
such that DS(A) ⊆DS1(B) (so, all elements of DS(A) are above 0′). Then
there exists a structure C such that DS(C) ⊆DS(B) and DS1(C) =DS(A).

The proof of this theorem uses the method of Marker extensions, which
will be discussed in detail in the next subsection.
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3.3.1 Marker’s Extensions

Marker [Mar89] presented a method of constructing for any n ≥ 1 an ℵ0-
categorical almost strongly minimal theory which is not Σn-axiomatizable.
Further Goncharov and Khoussainov [GK02] adapted the construction to the
general case in order to find for any n ≥ 1 examples of ℵ1-categorical com-
putable models as well as ℵ0-categorical computable models whose theories
are Turing equivalent to ∅(n). We shall give the definition of Marker’s ∃ and
∀ extensions following [GK02].

Let A = (A;R1, . . . ,Rs,=) be a countable structure such that each predi-
cate Ri has arity ri.

Marker’s ∃-extension of Ri, denoted by R∃
i , is defined as follows. Consider

a set Xi with new elements such that Xi = {xi⟨a1,...,ari ⟩ ∣ Ri(a1, . . . , ari)}. We
shall call the set Xi an ∃-fellow for Ri. We suppose that all sets A, X1,. . . ,
Xs are pairwise disjoint.

The predicate R∃
i is a predicate of arity ri + 1 such that

R∃
i (a1, . . . , ari , x) ⇐⇒ a1, . . . , ari ∈ A & x ∈Xi & x = xi⟨a1,...,ari ⟩.

The property of R∃
i is that for every a1, . . . , ari ∈ A

(∃x ∈Xi)R∃
i (a1, . . . , ari , x) ⇐⇒ Ri(a1, . . . , ari). (3.3.1)

Definition 3.3.1. The structure A∃ is defined as follows:

(A ∪
s

⋃
i=1

Xi;R
∃
1 , . . . ,R

∃
s ,X1, . . . ,Xs,=),

where each R∃
i is the Marker’s ∃-extension of Ri with the ∃-fellow Xi.

Further, Marker’s ∀-extension of R∃
i , denoted by R∃∀

i , is defined as follows.
Consider an infinite set Yi of new elements such that

Yi = {yi⟨a1,...,ari ,x⟩ ∶ ¬R
∃
i (a1, . . . , ari , x) & a1, . . . , ari ∈ A, & x ∈Xi}.

We shall call the set Yi a ∀-fellow for R∃
i . We suppose that all sets A, X1,. . . ,

Xs and Y1,. . . , Ys are pairwise disjoint.
The predicate R∃∀

i is a predicate of arity ri + 2 such that
1. If R∃∀

i (a1, . . . , ari , x, y) then a1, . . . , ari ∈ A, x ∈Xi and y ∈ Yi;
2. If a1, . . . , ari ∈ A, & x ∈ Xi & y ∈ Yi then

¬R∃∀
i (a1, . . . , ari , x, y) ⇐⇒ y = yi⟨a1,...,ari ,x⟩ .

From the definition of R∃∀
i it follows that if a1, . . . , ari ∈ A and x ∈Xi then

(∀y ∈ Yi)R∃∀
i (a1, . . . , ari , x, y) ⇐⇒ R∃

i (a1, . . . , ari , x). (3.3.2)
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Definition 3.3.2. The structure A∃∀ is defined as follows

(A ∪
s

⋃
i=1

Xi ∪
s

⋃
i=1

Yi;R
∃∀
1 , . . . ,R∃∀

s ,X1, . . . ,Xs, Y1, . . . , Ys,=),

where Xi is the ∃-fellow for Ri and Yi is the ∀-fellow for R∃
i .

The structure A∃∀ has the following properties:

Proposition 3.3.3. 1. Let a1, . . . , ari ∈ A. Then:

(a) Ri(a1, . . . , ari) ⇐⇒ (∃x ∈Xi)(∀y ∈ Yi)R∃∀
i (a1, . . . , ari , x, y);

(b) If Ri(a1, . . . , ari) then there exists a unique x ∈Xi such that
(∀y ∈ Yi)R∃∀

i (a1, . . . , ari , x, y);

2. For each sequence a1, . . . , ari ∈ A and x ∈ Xi there exists at most one
y ∈ Yi such that ¬R∃∀

i (a1, . . . , ari , x, y);

3. For each y ∈ Yi there exists a unique sequence a1, . . . , ari ∈ A and x ∈Xi

such that ¬R∃∀
i (a1, . . . , ari , x, y);

4. For each x ∈Xi there exists a unique sequence a1, . . . , ari ∈ A such that
for all y ∈ Yi the predicate R∃∀

i (a1, . . . , ari , x, y) is true.

Let A = (A;R1, . . . ,Rs,=) and B = (B;P1, . . . , Pt,=) be countable struc-
tures in the languages L1 and L2 respectively. Suppose that L1 ∩L2 = {=}
and A∩B = ∅. Let L = L1∪L2∪{A,B}, where A and B are unary predicates.

Definition 3.3.4. The join of the structures A and B is the structure A⊕B =
(A ∪B;R1, . . . ,Rs, P1, . . . , Pt,A,B,=) in the language L, where

(a) the predicate A is true only over the elements of A and similarly B is
true only over the elements of B;

(b) each predicate Ri is defined on the elements of A as in the structure
A and false if some of the arguments of Ri are not in A and similarly each
predicate Pj is defined as in the structure B over the elements of B and false
if some of the arguments of Pj are not in B.

Lemma 3.3.5. Let A and B be countable structures and C = A⊕ B. Then
DS(C) ⊆DS(A) and DS(C) ⊆DS(B).

3.3.2 Representation of Σ0
2(D) Sets

Let D ⊆ N. A set M ⊆ N is in Σ0
2(D) if there exists a computable in D

predicate Q such that

n ∈M ⇐⇒ ∃a∀bQ(n, a, b) .

Definition 3.3.6. [GK02] If M ∈ Σ0
2(D) then M is one-to-one representable

if there exists a computable in D predicate Q with the following properties:
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1. n ∈M ⇐⇒ ∃a∀bQ(n, a, b);

2. n ∈M ⇐⇒ there exists a unique a such that ∀bQ(n, a, b);

3. for every pair ⟨n, a⟩ there is at most one b such that ¬Q(n, a, b);

4. for every b there is a unique pair ⟨n, a⟩ such that ¬Q(n, a, b);

5. for every a there exists a unique n such that ∀bQ(n, a, b).

The predicate Q from the above definition is called an one-to-one repre-
sentation of M . Goncharov and Khoussainov [GK02] proved the following
lemma:

Lemma 3.3.7. If M is a co-infinite Σ0
2(D) subset of N and there is an

infinite computable in D subset S of M such that M ∖ S is infinite, then M
has an one-to-one representation.

Let A = (A;R1, . . . ,Rs,=) be a countable structure. Recall that the set A
is infinite. We can easily find a structure A# with the same degree spectrum
as A and such that for every injective enumeration f# of A# and for each
predicate R of A# the set f#−1(R) is co-infinite and there is a computable
infinite subset S of f#−1(R) such that f#−1(R) ∖ S is infinite.

Lemma 3.3.8. There is a structure A#, such that DS(A) =DS(A#) and
for every injective enumeration f# of A# and each nontrivial predicate
Ri

# the set f#−1(Ri#) is co-infinite and there is a computable infinite set
S ⊆ f#−1(Ri#) such that f#−1(Ri#) ∖ S is infinite.

3.3.3 The Jump Inversion Theorem

Theorem 3.3.9. Let A and B be structures such that DS(A) ⊆ DS1(B).
Then there exists a structure C such that DS(C) ⊆ DS(B) and DS1(C) =
DS(A).

Let A = (A;R1, . . . ,Rs,=). For every predicate Ri consider a new predi-
cate Rci which is equal to the negation of Ri.

By Lemma 3.3.8 we may suppose that for every injective enumeration f
of A and each nontrivial predicate Ri the sets f−1(Ri) and f−1(Rci) are co-
infinite and there are computable infinite sets S ⊆ f−1(Ri) and P ⊆ f−1(Rci)
such that f−1(Ri) ∖ S and f−1(Rci) ∖ P are infinite.

We extend the structure A including the negations of the predicates as
follows:

A = (A;R1,R
c
1, . . . ,Rs,R

c
s,=).

It is clear that DS(A) = DS(A) since for each enumeration f of A we
have that f−1(A) ≡T f

−1(A).
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Consider now the structure A∃∀. Let Xj be the ∃-fellow of Rj and Yj be
the ∀-fellow of R

∃
j , j = 1, . . . ,2s.

Without loss of generality we may assume that the structures
B = (B;P1, . . . , Pt,=) and A∃∀ are disjoint.

Let C = B ⊕ A∃∀. By Lemma 3.3.5, DS(C) ⊆ DS(B). We prove that
DS1(C) =DS(A) using Proposition 3.3.3 and Lemma 3.3.7.

3.4 Some Applications

Let A(n) be the n-th jump of structure A defined inductively:
A(0) = A; A(n+1) = (An)′.

Clearly DS0(A) = DS(A) and DSn+1(A) = {a′ ∶ a ∈ DSn(A)}. Using
this and Theorem 3.2.1, one can easily see by induction on n that for every
n there exists a structure A(n) such that DSn(A) =DS(A(n)).

Theorem 3.4.2. Let A and B be structures such that DS(A) ⊆ DSn(B).
Then there exists a structure C such that DS(C) ⊆ DS(B) and DSn(C) =
DS(A).

The definitions above of the jump spectrum can be naturally generalized
for all computable ordinals α. In [DK92] Downey and Knight proved with
a fairly complicated construction that for every computable ordinal α there
exists a linear order A such that A has αth jump degree equal to 0(α) but
for all β < α, there is no βth jump degree of A. Now we can obtain this
theorem for the finite ordinals as an application of Theorem 3.3.9. Consider
a structure B such that DS(B) consists of all degrees above 0(n) and has no
least element, and such that 0(n+1) is the least element of DS1(B). Let A be
any total computable structure, e.g. A = (N;=) Clearly DS(B) ⊆ DSn(A).
By Theorem 3.4.2 there exists a structure C such that DSn(C) = DS(B).
Therefore C does not have a n-th jump degree and so no k-th jump degree
for k ≤ n. On the other hand DSn+1(C) =DS1(B) and hence the (n + 1)-th
jump degree of C is 0(n+1). Such a structure B is constructed as a torsion
free abelian group with a characteristic a quasi-minimal relative to ∅n set S,
such that ∅(n+1) ≡T S′e. The set could be constructed relativizing the Jump
inversion theorem of McEvoy [McE85].

An easy application of Theorem 3.2.1 is the main property of the jump
of a structure. Consider a relation R ⊆ An. The relation R is relatively
intrinsically Σ0

2 on A if and only if R is relatively intrinsically Σ0
1 on A′.

Our next application is a generalization of results of Slaman [Sla98] and
Wehner [Weh98]. They give an example of a structure with degree spectrum
consisting of all noncomputable Turing degrees.
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Theorem 3.4.3. [Weh98] There is a family of finite sets, which has no c.e.
enumeration, i.e. c.e. universal set, and for each noncomputable set X there
is a enumeration computable in X.

First we relativize this theorem.

Theorem 3.4.4. Let B ⊆ N. There is a family F of sets, which has no c.e.
in B enumeration, and for each set X >T B there is a enumeration of the
family F , computable in X.

Following an idea of Kalimullin [Kal09b] we consider the following family
of sets

F = {{0}⊕B} ∪ {{1}⊕B} ∪ {{n + 2}⊕ F ∣ F finite set, F ≠WB
n }.

Proposition 3.4.5. Let X ⊆ N. If a universal for F set U is c.e. in X then
X >T B.

Proposition 3.4.6. Let B <T X. There exists a universal set U for the
family F , such that U ≤T X.

Theorem 3.4.7. (Wehner, Slaman)[Weh98][Sla98] There is a structure C,
for which DS(C) = {x ∣ x >T 0}.

The relativized result is the following:

Theorem 3.4.8. For each n ∈ N and every Turing degree b ≥ 0(n) there
exists C, for which DSn(C) = {x ∣ x >T b} .

We construct the structure A, such that DS(A) = {x ∣ x >T b}, using
the family F in the same way as is done in [Weh98]. Let B = (N;=). It
is clear that b ∈ DSn(B) for each b ≥ 0(n). Thus DS(A) ⊆ DSn(B). By
the jump inversion Theorem 3.4.2 there exists a structure C, such that
DSn(C) =DS(A).

In conclusion would like to point out that the Jump inversion theorem
gives a method to lift some interesting results for degree spectra to the nth
jump spectra.
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Chapter 4

Strong jump inversion

We present a general result with sufficient conditions for a countable structure
to admit strong ump inversion. We show several classes of structures where
these conditions apply, such as some classes of linear orderings, Boolean
algebras, trees, models of theories with few types and differentially closed
fields. These investigations are join with Wesley Calvert, Andrey Frolov,
Valentina Harizanov, Julia Knight, Charles McCoy, Stefan Vatev, and started
when most of them visited Sofia in 2013 and are published in the paper
[CFH+18].

4.1 Canonical jump and strong jump inversion

We are interested in the following notion of jump inversion.

Definition 4.1.1. A structure A admits strong jump inversion provided
that for all sets X, if X ′ computes D(C)′ for some C ≅ A, then X computes
D(B) for some B ≅ A.

Remark 4.1.2. The structure A admits strong jump inversion iff for all X,
if A has a copy that is low over X, then it has a copy that is computable in
X. Here when we say that C is low over X, we mean that D(C)′ ≤T X ′.

The definition of strong jump inversion was motivated by the following
result of Downey and Jockusch [DJ94].

Theorem 4.1.3 (Downey-Jockusch). All Boolean algebras admit strong
jump inversion.

Here are some further examples of structures that admit strong jump
inversion.

Example 4.1.4 (Equivalence structures). Each equivalence structure is
characterized up to isomorphism by the number of equivalence classes of
various sizes. We consider equivalence structures with infinitely many infinite

41



42 CHAPTER 4. STRONG JUMP INVERSION

classes. It is well-known, and easy to prove, that such an equivalence structure
has an X-computable copy iff the set of pairs (n, k) such that there are at
least k classes of size n is Σ0

2 relative to X. (See [AK00] for a complete
characterization of the equivalence structures with computable copies.)

Proposition 4.1.5. Let A be an equivalence structure with infinitely many
infinite classes. Then A admits strong jump inversion.

Example 4.1.6 (Abelian p-groups of length ω). By Ulm’s Theorem, a count-
able Abelian p-group is characterized up to isomorphism by the Ulm sequence
and the dimension of the divisible part. For an account of this, see [Kap69].
An Abelian p-group of length ω can be expressed as a direct sum of copies
of Zpn+1 , for finite n, and the Prüfer group Zp∞ . Then the Ulm sequence is
(un(G))n∈ω, where un(G) is the number of direct summands of form Zpn+1 .
The dimension of the divisible part is the number of direct summands of form
Zp∞ . It is well-known [AK00], and easy to prove, that if G is an Abelian
p-group of length ω with a divisible part of infinite dimension, then G has an
X-computable copy iff the set {(n, k) ∶ un(G) ≥ k} is Σ0

2 relative to X.

Proposition 4.1.7. Let G be an Abelian p-group of length ω such that the
divisible part has infinite dimension. Then G admits strong jump inversion.

Not all countable structures admit strong jump inversion.

Example 4.1.8. Jockusch and Soare [JS91] showed that there are low linear
orderings with no computable copy.

Example 4.1.9. Let T be a low completion of PA. There is a model A such
that the atomic diagram D(A), and even the complete diagram Dc(A), are
computable in T . Then D(A)′ is ∆0

2. By a well-known result of Tennenbaum,
since A is necessarily non-standard, there is no computable copy.

We used in previous chapter our definition of the jump of structure when
we proved the jump inversions theorems. Here we will use the Montalbán’s
definition from [Mon09] but modified in [Mon12], in order to show that it is
equivalent to our notion.

Definition 4.1.10 (Canonical jump). For a structure A, the canonical jump
is a structure A′ = (A, (Ri)i∈ω), where (Ri)i∈ω are relations from which we
can uniformly compute all r.i.c.e. relations on A, and from the index i of the
relation Ri, we can compute the arity of Ri and a computable Σc

1 formula
(without parameters) that defines it in A.

Remark 4.1.11. The set ∅′ is included in the canonical jump. We may give
it by a family of relations Rf(e), for a computable function f , where Rf(e) is
always true if e ∈ ∅′ and always false otherwise. We may define Rf(e) by the
computable Σc

1 formula ⋁s τe,s, where τe,s is ⊺ if e has entered ∅′ by step s
and � otherwise.
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The proposition below shows that we can express strong jump inversion
in terms of copies of the canonical jump structure A′, as opposed to the
Turing jump of the atomic diagram for various copies B.

Proposition 4.1.14. For any structure A, the following are equivalent:

(1) A admits strong jump inversion.

(2) For all sets X, if X ′ computes a copy of the canonical jump A′ of A,
then X computes a copy of A.

(3) For all sets X and Y , if X ′ ≡T Y ′ and Y computes a copy of A then so
does X.

4.2 General result

In this section, we give a result with conditions sufficient to guarantee that a
structure admits strong jump inversion. The result is not difficult to prove.
However, there are a number of examples where it applies. To state the result,
we need some definitions.

Definition 4.2.1. Let S be a countable family of sets. An enumeration of S
is a set R of pairs (i, k) such that S is the family of sets Ri = {k ∶ (i, k) ∈ R}.
If A = Ri, we say that i is an R-index for A.

Definition 4.2.2.

1. A Bn-formula is a finite Boolean combination of ordinary finite elemen-
tary Σn-formulas.

2. A Bn-type is the set of Bn-formulas in the complete type of some tuple
in some structure for the language.

Definition 4.2.3. Fix a structure A. Let S be a set of B1-types including
all those realized in A. Let R be an enumeration of S. An R-labeling of A is
a function taking each tuple a in A to an R-index for the B1-type of a.

We are interested in structures A with the following property.

Definition 4.2.4 (Effective type completion). The structure A satisfies
effective type completion if there is a uniform effective procedure that, given
a B1-type p(u) realized in A and an existential formula ϕ(u,x) such that
(∃x)ϕ(u,x) ∈ p(u), yields a B1-type q(u,x) with ϕ(u,x) ∈ q(u,x), such that
if a in A realizes p(u), then some b in A realizes q(a, x).

Here is our general result.

Theorem 4.2.5. A structure A admits strong jump inversion if it satisfies
the following conditions:
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(1) There is a computable enumeration R of a set of B1-types including all
those realized by tuples in A.

(2) A satisfies effective type completion.

(3) For all sets X, if X ′ computes the jump of some copy of A, then X ′

computes a copy of A with an R-labeling.

Moreover, if C is a copy of A with an X ′-computable R-labeling, then we get
an X-computable copy B of A with an X ′-computable isomorphism from B
to C.

Remark 4.2.6. For some structures A, Condition (3) is satisfied in a strong
way. For any C ≅ A, D(C)′ computes an R-labeling of C. Hence, if A is low,
there is a ∆0

2 isomorphism from A to a computable copy.

In several examples, A has effective type completion because it satisfies a
property that we call weak 1-saturation. To describe this property, we need a
preliminary definition.

Definition 4.2.7. Suppose p(u) and q(u,x) are B1-types. We say that
q(u,x) is generated by the formulas of p(u) and existential formulas provided
that q(u,x) ⊇ p(u), and for any universal formula ψ(u,x) (in the indicated
variables), writing neg(ψ) for the natural existential formula logically equiv-
alent to ¬ψ, we have ψ(u,x) ∈ q(u,x) iff there is a finite conjunction χ(u,x)
of existential formulas in q(u,x) such that (∃x)[χ(u,x) & neg(ψ(u,x))] is
not in p(u).

Definition 4.2.8. The structure A is weakly 1-saturated provided that if
p(u) is the B1-type of a tuple a, and q(u,x) is a B1-type generated by
formulas of p(u) and existential formulas, then q(a, x) is realized in A.

Lemma 4.2.9. Let p(u) be a B1-type. Suppose q(u,x) is a B1-type that
is generated by formulas of p(u) and existential formulas. Then q(u,x) is
consistent with all extensions of p(u) to a complete type in variables u.

Proposition 4.2.10. If A is weakly 1-saturated, then it satisfies effective
type completion.

4.3 Examples

4.3.1 Linear orderings

Frolov proved strong jump inversion for two special classes of linear orderings,
with further results on complexity of isomorphisms. The results are given in
[Fro06], [Fro10], [Fro12]. Here we prove these results using Theorem 4.2.5.



4.3. EXAMPLES 45

First, we describe the possible B1 types in linear orderings. Every B1-type
p(u) is determined uniquely by the sizes of the intervals to the left of the first
element, between successive elements, and to the right of the last element.
Thus, we can define a computable enumeration R of all B1-types realized in
linear orderings so that from the index i of the B1-type Ri, we can effectively
obtain the sizes of the intervals.

Proposition 4.3.1. Let A be a linear ordering such that every infinite
interval can be split into two infinite parts. Then A is weakly 1-saturated.

Here is the simpler of the two results on linear orderings.

Theorem 4.3.2. Let A be a linear ordering such that each element lies on
a maximal discrete set that is finite. Suppose there is a finite bound on the
sizes of these sets. Then A admits strong jump inversion. Moreover, if A is
low over X, then there is an X-computable copy with an isomorphism that
is ∆0

2 relative to X.

The next result, Theorem 4.3.3, is more complicated. Before we state
the result, we review some well-known, basic concepts about linear orderings.
Recall the block equivalence relation ∼ on a linear ordering A, where a ∼ b iff
[a, b] is finite. For any linear ordering A, each equivalence class under this
relation is an interval that is either finite or of order type ω,ω∗, or ζ = ω∗ +ω.
Furthermore, the quotient structure A/∼ is itself a linear ordering, where
each distinct point represents an equivalence class under ∼.

In Theorem 4.3.3, for a given A that is low over X, it is not clear that
A itself has an R-labeling that is ∆0

2 relative to X. However, we can build
a copy B with such an R-labeling. We write η for the order type of the
rationals.

Theorem 4.3.3. Let A be a linear ordering for which the quotient A/∼ has
order type η. Suppose also that in A, every infinite interval has arbitrarily
large finite successor chains. Then A admits strong jump inversion. Moreover,
if A is low overX, then there is anX-computable copy B with an isomorphism
that is ∆0

3 over X from A to B.

Lemma 4.3.4. Suppose A is low over X. There is a copy B of A with an
R-labeling that is ∆0

2 over X. Moreover, there is an isomorphism f from B
to A such that f is ∆0

3 relative to X.

Assuming the lemma, we complete the proof of Theorem 4.3.3 as follows.
Given A, low over X, the lemma gives a copy B with an R-labeling that is
∆0

2 relative to X, and an isomorphism f from B to A that is ∆0
3 relative to X.

By Theorem 4.2.5, there is an X-computable copy C with an isomorphism g
from C to B that is ∆0

2 relative to X. Then f ○ g is an isomorphism from C
to A that is ∆0

3 relative to X.
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4.3.2 Boolean algebras

As we mentioned in the introduction, Downey and Jockusch [DJ94] showed
that every low Boolean algebra has a computable copy. In [KS00], it is shown
that for a low Boolean algebra A, there is a computable copy B with a ∆0

4

isomorphism. In unpublished work, Knight and Stob proved that this is
best possible, in the sense that there is a low Boolean algebra with no ∆0

3

isomorphism taking A to a computable copy B.
For every element a in the Boolean algebra B, we say that a has size n if

it is the join of n atoms of B. If a is not the join of finitely many atoms of B,
then we say that a has infinite size. Here we consider Boolean algebras with
no 1-atoms, which means that every infinite element splits into two infinite
elements.

Lemma 4.3.5. If A is a Boolean algebra with no 1-atoms, then A is weakly
1-saturated.

Lemma 4.3.6. Let A be Boolean algebra with no 1-atom. If A is low over
X, then X ′ computes a copy B with an R-labeling. Moreover, there is an
isomorphism f from B to A that is ∆0

3 relative to X.

Proposition 4.3.7. Suppose A is an infinite Boolean algebra with no 1-
atoms. Then A admits strong jump inversion. Moreover, if A is low over X,
there is an X-computable copy B with an isomorphism that is ∆0

3 relative
to X.

4.3.3 Trees

We consider some special classes of subtrees of ω<ω. Our trees grow downward.
The top node is ∅. For the language of trees, we use the predecessor function,
where ∅—the root—is its own predecessor. We consider two special classes of
trees. The first is very simple.

Proposition 4.3.8. Suppose A is a tree such that the top node is infinite
(i.e., it has infinitely many successors), and each infinite node has only finitely
many successors that are terminal, with the rest all infinite. Then A admits
strong jump inversion.

The second class of trees is a bit more complicated. We use some defini-
tions and notation. If T is a sub-tree of ω<ω, and a ∈ T , we write Ta for the
tree consisting of a and all nodes below.

Definition 4.3.9. For nodes a in a fixed tree T ,

(1) we say that a is finite if Ta is finite,
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(2) we say that a is infinite if Ta is infinite. (For the trees we consider
below, if a is infinite, we will require not only that Ta is infinite, but
also that a has infinitely many successors, so we will have agreement
with the definition we used in Proposition 4.3.8.)

Notation. Let a be finite, with Ta the subtree below a. Let T 1
a be a possible

re-labeling of the nodes in Ta in which the nodes in a subtree are labeled ∞.
We write (T 1

a )∗ for the infinite tree that results from extending the labeled
tree T 1

a so that all new nodes in (T 1
a )∗ are labeled ∞, and each node labeled

∞ has infinitely many successors labeled ∞. (No finite node in T 1
a acquires

successors in (T 1
a )∗.)

Here is the result for the second class of trees.

Proposition 4.3.10. Suppose T is a subtree of ω<ω such that the top node
is infinite, and for any infinite node a, there are only finitely many finite
successors. Suppose also that for any infinite node a, for any finite successor
b, if T 1

b is a possible re-labeling of Tb making all nodes in a certain subtree
infinite, then there are infinitely many successors bn of a such that
Tbn ≅ (T 1

b )∗. Then T admits strong jump inversion.

We prove that A is weakly 1-saturated. We have a computable enumera-
tion of the possible finite labeled subtrees, and, hence, of the B1-types realized
in trees of this kind. Let R be this computable enumeration of B1-types. To
apply Theorem 4.2.5, we need the following.

Lemma 4.3.11. There is a copy B of T with a ∆0
2 R-labeling.

Applying Theorem 4.2.5, we get a computable copy of T .

4.3.4 Models of a theory with few B1-types

Lerman and Schmerl [LS79] gave conditions under which an ℵ0-categorical
theory T has a computable model. They assumed that the theory is arith-
metical and T ∩Σn+1 is Σ0

n for each n. In [Kni94], the assumption that T
is arithmetical is dropped, and, instead, it is assumed that T ∩Σn+1 is Σ0

n

uniformly in n. The proof in [LS79] gives the following.

Theorem 4.3.12 (Lerman-Schmerl). Let T be an ℵ0-categorical theory that
is ∆0

N and suppose that for all 1 ≤ n < N , T ∩ Σn+1 is Σ0
n. Then T has a

computable model.

To prove this, Lerman and Schmerl showed the following.

Lemma 4.3.13. For any n < N , if A is a model whose Bn+1-diagram is
computable in X ′, and T ∩Σn+2 is Σ0

1 in X, then there is a model B whose
Bn-diagram is computable in X.
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Let T be as in the Lerman-Schmerl Theorem. Let A be a model of T that
is low over X. Then the Σ1 diagram of A is computable in X ′. Of course,
T ∩Σ2 is Σ0

1, so it is Σ0
1 relative to X. The lemma implies that A has an

X-computable copy. In fact, we get the following.

Theorem 4.3.14. Let T be an elementary first order theory, in a computable
language, such that T ∩Σ2 is Σ0

1. Suppose that for each tuple of variables
x, there are only finitely many B1-types in variables x consistent with T .
Then every model A admits strong jump inversion. Moreover, if A is low
over X, then there is an X-computable copy B with an isomorphism that is
∆0

2 relative to X.

First, we show that there is a computable enumeration R of all the B1-
types. Next, we show that A is weakly 1-saturated. And we prove the next
Lemma.

Lemma 4.3.15. If A is low over X, then there is an R-labeling of A that is
∆0

2 relative to X.

Finally, we apply Theorem 4.2.5 to get an X-computable copy B of A
with an isomorphism from B to A that is ∆0

2 relative to X.
Note: There are non-ℵ0-categorical theories satisfying the conditions of
Theorem 4.3.14.

4.3.5 Differentially closed fields

DF0

A differential field is a field with one or more derivations satisfying the
following familiar rules:

1. δ(u + v) = δ(u) + δ(v), and

2. δ(u ⋅ v) = u ⋅ δ(v) + δ(u) ⋅ v.

We consider differential fields of characteristic 0, and with a single derivation δ.
Trivially, Q is a differential field, under the derivation that takes all

elements to 0. If a is an element of a differential field K, then a generates a
differential field F ⊆K, where the elements of F are gotten from a by closing
under addition, multiplication, subtraction, division, and derivation.

DCF0

Roughly speaking, a differentially closed field is a differential field in which
differential polynomials have roots, where a differential polynomial is a poly-
nomial p(x) in x and its various derivatives. We write DCF0 for the theory
of differentially closed fields (of characteristic 0, with a single derivation). A.
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Robinson showed that the theory DCF0 admits elimination of quantifiers. L.
Blum, in her thesis, gave a nice computable set of axioms, showing that the
theory is decidable. Thus, the elimination of quantifiers is effective. Blum also
showed that DCF0 is ω-stable. Then general model-theoretic results imply
the existence and uniqueness of prime models over an arbitrary set. The
existence and uniqueness of differential closures were not proved by algebraic
methods—they really used the model theoretic results. For a discussion of
differentially closed fields, emphasizing Blum’s results, see Sacks [Sac10].

Differential polynomials

We consider differential polynomials p(x) in a single variable x. A differential
polynomial p(x), over a differential field K, may be thought of as an algebraic
polynomial in K[x, δ(x), δ(2)(x), . . . , δ(n)(x)], for some n. We write K⟨x⟩
for the set of differential polynomials over K. Initially, we let K be Q, where
δ(q) = 0 for all q ∈ Q. Later, K will be a finitely generated extension of Q.
Differential fields satisfy the quotient rule—this is easy to prove from the
product rule. From this, it follows that if a is an element of a differential field
extending K, and F is the differential subfield generated over K by a, then
each element of F can be expressed in the form p(a)

q(a) , where p(x), q(x) ∈K⟨x⟩.

Definition 4.3.16 (Order). For p(x) ∈K⟨x⟩, the order is the greatest n such
that δ(n)(x) appears non-trivially in p(x). There are some special cases. An
algebraic polynomial in x (with no derivatives) has order 0. The 0 polynomial
has order ∞.

Definition 4.3.17 (degree, rank, order of ranks). For p(x) ∈K⟨x⟩ of finite
order n, the degree of p(x) is the highest power k of δ(n)(x) that appears. The
rank of p(x) is the ordered pair (n, k), where n is the order and k is the degree.
We order the possible ranks of differential polynomials lexicographically.

Definition 4.3.18. A differential polynomial p(x) ∈K⟨x⟩ of order n is said
to be irreducible if it is irreducible when considered as an algebraic polynomial
in K[x, δ(x), . . . , δ(n)(x)] (think of x and its derivatives as indeterminates).
We count the 0 polynomial as irreducible.

Blum’s axioms for DCF0

Blum’s axioms say that a differentially closed field (of characteristic 0 and
with a single derivation), is a differential field K such that

(1) for any pair of differential polynomials p(x), q(x) ∈ K⟨x⟩ such that
the order of q(x) is less than that of p(x), there is some x satisfying
p(x) = 0 and q(x) /= 0,

(2) if p(x) has order 0, then p(x) has a root.

The axioms of form (2) say that K is algebraically closed.
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Types

We want to understand the types, in any number of variables, realized in
models of DCF0. For a single variable x, each type over ∅ is determined by an
irreducible differential polynomial p(x) ∈ Q⟨x⟩. If p(x) ∈ Q⟨x⟩ is irreducible
of order n, then the corresponding type consists of formulas provable from
the axioms of DCF0, the formula p(x) = 0 and further formulas q(x) /= 0,
for q(x) ∈ Q⟨x⟩ of order less than n. The formulas q(x) /= 0, for q(x) ∈ Q⟨x⟩
of order less than n, say that x, δ(x), δ(2)(x), . . . , δ(n−1)(x) are algebraically
independent over Q. We allow the case where p(x) is the 0 polynomial, which
has order ∞. In this case, the corresponding type λp consists of the formulas
provable from the axioms of DCF0 and the formulas q(x) /= 0 for q(x) of all
finite orders.

Similarly, for a differential field K, each type over K (to be realized in
some extension of K to a model of DCF0) is determined by an irreducible
differential polynomial p(x) ∈ K⟨x⟩. If p(x) is irreducible of order n, the
corresponding type λK,p consists of formulas provable from the axioms of
DCF0, the atomic diagram of K, the formula p(x) = 0, and further formulas
q(x) /= 0, for q(x) of order less than n. The formulas q(x) /= 0, taken together,
say that x, δ(x), . . . , δ(n−1)(x) are algebraically independent over K.

A proof of the following result can be found in Sacks [Sac10], pp. 297-298.

Proposition 4.3.19.

1. If p(x) ∈ Q⟨x⟩ is irreducible, the corresponding type λp is complete over
∅. Moreover, all types over ∅ (in the variable x) have this form.

2. For a differential field K, if p(x) ∈ K⟨x⟩ is irreducible, then λK,p is a
complete type over K, and all types over K (in the variable x) have
this form.

Among the types in one variable (over ∅, or over K), there is a unique
type, obtained from the 0 polynomial, that is differential transcendental.
The other types, obtained from differential polynomials of finite rank, are
differential algebraic.

Types in several variables

In general, we can determine a type in variables (x1, . . . , xn) by giving the
type of x1 (over ∅), the type of x2 over x1, the type of x3 over (x1, x2),
and so on. To describe a type in variables (x1, . . . , xn), we imagine a large
differentially closed field M and we consider various elements and differential
subfields. The type of x1 is λp1 for some irreducible p1 ∈ Q⟨x1⟩. Let K1 be
the differential subfield of M generated by x1 over Q, where x1 satisfies λp1
in M . The type of x2 over K1 is λK1,p2 for some irreducible p2 ∈ K1⟨x2⟩.
Let K2 be the differential field generated by x2 over K1. In general, given
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Ki generated by x1, . . . , xi, the type of xi+1 over Ki is λKi,pi+1 for some
irreducible pi+1 ∈ Ki⟨xi+1⟩, and then Ki+1 is the differential subfield of M
generated by xi+1 over Ki.

Toward strong jump inversion

Marker and R. Miller [MM17] showed that all models of DCF0 admit strong
jump inversion. Our goal in this subsection is to obtain this result using our
Theorem 4.2.5. In the earlier applications of Theorem 4.2.5, the structures
satisfied the condition of effective type completion because they were weakly
1-saturated. Among the countable models of DCF0, only the saturated one is
weakly 1-saturated. There are 2ℵ0 non-isomorphic countable models. (In fact,
Marker and Miller gave a method for coding an arbitrary countable graph in
a model of DCF0.) We will need to show effective type-completion in some
other way. There is a lemma in [MM17] that does exactly this. Since we
have effective quantifier elimination, we can work with quantifier-free types.
Most of our effort goes into producing a computable enumeration R of the
quantifier-free types realized in models of DCF0. Once we have this, we can
show easily that for any model A, D(A)′ computes an R-labeling of A. This
puts us in position to apply Theorem 4.2.5.

Computable enumeration of types

It may at first seem that it should be easy to produce a computable enu-
meration of types. After all, the theory DCF0 is decidable and all types are
computable. However, T. Millar [Mil78] gave an example of a decidable theory
T , with all types computable, such that there is no computable enumeration
of all types. So, we have some work to do.

By quantifier elimination, we can pass effectively from a quantifier-free
type λ(x) to the complete type generated by DCF0 ∪ λ(x). In what follows,
we will enumerate quantifier-free types. We will consider realizations of the
quantifier-free types in differential fields K that are not differentially closed,
bearing in mind that a tuple realizing λ(x) in K will realize the corresponding
complete type generated by DCF0 ∪ λ(x) in any extension of K to a model
of DCF0.

We eventually give a uniform procedure that, for a given tuple of variables
x, yields an enumeration of the types in x. But first, we give a procedure for
a single variable x in order to elucidate the relevant issues before proceeding
to the full procedure. We determine a type λ(x) corresponding to each
differential polynomial p(x) ∈ Q⟨x⟩, irreducible or not. Let (ϕs)s∈ω be a
computable list of the atomic formulas in variable x, in order of Gödel
number. At each stage, we put into λ(x) finitely many formulas, always
checking consistency with DCF0.

At stage 0, we put into the type λ(x) just the formula p(x) = 0, assuming
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that this is consistent. We also determine the order of p(x)—we can do this
just by inspection. At stage s, we will decide ϕs, putting it or its negation
into λ(x). If p(x) is irreducible, there will be a proof of exactly one of ϕs,
¬ϕs from DCF0, p(x) = 0, and the formulas q(x) /= 0, for q(x) ∈ Q⟨x⟩ of
order less than that of p(x). So, we search for a proof. Being reducible is
c.e., and if p(x) is reducible, we will eventually see this.

At stage s, we search until we either find a proof of ±ϕs or discover that
p(x) is reducible. If we find a proof of ϕs (or ¬ϕs), then we add this formula
to our type, provided that it is consistent to do so. If we find that p(x) is
reducible, then we just decide ϕs so as to maintain consistency with DCF0.
The procedure we have just described gives a type λ corresponding to each
p ∈ Q⟨x⟩. If p is irreducible, then λ = λp. Thus, by considering all p ∈ Q⟨x⟩,
we get all types in the variable x.

A type in one variable corresponded to a differential polynomial p(x)
over Q. Intuitively, we’d like to enumerate types in n variables using all
n-tuple of polynomials, according to the pattern described above in types in
several variables. Unfortunately, since the fields themselves depend on the
polynomials in the tuple, it is not even clear if a potential polynomial would
make sense; one of its coefficients might actually be undefined. Therefore,
our enumeration construction takes these obstacles into account with a more
formal approach. A type in n variables will correspond to an n-tuple of
formal differential polynomials p1(x1), . . . , pn(xn). Here p1(x1) is an actual
differential polynomial with coefficients in Q. For i ≥ 1, pi+1(xi+1) looks
like a differential polynomial, but the coefficients come from a set KF

i of
formal names for possible elements of a differential field generated by elements
x1, . . . , xi. We say more about these formal names below. We define the sets
KF
i and KF

i ⟨xi+1⟩ by induction on i.
The many lemmas below allow us to prove Proposition 4.3.32, the com-

putable enumeration of types, from the basic definitions and results in [Sac10].

Definition 4.3.20.

1. KF
0 = Q, and KF

0 ⟨x1⟩ = Q⟨x1⟩,

2. KF
i ⟨xi+1⟩ is the set of formal expressions that look like differential

polynomials in the variable xi+1 but have coefficients in KF
i as opposed

to a well-defined differential field,

3. KF
i+1 consists of the expressions r(xi+1)

s(xi+1) , where r, s ∈K
F
i ⟨xi+1⟩.

Lemma 4.3.21. Uniformly in n, we can enumerate the n-tuples p1(x1), . . . ,
pn(xn), where pi+1(xi+1) ∈KF

i ⟨xi+1⟩.

Given an n-tuple of formal differential polynomials p1, . . . , pn as above, we
will obtain a type λ(x1, . . . , xn) by producing a sequence of differential fields
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K0, . . . ,Kn, where K0 = Q, and Ki+1 is generated over Ki by an element
xi+1 satisfying a chosen type λi+1 that depends on pi+1. In the end, Kn will
be generated by x1, . . . , xn, and λ(x1, . . . , xn) will be the type realized by
x1, . . . , xn that generates Kn. We give several lemmas.

Lemma 4.3.22. There is a uniform effective procedure that, given a differ-
ential field K and a type λ(x) over K, yields a differential field K ′ ⊇K that
is generated over K by an element x realizing λ.

Given an actual differential field Ki, generated by elements x1, . . . , xi,
some names from KF

i have a definite value in Ki, while others do not. Recall
that the names are quotients. We do not get a value if the denominator is 0.

Lemma 4.3.23. There is a uniform effective procedure that, given a dif-
ferential field Ki generated by elements x1, . . . , xi, and an element f ∈ KF

i ,
determines whether f makes sense, and if so, assigns to f a definite value in
Ki.

Lemma 4.3.24. There is a uniform effective procedure that, given p ∈
KF
i ⟨xi+1⟩ and a differential field Ki generated by elements x1, . . . , xi, deter-

mines whether p makes sense (i.e., whether the coefficients all have value in
Ki), and if so, identifies p with an element of Ki⟨xi+1⟩.

Lemma 4.3.25. There is a uniform effective procedure that, given a dif-
ferential field K and a differential polynomial p(x) over K, enumerates the
differential polynomials q(x) of order lower than that of p(x).

Lemma 4.3.26. There is a uniform effective procedure that, given a differen-
tial field K and a differential polynomial p(x) over K, enumerates the proofs
of formulas ϕ(x) (with parameters in K) from DCF0, D(K), p(x) = 0, and
q(x) /= 0, for q of lower order.

In Lemma 4.3.26, we did not assume that p(x) is irreducible. So, the set
of axioms may not generate a consistent, complete type over K.

Lemma 4.3.27. There is a uniform effective procedure that, given a differ-
ential field K, enumerates the reducible differential polynomials p(x) over
K.

Lemma 4.3.28. Let K be a differential field. For any tuple k in K, DCF0

together with the quantifier-free type of k generates a complete type that
would be realized by k in any extension of K to a model of DCF0.

Lemma 4.3.29. There is a uniform effective procedure for determining, for a
differential field K and a formula ϕ(k, x) (with parameters k in K), whether
ϕ(k, x) is consistent with DCF0 ∪D(K).
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Lemma 4.3.30. There is a uniform effective procedure that, given a differen-
tial field K and p(x) ∈K⟨x⟩, enumerates a type λ(x) for x over K. Moreover,
if p(x) is irreducible, then λ(x) = λK,p.

Proposition 4.3.31. Uniformly in n, we can enumerate the types in n
variables.

As planned, we combine the enumerations of types in variables x1, . . . , xn,
for various n.

Proposition 4.3.32. There is a computable enumeration R of all complete
types realized in models of DCF0.

Now, we can prove the result of Marker and Miller, using our Theorem
4.2.5.

Proposition 4.3.33. Every countable model of DCF0 admits strong jump
inversion.

By Proposition 4.3.32, there is a computable enumeration R of the com-
plete types realized in models of DCF0, and thus, of the B1 types. Thus,
Condition (1) of Theorem 4.2.5 holds. The following lemma shows that
Condition (3) holds in the strong way.

Lemma 4.3.34. Let X be a subset of ω, and let A be a model of DCF0

that is low over X. Then X ′ computes an R-labeling of A.

We need to establish Condition (2), effective type completion. There is a
uniform effective procedure for computing, from a type p(u) and a formula
ϕ(u,x), consistent with p(u), a type q(u,x) such that if c satisfies p(u), then
some a satisfies q(c, x). Marker and Miller [MM17] needed this for the same
reason we do. It is Lemma 4.3 in their paper. (The type q(c, x) will be
realized in the differential closure of c.) The conditions for Theorem 4.2.5
are all satisfied. Therefore, A admits strong jump inversion.

Decidable saturated model of DCF0

In general, a structure A is computable if its atomic diagram is computable,
and A is decidable if the complete diagram is computable. By elimination
of quantifiers, a model of DCF0 is decidable iff it is computable. Using
Proposition 4.3.32, we can show that the countable saturated model of DCF0

has a decidable copy. We need the following result from Morley [Mor76].

Theorem 4.3.35. Let T be a countable complete elementary first order
theory for a computable language. Then the following are equivalent:

1. T has a decidable saturated model,
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2. there is a computable enumeration of all types realized in models of T .

Using Theorem 4.3.35 and Proposition 4.3.32, we get the following.

Corollary 4.3.36. The saturated model of DCF0 has a decidable copy.
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Chapter 5

Effective embeddings and
interpretations

There are different notions that describe the coding (and decoding) of a
structure A in another structure B. The main idea is to see which classes
of structures have more expressive power. We are interested in cases where
there is a uniform effective procedure for coding and decoding, and in cases
where there is no such procedure. We give one negative and one positive
result.There is a body of work in mathematical logic dealing with comparing
the complexity of the classification problem for various classes of structures.

In Model Theory they are looking at the cardinality of the set of isomor-
phism types, we know that the classification problem for the class of countable
linear orderings (2ℵ0 many isomorphism types) must be more complicated
than the classification problem for the class of Q-vector spaces (ℵ0 many
isomorphism types) In Descriptive Set Theory they are using Borel embed-
dings and the ≤B partial ordering induced by the embeddings, we can make
distinctions among classes with 2ℵ0 many isomorphism types. For instance,
it is known that the class of Abelian p-groups of length ω lies strictly below
the class of countable linear orderings in the ≤B partial ordering.

Friedman and Stanley [FS89] considered a Borel embedding of directed
graphs in linear orderings. In [CCKM04], the authors relaxed the convention
that the structures have universe N, to allow finite structures. They introduced
an effective version of Borel embedding. A Turing computable embedding Φ
of class of structures K into another class of structures K ′ gives a uniform
effective procedure for coding each structure from K in a structure from K ′,
which preserves the back-and-forth structure [KMVB07] and isomorphisms.
It is based on the Turing operator. Similar notion, based on the enumeration
operator is introduced in [CCKM04]. Since the enumeration operator is
monotone, it preserves the substructures. Recently, the interest of this notion
is growing [GKV18, BGV19].

The decoding may or may not be effective. Some of the known exam-

57
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ples of Turing computable embeddings involve uniformly defined effective
interpretations. In particular, this is true of the standard codings (due to
Lavrov, Nies, and Marker) of directed graphs, or structures from an arbitrary
computable language, in undirected graphs. One step of decoding gives us
the Medvedev reducibility. Recall that a structure A is Medvedev reducible
to a structure B if there is a Turing operator Φ, that takes a copy of B to a
copy of A. Let Θ be a Turing computable embedding of directed graphs A in
undirected graphs (see [Mar02]). There is a fixed tuple of existential formulas
that give a uniform effective interpretation; i.e., for all directed graphs A,
these formulas interpret A in Θ(A). So, these existential formulas gives us
the decoding. It follows that A is Medvedev reducible to Θ(A) uniformly;
i.e., A ≤s Θ(A) with a fixed Turing operator Φ that serves for all A.

Hirschfeldt, Khoussainov, Shore, and Slinko [HKSS02] give conditions
for completeness of a class of structures. The idea is that the structures in
such class capture all the theoretical-model and structural properties which
a computable structure posses. A class of structures K is complete with
respect to degree spectra, effective dimensions, expansion by constants, and
degree spectra of relations if for every structure B (in a computable language),
there is a structure A ∈ K with the following properties A and B share many
properties—having the same spectrum, the same computable dimension (if B
has a computable copy), which is preserved under expansion by constants,
and If S ⊆ B, there exists U ⊆ A, such that S and U have the same spectra of
relations. In [HKSS02] is shown that the class of undirected graphs, partial
orderings, lattices, the class of rings (with zero- divisors), integral domains
of arbitrary characteristic, commutative semigroups, and the class of 2-step
nilpotent groups are complete.

A more general notion is considered by Montalbàn [Mon14] - the notion
of effective bi-interpretability. Two structures are effectively-bi-interpretable
if there are effective-interpretations of each structure in the other and the
composition of the isomorphisms interpreting one structure inside the other
and then interpreting the other back into the first one to be effective. He
shows that the effective bi-interpretability preserves the most computability
theoretic properties. A more recent result of R. Miller, Poonen, Schoutens,
and Shlapentokh [MPSS18] shows that undirected graphs can be effectively
interpreted in fields and fields are on top for effective-bi-interpretability.

In the next section we present our joint results with Julia Knight and
Stefan Vatev [KAV19] for coding and decoding graphs in linear orderings. In
the second section of this chapter we present an effective interpretation of
fields in 2-step nilpotent groups — Heisenberg groups [ACG+20]. The last
section is devoted to an interpretation of an algebraic closed field C with
characteristic 0 in a special linear group SL2(C).
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5.1 Coding and decoding of graphs in linear order-
ings

The class of undirected graphs and and the class of linear orderings both
lie on top under Turing computable embeddings. The standard Turing
computable embeddings of directed graphs (or structures for an arbitrary
computable relational language) in undirected graphs come with uniform
effective interpretations. We give examples of graphs that are not Medvedev
reducible to any linear ordering, or to the jump of any linear ordering. Any
graph can be Medvedev reducible to the second jump of a linear ordering. For
the known Turing computable embedding of graphs in linear orderings, due to
Friedman and Stanley [FS89], we show that there is no uniform interpretation
defined by Lω1ω formulas; that is, no fixed tuple of Lω1ω formulas can interpret
every graph in its Friedman-Stanley ordering.

We assume that the language of each structure is computable.We may
assume that the languages are relational. We restrict our attention to
structures with universe equal to N. Let Mod(L) be the class of L-structures
with this universe. We identify a structure A with its atomic diagram D(A).
We may identify this, via Gödel numbering, with a set of natural numbers,
or with an element of 2ω. Thus, we think of Mod(L) as a subclass of 2ω.
For a class of structures K ⊆Mod(L), we suppose that K is axiomatized by
an Lω1ω sentence. By a result of López-Escobar [LE65], this is the same as
assuming that K is a Borel subclass of Mod(L) closed under isomorphism.

5.1.1 Borel embeddings

The following definition is from [FS89] in order to investigate a classification
of classes of structures.

Definition 5.1.1. We say that a class K is Borel embeddable in a class K′,
and we write K ≤B K′, if there is a Borel function Φ ∶ K → K′ such that for
A,B ∈ K, A ≅ B iff Φ(A) ≅ Φ(B).

A Borel embedding of K into K′ represents a uniform procedure for coding
structures from K in structures from K′.

Theorem 5.1.2. The following classes lie on top under ≤B , i.e. every structure
could be Borel embedded in this class.

1. undirected graphs

2. fields of any fixed characteristic

3. 2-step nilpotent groups

4. linear orderings
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Friedman and Stanley [FS89] defined an embedding of graphs in fields of
any fixed characteristic. They also defined an embedding of graphs in linear
orderings. For the other classes listed above, Friedman and Stanley credit
earlier sources. Lavrov [Lav63] defined an embedding of Mod(L) (structures
with a domain N in the language L) in undirected graphs, for any language
L. There are similar constructions due to Nies [Nie96] and Marker [Mar02].
Mekler [Mek81] defined an embedding of graphs in 2-step nilpotent groups.
Alternatively, we get an embedding of graphs in 2-step nilpotent groups by
composing the embedding of graphs in fields with an earlier embedding by
Maltsev [Mal60] of fields in 2-step nilpotent groups.

5.1.2 Turing computable embeddings

Knight and her students consider effective embeddings [CCKM04], [KMVB07].

Definition 5.1.4. We say that a class K is Turing computably embedded in
a class K′, and we write K ≤tc K′, if there is a Turing operator Φ ∶ K → K′
such that for all A,B ∈ K, A ≅ B iff Φ(A) ≅ Φ(B).

A Turing computable embedding represents an effective coding procedure.
In [CCKM04] is proven that the same classes from Theorem 5.1.2 are on the
top of Turing computable embedding. The reason for this is that the Borel
embeddings of Friedman-Stanley, Lavrov, Nies, Marker, Mekler, and Maltsev
are all, in fact, Turing computable.

5.1.3 Medvedev reductions

A problem is a subset of 2ω or Nω. Problem P is Medvedev reducible to
problem Q if there is a Turing operator Φ that takes elements of Q to elements
of P . The problems that interest us ask for copies of particular structures,
where each copy is identified with an element of 2ω.

Definition 5.1.6. We say that A is Medvedev reducible to B, and we write
A ≤s B if there is a Turing operator that takes copies of B to copies of A.

Supposing thatA is coded in B, a Medvedev reduction ofA to B represents
an effective decoding procedure.

In a number of familiar examples where A ≤s B, the structure A is defined
or interpreted in B using formulas that let us recover a copy of A from each
copy of B.

The notion of Medvedev reducibility captures part of the idea of effective
recovery (decoding) of a copy of A from a copy of B.

5.1.4 Sample embedding

Below, we describe Marker’s Turing computable embedding of directed graphs
in undirected graphs.
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1. For each point a in the directed graph A, the undirected graph B has a
point ba connected to a triangle.

2. For each ordered pair of points (a, a′) from A, B has a point p(a,a′)
that is connected directly to ba and with one stop to ba′ . The point
p(a,a′) is connected to a square if there is an arrow from a to a′, and to
a pentagon otherwise.

For structures A with more relations, the same idea works—we use more
special points and more n-gons.
Fact: For Marker’s embedding Φ of directed graphs in undirected graphs,
there are finitary existential formulas that, for all inputs A, define the
following.

1. the set D of ba connected to a triangle,

2. the set of ordered pairs (ba, ba′) such that the special point p(a,a′) is
connected to a square,

3. the set of ordered pairs (ba, ba′) such that the special point p(a,a′) is
connected to a pentagon.

This guarantees that any copy of Φ(A) computes a copy of A.

5.1.5 Effective interpretations and computable functors

Informally, a structure A is effectively interpretable in a structure B if there
is an interpretation of A in B (as in Model theory [Mar02]), but the domain
of the interpretation is allowed to be a subset of B<ω, while in the classical
definition it is required to be a subset of Bn for some n), and where all sets
in the interpretation are required to be computable within the structure
(while in the classical definition they should be first-order definable). The
formulas defining the interpretation are generalized computable infitary Σc

1 as
we defined in Chapter 2. Definition 2.5.9. A version with parameters of the
effective interpretability is introduced by Ershov [Ers85] — the Σ-definability
over HF(B), the structure of hereditarily finite sets over B. It uses the first-
order logic over HF(B), and is studied in Russia over the last twenty years
[EPS11, Puz09, MK08, Stu13, Kal09a]. Antonio Montalbán in [Mon, Mon12]
shows that Σ-definability over HF(B) corresponds to effective interpretability
in B with parameters.

Antonio Montalbán defined in [Mon14] a very general kind of interpre-
tation of A in B guaranteeing that A ≤s B. The tuples in B that represent
elements of A have no fixed arity.

As we know by a result from [AKMS89], [Chi90], Theorem 2.5.8, for a
relation R and a structure A, R is relatively intrinsically c.e. (or Σ0

α) on
A iff it is defined in A by a computable Σc

1 (or computable Σc
α) formula,
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with a finite tuple c of parameters in A. Actually, as Montalbán proved in
[Mon12], a relation R ⊂ A<ω is relatively intrinsically c.e. on A if it is defined
by a generalized computable Σc

1 formula with no parameters but with with
infinitely many free variables.

Example 5.1.9. The dependence relation on tuples in a Q-vector space
is a familiar relation with no fixed arity. It is defined by a Σc

1 formula
⋁nϕn(xn) of the kind that we use for effective interpretations. We let
ϕn(xn) = ⋁λ λ(xn) = 0, where λ ranges over the non-trivial rational linear
combinations of xn = (x1, . . . , xn).

Definition 5.1.10. A structure A = (A,Ri) is effectively interpreted in
a structure B if there is a set D ⊆ B<ω, Σc

1-definable over ∅, and there
are relations ∼ and R∗

i on D, computable ∆1-definable over ∅, such that
(D,R∗

i )/∼ ≅ A.

Above, we described Marker’s Turing computable embedding of directed
graphs in undirected graphs, and we saw there are uniform finitary existential
formulas that in the output directed graph a set D and relations ±R∗ such
that (D,R∗) is isomorphic to the input undirected graph. A recent embedding
of graphs in fields, due to R. Miller, Poonen, Schoutens, and Shlapentokh
[MPSS18], gives a uniform effective interpretation.

Harrison-Trainor, Melnikov, R. Miller, and Montalbán [HTMMM17] de-
fined a second notion witch gives an equivalent definition.

Definition 5.1.11. [Computable functor][HTMMM17]
A computable functor from B to A is a pair of Turing operators, Φ and

Ψ, with the following features:

(1) For each C ≅ B, we have Φ(C) ≅ A,

(2) For any B1,B2 ≅ B and any isomorphism f from B1 onto B2, Ψ(B1,B2, f)
is an isomorphism from Φ(B1) onto Φ(B2). The operator Ψ is required
to satisfy some natural properties.

(a) If B1 = B2 ≅ B and f is the identity function, then Ψ(B1,B2, f) is
the identity on Φ(B1).

(b) For B1,B2,B3 ≅ B, and isomorphisms f from B1 to B2 and g from
B2 to B3, Ψ(B1,B3, g ○ f) = Ψ(B2,B3, g) ○Ψ(B1,B2, f).

The main result from [HTMMM17] gives the equivalence of the two
notions.

Theorem 5.1.12. For structures A and B, A is effectively interpreted in B
iff there is a computable functor Φ,Ψ from B to A.

Corollary 5.1.13. If A is effectively interpreted in B, then A ≤s B.
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Kalimullin [Kal12] showed that the converse of the corollary fails. We can
have a Turing operator Φ taking copies of B to copies of A without having a
Turing operator Ψ taking triples (B1,B2, f) to g, where B1,B2 are copies of
B and B1 ≅f B2 and Φ(B1) ≅g Φ(B2).

In the proof of Theorem 5.1.12, it is important that the set D in the
interpretation consist of tuples from B of arbitrary arity. The same is true in
the proof of the following.

Proposition 5.1.14. If A is computable, then A is effectively interpreted
in all structures B.

It is also natural to ask whether, when A is effectively interpreted in
(B, b) with parameters b, it must be effectively interpreted in B without
parameters. Kalimullin [Kal12] gave examples providing negative answers to
both questions.

Maltsev’s embedding Φ of fields in 2-step nilpotent groups involves inter-
preting F in Φ(F ) using formulas with parameters. Recently, we show that
there is a uniform computable functor from Φ(F ) to F . Hence, there is a
uniform effective interpretation of F in Φ(F ) in which the formulas do not
have parameters. We will prove this in Section 5.3.

5.1.6 Interpretations by more general formulas

We may consider interpretations of A in B, where D, ± ∼, and ±R∗
i are

defined in B by Σc
2 formulas, and we have (D, (R∗

i )i∈N)/∼ ≅ A.
Harrison-Trainor, R. Miller, and Montalbán [HTMM18] proved the ana-

logue of the result from [HTMMM17] in which the interpretations are defined
by formulas of Lω1ω, and the functors are Borel. Again for an interpretation
of A in B, the set of tuples in B that represent elements of A may have
arbitrary arity.

Theorem 5.1.15. [HTMM18]
A structure A is interpreted in B using Lω1ω-formulas iff there is a Borel

functor (Φ,Ψ) from B to A.

5.2 Interpreting graphs in linear orderings

As we have seen, any structure can be effectively interpreted in a graph.
Linear orderings do not have so much interpreting power. To show this, we
use the following result of Linda Jean Richter [Ric81].

Proposition 5.2.1 (Richter). For a linear ordering L, the only sets com-
putable in all copies of L are the computable sets.
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Proposition 5.2.2. There is a graph G such that for all linear orderings L,
G /≤s L.

The following result, from [Kni86], is a lifting of Proposition 5.2.1.

Proposition 5.2.3 (Knight). For a linear ordering L, the only sets com-
putable in all copies of L′ (or in the jumps of all copies of L) are the ∆0

2

sets.

This yields a lifting of Proposition 5.2.2.

Proposition 5.2.4. There is a graph G such that for all linear orderings L,
G /≤s L′.

The pattern above does not continue. The following is well-known (see
Theorem 9.12 [AK00]).

Proposition 5.2.5. For any set S, there is a linear ordering L such that for
all copies of L, the second jump computes S.

For a set A, the ordering σ(A ∪ {ω}) (the “shuffle sum” of orderings of
type n for n ∈ A and of type ω) consists of densely many copies of each
of these orderings. The degrees of copies of σ(A ∪ {ω}) are the degrees of
sets X such that A is c.e. relative to X(2). Let A = S ⊕ Sc, where Sc is the
complement of S. Consider the linear ordering L = σ(A ∪ {ω}). Then we
have a pair of finitary Σ3 formulas saying that n ∈ S iff L has a maximal
discrete set of size 2n and n /∈ S iff L has a maximal discrete set of size 2n+ 1.
It follows that any copy of L(2) uniformly computes the set S.

Using Proposition 5.2.5, we get the following.

Proposition 5.2.6. For any graph G, there is a linear ordering L such that
G ≤s L(2),

5.2.1 Turing computable embedding of graphs in linear or-
derings

The class of linear orderings, like the class of graphs, lies on top under Turing
computable embeddings. We describe the Turing computable embedding L,
given in [FS89], of directed graphs in linear orderings.

Friedman-Stanley embedding. First, let (An)n∈ω be an effective partition
of Q into disjoint dense sets. Let (tn)1≤n<ω be a list of the atomic types in
the language of directed graphs. We let t1 be the type of ∅, we put the types
for single elements next, then the types for distinct pairs, then the types for
distinct triples, etc. For a graph G, the ordering L(G) is a sub-ordering of
Q<ω, with the lexicographic ordering. The elements of L(G) are the finite
sequences r0q1r1 . . . rn−1qnrnk ∈ Q<ω such that
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1. for i < n, ri ∈ A0, and rn ∈ A1,

2. there is a special tuple in G, of length n, satisfying the atomic type tm,
and k is a natural number less than m,

3. if n ≥ 1 and the special tuple is a1, . . . , an, then for all i with 1 ≤ i ≤ n,
qi ∈ Aai .

In talks, Knight has claimed, without any proof, that this embedding
does not represent an interpretation. Our goal in the rest of the section is to
prove the following theorem.

Theorem 5.2.7 (Main Theorem). There do not exist Lω1ω-formulas that,
for all graphs G, interpret G in L(G).

We begin with some definitions and simple lemmas about L(G).

Definition 5.2.8. Let b = r0q1r1 . . . rn−1qnrnk ∈ L(G). We say that b men-
tions a if a is the special tuple in G of length n, such that for 1 ≤ i ≤ n,
qi ∈ Aai .

Lemma 5.2.9. Suppose b ∈ L(G) mentions a. Then b lies in a maximal
discrete interval of some finite size m ≥ 1. The number m tells us the atomic
type of a; in particular, it tells us the length of a.

The structure of the linear ordering L(G) does not directly tell us the
lengths of the elements b (as elements of Q<ω). However, if b mentions a of
length n, then b has length 2n + 2.

Lemma 5.2.10. If b ∈ L(G) has length 2n + 2, then there is an infinite
interval around b that consists entirely of elements of length at least 2n + 2.

Lemma 5.2.11. Let b, b′ ∈ L(G), where b < b′, and let d be an element of
[b, b′] of minimum length. If d mentions c, then all elements of [b, b′] mention
extensions of c.

Let b be a tuple in L(G). For each bi in b, let ai be the tuple in G
mentioned by bi. The formulas true of b in L(G) are determined by the
formulas true in G of the various ai, together with the “shape” of b.

Definition 5.2.12. For a tuple b = (b1, . . . , bn) in L(G), with b1 < b2 < . . . <
bn, the shape encodes the following information:

1. the order type of b—for simplicity, we suppose that
b1 < b2 < . . . < bn,

2. the size of each interval (bi, bi+1)—we note that the interval is infinite
unless bi, bi+1 belong to the same finite discrete set in L(G), which
means that they agree on all but the last term,
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3. the location of each bi in the finite discrete interval to which it belongs,

4. the length of each bi,

5. for i < n, the number ki such that 2ki + 2 is the length of a shortest
element d in the interval [bi, bi+1]—d mentions a tuple c of length ki,
and all elements of [bi, bi+1] mention tuples that extend c.

Proposition 5.2.13. For each n-tuple b, there exist Πc
4, and Σc

4 formulas in
the language of linear orderings saying, in L(G) for any G, that the n-tuple
x has the same shape as some fixed tuple b.

Remarks on elements of length 2: Suppose d has length 2. Then ∅ is
the tuple mentioned by d and the atomic type of ∅ is t1, so d has the form
r00, where r0 ∈ A1. Note that d is the only element of L(G) that starts
with r0. If b < d < b′, then b has first term r and b′ has first term r′, where
r < r0 < r′. Since all Ai are dense in Q, essentially everything happens in the
intervals (b, d) and (d, b′).

Lemma 5.2.14. Suppose c < c∗ < c′ in L(G), where c∗ has length 2.

(1) For any e in (c,∞), there is an automorphism of (c,∞) taking e to
some e′ in the interval (c, c∗).

(2) For any e in (−∞, c′), there is an automorphism of (−∞, c′) taking e
to some e′ in the interval (c∗, c′).

If a < b in the ordering L(G), we may say that a lies to the left of b, or
that b lies to the right of a.

Lemma 5.2.15. Let b be a finite tuple in L(G), and let c be an element of
L(G).

(1) There is an automorphism of L(G) taking b to a tuple b
′
entirely to

the right of c, with elements of length 2 in between.

(2) There is also an automorphism taking b to a tuple b
′′
entirely to the

left of c, with elements of length 2 in between.

5.2.2 The relations ∼γ

Below, we recall a family of equivalence relations, defined for pairs of tuples,
from the same structure, or from two different structures.

Definition 5.2.16. Let A and B be structures for a fixed finite relational
language. Let a and b be tuples of the same length, where a is in A and b is
in B.
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(1) (A, a) ∼0 (B, b) if the tuples a and b satisfy the same atomic formulas
in their respective structures.

(2) For γ > 0, (A, a) ∼γ (B, b) if for all β < γ,

(a) for all c ∈ A, there exists d ∈ B such that (A, a, c) ∼β (B, b, d),
(b) for all d ∈ B, there exists c ∈ A such that (A, a, c) ∼β (B, b, d).

Note: We write A ∼γ B to indicate that (A,∅) ∼γ (B,∅).

Lemma 5.2.17. Let A be a computable structure for a finite relational
language. For any γ < ωCK1 and for any tuple a in A, we can effectively find
a Πc

2γ-formula ϕγa(x) such that A ⊧ ϕγa(b) iff a ∼γ b.

Lemma 5.2.18. Let L be a fixed finite relational language. For any com-
putable ordinal γ, and any tuples of variables x, y, of the same length, we
can effectively find a computable Π2γ-formula ϕγ(x, y) such that for any L-
structure A, and any tuples a and b from A, A ⊧ ϕγ(a, b) iff (A, a) ∼γ (A, b).

The next lemma is well-known, and the proof is straightforward.

Lemma 5.2.19. Let A and B be structures for the same countable language,
and let a and b be tuples of the same length, in A and B,respectively. Then
for any countable ordinal γ, if (A, a) ∼γ (B, b), then the Σc

γ formulas true of
a in A are the same as the those true of b in B.

5.2.3 ∼
γ-equivalence in linear orderings

In a linear orderings, the ∼γ-classes of a tuple a are determined by the ∼γ-
classes of the intervals with endpoints in a. Let A and B be linear orderings.
Let a = a1 < . . . < an be a tuple in A, and let b = b1 < . . . < bn be a tuple in
B. Let I0, . . . , In and J0, . . . , Jn be the intervals in A and B determined by a
and b; i.e., I0 is the interval (−∞, a1) in A, J0 is the interval (−∞, b1) in B,
for i < n, Ii is the interval (ai, ai+1) in A, Ji is the interval (bi, bi+1) in B, In
is the interval (an,∞) in A, and Jn is the interval (bn,∞) in B. The next
lemma is well-known, and the proof is straightforward.

Lemma 5.2.20. (A, a) ∼γ (B, b) iff for i ≤ n, Ii ∼γ Ji.

5.2.4 More on the orderings L(G)

We return to the orderings of form L(G). In the next subsection, we will
prove that there do not exist Lω1ω formulas that, for all G, interpret G in
L(G). Roughly speaking, the outline is as follows. We assume that there are
such formulas. The formulas are Σα, for some countable ordinal α. Moreover,
they are X-computable Σα for some X such that α < ωX1 . Taking G to be
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the ordering ωX1 , we will produce tuples b, c, b
′
in L(G) representing elements

a, e, a′ of G such that b, c ∼γ c, b′, although in G, we have a < e and a′ < e.
This is a contradiction. The current subsection gives several lemmas about
the relations ∼γ on tuples in L(G), and about automorphisms of L(G). These
lemmas are what we need to produce the tuples b, c, b

′
.

To start off, we note that if a1, a2 ∼1 b1, b2, then the sizes of the intervals
(a1, a2) and (b1, b2) match. Moreover, if a ∼2 b, then a and b belong to
maximal discrete intervals of the same size.

Lemma 5.2.21. Let I = (b, b′), where b < b′, and let J = (c, c′), where c < c′.
Suppose b ∼γ c and b′ ∼γ c′, where some b∗ ∈ I and some c∗ ∈ J each have
length 2. Then I ∼γ J .

Lemma 5.2.22. Let b1, b2, c1, c2 be increasing sequences in L(G), where
b1 ∼γ c1 and b2 ∼γ c2. Suppose further that there is an element of length 2
between the last element of b1 and the first element of b2, and there is an
element of length 2 between the last element of c1 and the first element of c2.
Then b1, b2 ∼γ c1, c2.

Lemma 5.2.23. Suppose b, b
′
are tuples in L(G) of the same shape. Let

a, a′ be the full tuples from G mentioned by the bi’s, or the b′i’s. If a ∼γ a′,
then b ∼γ b′.

Definition 5.2.24. We say that A is a computable infinitary substructure
of B if A is a substructure of B and for all computable infinitary formulas
ϕ(x) and all a in A, B ⊧ ϕ(a) iff A ⊧ ϕ(a). (The definition is the same as
elementary substructure except that the formulas are not elementary (finitary)
first order.)

Lemma 5.2.25. Let G1 and G2 be directed graphs such that G1 is a com-
putable infinitary substructure of G2. Suppose also that G2 is computable,
so L(G2) is computable. Then L(G1) is a computable infinitary substructure
of L(G2).

5.2.5 Proof of Theorem 5.2.7

Theorem 5.2.7 says that there are no Lω1ω-formulas that, for all directed
graphs G, define an interpretation of G in L(G). We introduce the ideas of
the proof in Proposition 5.2.27. Among the directed graphs are the linear
orderings. The Harrison ordering H [Har68] has order type ωCK1 (1+η). While
ωCK1 has no computable copy, H does have a computable copy. It is well
known that H and ωCK1 satisfy the same computable infinitary sentences. In
fact, they satisfy the same Πα sentences of Lω1ω for all computable ordinals
α.

Let I be the initial segment of H of order type ωCK1 . Thinking of H
as a directed graph, we can form the linear orderings L(H) and L(I). By
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Proposition 5.1.14, just because H has a computable copy, it is effectively
interpreted in every structure B. Our result will say that there are no
computable infinitary formulas that define an interpretation of H in L(H)
and also define an interpretation of I in L(I).

We apply Lemma 5.2.25 to conclude that L(I) is a computable infinitary
substructure of H.

Proposition 5.2.26. L(I) is a computable infinitary substructure of L(H).

Proposition 5.2.27. There do not exist computable infinitary formulas that
define an interpretation of H in L(H) and also define an interpretation of I
in L(I).

In order to prove Proposition 5.2.27 suppose there are computable infini-
tary formulas that define an interpretation of H in L(H), and also define an
interpretation of I in L(I). Say D, ∼, and < are the sets of tuples defined
by these formulas in L(H).

For each computable ordinal α, we have a formula ϕα(x) saying of an
element x in H that pred(x) = {y ∶ y < x} has order type α. Let ψα(x)
be the translation formula saying of a tuple x that it is in D and the
set of predecessors of the equivalence class of x has order type α. For
each computable ordinal α, there is a tuple in D satisfying ψα(x) (for an
appropriate x). Since L(I) is a computable infinitary substructure of L(H),
some tuple from D in L(I) also satisfies ψα(x). Moreover, each tuple from
D in L(I) satisfies one of the formulas ψα. Recall that the ordering H is
computable, and so is L(H). We define equivalence relations ≡γ on D.

Definition 5.2.28. For tuples a and b in D, let a ≡γ b iff

1. a and b have the same shape and

2. a ∼γ b.

Fact: For each computable ordinal γ and each a in D, the ≡γ-class of a is
defined by a computable infinitary formula.

Lemma 5.2.29. For each computable ordinal γ, there is a ≡γ-class C such
that there are arbitrarily large computable ordinals α for which some b in C
satisfies ψα.

Suppose that the formulas defining D, < , and ∼ are all Σc
γ . Since D

may have no fixed arity, we mean that there is a computable sequence of Σc
γ

formulas defining the sets of n-tuples in D, and similarly for < and ∼. By
Lemma 5.2.29, there is a set C ⊆D in which all tuples have the same shape
and are in the same ∼γ-class—in particular, the tuples in C all have the same
arity. We choose tuples b and c in L(I), both belonging to C, such that b
satisfies ψα and c satisfies ψβ , where α < β.



70CHAPTER 5. EFFECTIVE EMBEDDINGS AND INTERPRETATIONS

By Lemma 5.2.15, we may suppose that all elements of the tuple b lie to
the left of the <-first element of c, and the interval between the <-greatest
element of b and the <-first element of c contains an element of length 2.
Also, by the same lemma, we have a tuple b

′
, automorphic to b, such that all

elements of b
′
lie to the right of the <-greatest element of c, and the interval

between the <-greatest element of c and the <-first element of b
′
contains

an element of length 2. Since b satisfies ψα and c satisfies ψβ, we should
have L(I) ⊧ b < c. Since b′ is automorphic to b, it should also satisfy ψα, so
we should have L(I) ⊧ b′ < c. Applying Lemma 5.2.22, we get the fact that
b, c ∼γ c, b′. Therefore, since L(I) ⊧ b < c, and < is defined by a Σc

γ-formula,
we have L(I) ⊧ c < b′. This is the contradiction that we were expecting when
we set out to prove Proposition 5.2.27.

Proposition 5.2.30. There is no interpretation of ωCK1 in L(ωCK1 ) defined
by computable infinitary formulas.

Suppose we have an interpretation of ωCK1 in L(ωCK1 ), defined by com-
putable infinitary formulas. Say that the formulas that define the appropriate
D, < , and ∼ are Σc

γ . Our assumption gives the fact that for a Harrison
ordering with well-ordered initial segment I, these formulas interpret I in
L(I). However, the assumption does not say that they also interpret H in
L(H). Thus, we are not in a position to use the important Lemma 5.2.29.

Lemma 5.2.31. Let A be a computable structure. If B satisfies the com-
putable infinitary sentences true in A, then the formulas ϕγ

d
that define the

∼γ-equivalence classes of all tuples in A also define the ∼γ-equivalence classes
of all tuples in B. Moreover, if B ⊧ ϕγ

d
(b), then the Σc

γ-formulas true of b in
B are the same as those true of d in A.

The next lemma gives the conclusion of Lemma 5.2.29. The proof involves
locating ωCK1 inside a larger ordering similar to the Harrison ordering.

Lemma 5.2.32. In L(ωCK1 ), there are tuples dα, corresponding to arbitrarily
large computable ordinals α, such that all dα are in D, all have the same
length and shape, all are ∼γ-equivalent, and dα satisfies ψα.

We use Barwise-Kreisel Compactness. Let Γ be a Π1
1 set of computable

infinitary sentences describing a structure

U = (U1 ∪U2, U1,<1, U2,<2, F, c)

such that

1. U1 and U2 are disjoint sets,

2. (U1,<1) is a linear ordering that satisfies the computable infinitary
sentences true in ωCK1 and H—since H is computable, this is Π1

1,
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3. (U2,<2) satisfies the computable infinitary sentences true in L(ωCK1 )—
this is Π1

1 since L(H) is computable and L(I) is a computable infinitary
substructure of L(H),

4. F is a function from DU2 to U1 that induces an isomorphism between
(DU2 , < )/∼U2 and (U1,<1),

5. c is a constant in U1 such that c >1 α for all computable ordinals α; i.e.,
there is a proper initial segment of <1-pred(c) of type α.

Every ∆1
1 subset of Γ is satisfied by taking copies of ωCK1 , L(ωCK1 ), with

an appropriate function F , and letting c be a sufficiently large computable
ordinal. Therefore, the whole set Γ has a model. Let b be an element of
DU2 such that F (b) = c. Let C be the set of tuples of U2 having the shape
of b and ∼γ-equivalent to b. Since (U2,<2) satisfies the same computable
infinitary sentences true in the computable structure L(H), by the lemma
above, the ∼γ-equivalence class of b is defined in (U2,<2) by a computable
infinitary formula. For each computable ordinal α, we have a computable
infinitary sentence χα saying that some tuple in C does not satisfy ψβ for
any β < α. The sentence χα is true in our model of Γ, witnessed by b such
that F (b) = c. Therefore, the sentence χα is true also in L(ωCK1 ), witnessed
by some b

′
. Since our formulas define an interpretation of ωCK1 in L(ωCK1 ),

the witness b
′
for χα in L(ωCK1 ) must satisfy ψγ for some γ ≥ α.

Now, we can proceed as in the proof of Proposition 5.2.27. We are working
in L(ωCK1 ). We choose b, c, from the sequence of dα’s in the lemma, such that
b ∼γ c, where b satisfies ψα and c satisfies ψβ , for α < β. By Lemma 5.2.15, we
may suppose that the elements of b all lie to the left of the <-first element of c,
and the interval between the <-greatest element of b and the <-first element of
c contains an element of length 2. Since α < β, we should have L(ωCK1 ) ⊧ b < c.
We can take b

′
automorphic to b such that all elements of b

′
lie to the right of

the <-greatest element of c, and the interval between the <-greatest element
of c and the <-first element of b

′
contains an element of length 2. Clearly,

L(ωCK1 ) ⊧ b′ < c since b′ satisfies ψα(x). Applying Lemma 5.2.22 we get the
fact that b, c ∼γ c, b′. It follows that L(ωCK1 ) ⊧ c < b′, which is a contradiction.

We are ready to complete the proof of Theorem 5.2.7, saying that there
is no tuple of Lω1ω-formulas that, for all directed graphs G, interprets G in
L(G).

Suppose that we have such formulas. For some X, the formulas are
X-computable infinitary. Let G be a linear ordering of type ωX1 . Relativizing
Proposition 5.2.30, we have the fact that G is not interpreted in L(G) by
any X-computable formulas.

The Friedman-Stanley embedding represents a uniform effective encoding
of directed graphs in linear orderings. We have seen that there is no uniform
interpretation of the input graph in the output linear ordering.
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Conjecture 1. Let Φ be a Turing computable embedding of directed graphs
in linear orderings. There do not exist Lω1ω formulas that, for all directed
graphs G, define an interpretation of G in Φ(G).
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5.3 Interpreting a field into the Heisenberg group

The Heisenberg group of a field F is the upper-triangular subgroup of GL3(F )
in which all matrices have 1’s along the diagonal and 0’s below it. Maltsev
[Mal60] showed that there are existential formulas with parameters, which,
for every field F , define F in its Heisenberg group H(F ). In this section we
will show that there are existential formulas without parameters, which, for
every field F , interpret F in H(F ). Observing what is used to obtain this
result, we will then formulate a general result on removing parameters from
an interpretation.

Here is a uniform definition of the effective interpretation (see Definition
5.1.10), and a uniform definition of computable functor (see Definition 5.1.11).

Suppose K ≤tc K ′ via Θ.

(1) We say that the structures in K are uniformly effectively interpreted in
their Θ-images if there is a fixed collection of generalized computable
Σc

1 formulas (without parameters) (see Definition 2.5.9) such that, for
all A ∈K, define an interpretation of A in Θ(A).

(2) We say that Φ and Ψ form a uniform computable functor from the
structures Θ(A) to A if these Turing operators serve for all A ∈K.

There is a uniform version of Theorem 5.1.12.

Theorem 5.3.3. For classes K,K ′ with K ≤tc K ′ via Θ, the following are
equivalent:

1. there are computable Σc
1 formulas (without parameters) which, for all

A ∈K, effectively interpret A in Θ(A),

2. there are uniform Turing operators Φ,Ψ that, for all A ∈ K, form a
computable functor from Θ(A) to A.

Maltsev defined a Turing computable embedding of fields in 2-step nilpo-
tent groups. The embedding takes each field F to its Heisenberg group
H(F ). To show that the embedding preserves isomorphism, Maltsev gave
uniform existential formulas defining a copy of F in H(F ). The definitions
involved a pair of parameters, whose orbit is defined by an existential (in fact,
quantifier-free) formula. In Section 5.3.1, we recall Maltsev’s definitions. In
Section 5.3.2, we describe a uniform computable functor that, for all F , takes
copies of H(F ), with their isomorphisms, to copies of F , with corresponding
isomorphisms. By Theorem 5.3.3, it follows that there is a uniform effective
interpretation of F in H(F ) with no parameters. In Section 5.3.3, we give
explicit finitary existential formulas that define such an interpretation. In
Section 5.3.4, we note that although F is effectively interpretable in H(F )
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and H(F ) is effectively interpretable in F , we do not, in general, have ef-
fective bi-interpretability. In Section 5.3.5, we generalize what we did in
passing from Maltsev’s definition, with parameters, to the uniform effective
interpretation, with no parameters. This is a joint work [ACG+20] with Alvir,
Calvert, Goodman, Harizanov, Knight, Morozov, Miller, and Weisshaar.

5.3.1 Defining F in H(F )

In this section, we recall Maltsev’s embedding of fields in 2-step nilpotent
groups, and his formulas that define a copy of the field in the group. Recall
that for a field F , the Heisenberg group H(F ) is the set of matrices of the
form

h(a, b, c) =
⎡⎢⎢⎢⎢⎢⎣

1 a c
0 1 b
0 0 1

⎤⎥⎥⎥⎥⎥⎦
with entries in F . Note that h(0, 0, 0) is the identity matrix. We are interested
in non-commuting pairs in H(F ). One such pair is (h(1, 0, 0), h(0, 1, 0)). For
u = h(u1, u2, u3) and v = h(v1, v2, v3), let

∆(u,v) = ∣ u1 v1

u2 v2
∣ .

For a group G, we write Z(G) for the center. For group elements x, y, the
commutator is [x, y] = x−1y−1xy. The following technical lemma provides
much of the information we need to show that F is defined, with parameters,
in H(F ).

Lemma 5.3.4. 1. (a) For u and v, the commutator, [u, v], is h(0, 0,∆(u,v)),
and

(b) [u, v] = 1 iff ∆(u,v) = 0.

2. Let u = h(u1, u2, u3), and let v = h(v1, v2, v3). If [ u1

u2
] = [ 0

0
], then

u ∈ Z(H(F )). If [ u1

u2
] /= [ 0

0
], then [u, v] = 1 iff there exists α such

that [ v1

v2
] = α ⋅ [ u1

u2
].

3. Z(H(F )) consists of the elements of the form h(0,0, c).

4. If [u, v] /= 1, then x ∈ Z(H(F )) iff [x,u] = [x, v] = 1.

Corollary 5.3.5. If x ∈H(F ) is fixed by all automorphisms of H(F ), then
x = 1.
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The next lemma tells us how, for any non-commuting pair u, v in the
group (H(F ),∗), we can define operations + and ⋅, and an isomorphism f
from F to (Z(H(F )),+, ⋅).

Lemma 5.3.6. Let u = h(u1, u2, u3) and v = h(v1, v2, v3) be a non-commuting
pair. Assume that α,β, γ ∈ F . Let x = h(0, 0, α ⋅∆(u,v)), y = h(0, 0, β ⋅∆(u,v)),
and z = h(0,0, γ ⋅∆(u,v)). Then

1. α + β = γ iff x ∗ y = z, where ∗ is the matrix multiplication.

2. α ⋅β = γ iff there exist x′ and y′ such that [x′, u] = [y′, v] = 1, [u, y′] = y,
[x′, v] = x, and z = [x′, y′].

The main result of the section follows directly from Lemmas 5.3.4 and
5.3.6.

Theorem 5.3.7. For an arbitrary non-commuting pair (u, v) in H(F ), we
get F(u,v) = (Z(H(F )),⊕,⊗(u,v)) where

1. x ∈ Z(H(F )) iff [x,u] = [x, v] = 1,

2. ⊕ is the group operation from H(F ),

3. ⊗(u,v) is the set of triples (x, y, z) such that there exist x′, y′ with
[x′, u] = [y′, v] = 1, [x′, v] = x, [u, y′] = y, and [x′, y′] = z,

4. the function g(u,v) taking α ∈ F to h(0,0, α ⋅ ∆(u,v)) ∈ H(F ) is an
isomorphism between F and F(u,v).

Note: From Part 4, it is clear that h(0, 0,∆(u,v)) is the multiplicative identity
in F(u,v)—we may write 1(u,v) for this element.

Proposition 5.3.8. There is a uniform Medvedev reduction Φ of F to H(F ).

Given G ≅ H(F ), we search for a non-commuting pair (u, v) in G, and
then use Maltsev’s definitions to get a copy of F computable from G.

It turns out that the Medvedev reduction Φ is half of a computable
functor. In the next subsection, we explain how to get the other half.

5.3.2 The computable functor

In the previous subsection, we saw that for any field F and any non-commuting
pair (u, v) in H(F ), there is an isomorphic copy F(u,v) of F defined in H(F )
by finitary existential formulas with parameters (u, v). The defining formulas
are the same for all F . Hence, there is a uniform Turing operator Φ that,
for all fields F , takes copies of H(F ) to copies of F . In this subsection, we
describe a companion operator Ψ so that Φ and Ψ together form a uniform
computable functor. For any field F , and any triple (G1, p,G2) such that
G1 and G2 are copies of H(F ) and p is an isomorphism from G1 onto G2,
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the function Ψ(G1, p,G2) must be an isomorphism from Φ(G1) onto Φ(G2),
and, moreover, the isomorphisms given by Ψ must preserve identity and
composition. We saw in the previous subsection that for any field F , and
any non-commuting pair (u, v) in H(F ), the function g(u,v) taking α to
h(0,0, α ⋅∆(u,v)) is an isomorphism from F onto F(u,v). We use this g(u,v)
below.

Lemma 5.3.9. For any F and any non-commuting pairs (u, v), (u′, v′) in
H(F ), there is a natural isomorphism f(u,v),(u′,v′) from F(u,v) onto F(u′,v′).
Moreover, the family of isomorphisms f(u,v),(u′,v′) is functorial; i.e.,

1. for any non-commuting pair (u, v), the function f(u,v),(u,v) is the iden-
tity,

2. for any three non-commuting pairs (u, v), (u′, v′), and (u′′, v′′),

f(u,v),(u′′,v′′) = f(u′,v′),(u′′,v′′) ○ f(u,v),(u′,v′).

The next lemma says that there is a uniform existential definition of the
family of isomorphisms f(u,v),(u′,v′).

Lemma 5.3.10. There is a finitary existential formula ψ(u, v, u′, v′, x, y)
that, for any two non-commuting pairs (u, v) and (u′, v′), defines the isomor-
phism f(u,v),(u′,v′) taking x ∈ F(u,v) to y ∈ F(u′,v′).

We use Lemmas 5.3.9 and 5.3.10 to prove the following.

Proposition 5.3.11. There is a uniform computable functor that, for all
fields F , takes H(F ) to F .

Corollary 5.3.12. There is a uniform effective interpretation of F in H(F ).

The result from [HTMMM17] gives a uniform interpretation of F in
H(F ), valid for all countable fields F , using computable Σc

1 formulas with no
parameters. The tuples from H(F ) that represent elements of F may have
arbitrary arity. In the next subsection, we will do better.

We note here that the uniform interpretation of F in H(F ) given in this
subsection allows one to transfer the computable-model-theoretic properties
of any graph G to a 2-step-nilpotent group, without introducing any constants.
This is not a new result: in [Mek81], Mekler gave a related coding of graphs
into 2-step-nilpotent groups, which, in concert with the completeness of graphs
for such properties (see [HKSS02]), appears to yield the same fact, although
Mekler’s coding had different goals than completeness. Then, in [HKSS02],
Hirschfeldt, Khoussainov, Shore, and Slinko used Maltsev’s interpretation
of an integral domain in its Heisenberg group with two parameters, along
with the completeness of integral domains, to re-establish it. More recently,
[MPSS18] demonstrated the completeness of fields, by coding graphs into
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fields, From that result, along with Corollary 5.3.12 and the usual definition
of H(F ) as a matrix group given by a set of triples from F , we achieve a
coding of graphs into fields, different from Mekler’s coding, with no constants
required.

5.3.3 Defining the interpretation directly

Our goal in this section is to give explicit existential formulas defining
a uniform effective interpretation of a field in its Heisenberg group. We
discovered the formulas for this interpretation by examining the infinitary
formulas used in the interpretation in Corollary 5.3.12 and trimming them
down to their essence, which turned out to be finitary.

Theorem 5.3.13. There are finitary existential formulas that, uniformly for
every field F , define an effective interpretation of F in H(F ), with elements
of F represented by triples of elements from H(F ).

We offer intuition before giving the formal proof. The domain D of the
interpretation consists of those triples (u, v, x) from H(F ) with uv ≠ vu and
x in the center: for each single (u, v), we apply Maltsev’s definitions, with u,
v as parameters, to get F(u,v) ≅ F . We view the triples arranged as follows:

F(u,v) F(u′,v′) F(u′′,v′′) ⋯

(u, v, x0)
(u, v, x1)
(u, v, x2)
(u, v, x3)

⋮

(u′, v′, x0)
(u′, v′, x1)
(u′, v′, x2)
(u′, v′, x3)

⋮

(u′′, v′′, x0)
(u′′, v′′, x1)
(u′′, v′′, x2)
(u′′, v′′, x3)

⋮

Here each column can be seen as F(u,v) for some non-commuting pair
(u, v). Now the system of isomorphisms from Lemma 5.3.9 allow us to identify
each element in one column with a single element from each other column,
and modding out by this identification will yield a single copy of F .

LetH be a group isomorphic toH(F ). Recalling the natural isomorphisms
f(u,v),(u′,v′) defined in Lemma 5.3.9 for non-commuting pairs (u, v) and
(u′, v′), we define D ⊆H, a binary relation ∼ on D, and ternary relations ⊕,
⊙ (which are binary operations) on D, as follows.

1. D is the set of triples (u, v, x) such that uv ≠ vu and xu = ux and
xv = vx. (Notice that, no matter which non-commuting pair (u, v)
is chosen, the set of corresponding elements x is precisely the center
Z(H), by Theorem 5.3.7.)
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2. (u, v, x) ∼ (u′, v′, x′) holds if and only if the isomorphism f(u,v),(u′,v′)
from F(u,v) to F(u′,v′) maps x to x′.

3. ⊕((u, v, x), (u′, v′, y′), (u′′, v′′, z′′)) holds if there exist y, z ∈ H such
that
(u, v, y) ∼ (u′, v′, y′) and (u, v, z) ∼ (u′′, v′′, z′′), and F(u,v) ⊧ x + y = z.

4. ⊙((u, v, x), (u′, v′, y′), (u′′, v′′, z′′)) holds if there exist y, z ∈ H such
that
(u, v, y) ∼ (u′, v′, y′) and (u, v, z) ∼ (u′′, v′′, z′′), and F(u,v) ⊧ x ⋅ y = z.

In Theorem 5.3.13, to eliminate parameters from Maltsev’s definition of F in
H(F ), we gave an interpretation of F in H(F ), rather than another definition.
(Recall that a definition is an interpretation in which the equivalence relation
on the domain is simply equality.) We now demonstrate the impossibility of
strengthening the theorem to give a parameter-free definition of F in H(F ).

Proposition 5.3.14. There is no parameter-free definition of any field F in
its Heisenberg group H(F ) by finitary formulas.

5.3.4 Question of bi-interpretability

If B is interpreted in A, we write BA for the copy of B given by the inter-
pretation of B in A. The structures A and B are effectively bi-interpretable
if there are uniformly relatively computable isomorphisms f from A onto
ABA and g from B onto BAB . In general, the isomorphism f would map
each element of A to an equivalence class of equivalence classes of tuples in
A. We would represent f by a relation Rf that holds for a, a1, . . . , ar if f
maps a to the equivalence class of the tuple of equivalence classes of the ai’s.
Similarly, the isomorphism g would be represented by a relation Rg that holds
for b, b1, . . . , br if g maps b to the equivalence class of the tuple of equivalence
classes of the bi’s. Saying that f and g are uniformly relatively computable is
equivalent to saying that the relations Rf , Rg, have generalized computable
Σc

1 definitions without parameters.
For a field F and its Heisenberg group H(F ), when we define H(F ) in F ,

the elements of H(F ) are represented by triples from F , and we have finitary
formulas, quantifier-free or existential, that define the group operation (as a
relation). When we interpret F in H(F ), the elements of F are represented by
triples from H(F ), and we have finitary existential formulas that define the
field operations and their negations (as ternary relations). Thus, in FH(F )F

(the copy of F interpreted in the copy of H(F ) that is defined in F ), the
elements are equivalence classes of triples of triples. In H(F )FH(F ) (the copy
of H(F ) defined in the copy of F that is interpreted in H(F )), the elements
are triples of equivalence classes of triples. So, an isomorphism f from F to
FH(F )F is represented by a 10-ary relation Rf on F , and an isomorphism
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g from H(F ) to H(F )FH(F )—it is represented by a 10-ary relation Rg on
H(F ).

For a Turing computable embedding Θ of K in K ′ we have uniform
effective bi-interpretability if there are (generalized) computable Σc

1 formulas
with no parameters that, for all A ∈K and B = Θ(A), define isomorphisms
fromA toABA and from B to BAB . After a talk by the fifth author, Montalbán
asked the following very natural question.

Question 5.3.15. Do we have uniform effective bi-interpretability of F and
H(F )?

The answer to this question is negative. In particular, Q and H(Q) are
not effectively bi-interpretable. One way to see this is to note that Q is rigid,
while H(Q) is not—in particular, for any non-commuting pair, u, v ∈H(Q),
there is a group automorphism that takes (u, v) to (v, u). The negative answer
to Question 5.3.15 then follows from [Mon, Lemma VI.26(4)], which states
that if A and B are effectively bi-interpretable, then their automorphism
groups are isomorphic.

Morozov’s result shows which half of effective bi-interpretability causes
the difficulties.

Proposition 5.3.16. There is a finitary existential formula that, for all F ,
defines in F a specific isomorphism k from F to FH(F )F .

The other half of what we would need for uniform effective bi-interpretability
is sometimes impossible, as remarked above in the case F = Q. We do not
know of any examples where F and H(F ) are effectively bi-interpretable:
the obstacle for Q might hold in all cases.

Problem 5.3.17. For which fields F , if any, are the automorphism groups
of F and H(F ) isomorphic?

Even if there are fields F such that Aut(F ) ≅ Aut(H(F )), we suspect
that F and H(F ) are not effectively bi-interpretable, simply because it is
difficult to see how one might give a computable Σc

1 formula in the language
of groups that defines a specific isomorphism from H(F ) to H(F )FH(F ) .

5.3.5 Generalizing the method

Our first general definition and proposition follow closely the example of a
field and its Heisenberg group.

Definition 5.3.18. LetA be a structure for a computable relational language.
Assume that its basic relations are Ri, where Ri is ki-ary. We say that A
is effectively defined in B with parameters b if there exist D(b) ⊆ B<ω, and
±Ri(b) ⊆D(b)ki , defined by a uniformly computable sequence of generalized
computable Σc

1 formulas with parameters b.
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Proposition 5.3.19. Suppose A is effectively defined in B with parameters
b. For c in the orbit of b, let Ac be the copy of A defined by the same formulas,
but with parameters c replacing b. Then the following conditions together
suffice to give an effective interpretation of A in B without parameters:

(1) The orbit of b is defined by a computable Σc
1 formula ϕ(u);

(2) There is a generalized computable Σc
1 formula ψ(u, v, x, y) such that for

all c, d in the orbit of b, the formula ψ(c, d, x, y) defines an isomorphism
fc,d from Ac onto Ad; and

(3) The family of isomorphisms fc,d preserves identity and composition.

Corollary 5.3.20. In the situation of Proposition 5.3.19, if D(b) is contained
in Bn for some single n ∈ ω, then the ψ in item (2) and the formulas
in Definition 5.3.18 will simply be computable Σc

1 formulas (as opposed
to generalized computable Σc

1 formulas) and the interpretation of A in B
without parameters will also be by computable (as opposed to generalized)
Σc

1 formulas.

Definition 5.3.21. We say that A, with basic relations Ri, ki-ary, is effec-
tively interpreted with parameters b in B if there exist D ⊆ B<ω, ≡⊆D2, and
R∗
i ⊆Dki such that

1. (D, (R∗
i )i)/≡ ≅ A,

2. D, ± ≡, and ±R∗
i are defined by a computable sequence of generalized

computable Σc
1 formulas, with a fixed finite tuple of parameters b.

Again, in the case where D ⊆ Bn for some fixed n, the formulas defining
the effective interpretation are computable Σc

1 formulas of the usual kind,
with parameters b.

Proposition 5.3.22. Suppose that A (with basic relations Ri, ki-ary) has
an effective interpretation in B with parameters b. For c in the orbit of b,
let Ac be the copy of A obtained by replacing the parameters b by c in the
defining formulas, with domain Dc/≡c containing ≡c-classes [a]≡c . Then the
following conditions suffice for an effective interpretation of A in B (without
parameters):

(1) The orbit of b is defined by a computable Σc
1 formula ϕ(x);

(2) There is a relation F ⊆ B<ω, with a generalized computable Σc
1-definition,

such that for every c and d in the orbit of b, the set of pairs (x, y) ∈
Dc ×Dd with (c, d, x, y) ∈ F is invariant under ≡c on x and under ≡d on
y, and defines an isomorphism fc,d from Ac onto Ad; and

(3) The family of isomorphisms fc,d preserves identity and composition.
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We show that our results apply not only to effective interpretations, but
to all interpretations using generalized Lω1ω formulas.

Theorem 5.3.23. Let A be a relational structure with basic relations Ri
that are ki-ary. Suppose there is an interpretation of A in B by generalized
Lω1ω formulas, with parameters b from B. For c in the orbit of b, let Ac be
the copy of A obtained by the interpretation with parameters c replacing
b. Assume that there is a generalized Lω1ω-definable relation F defining, for
each c and d in the orbit of b, an isomorphism fc,d ∶ Ac → Ad as in Proposition
5.3.22, and that this family is closed under composition, with the identity
map as fc,c for all c.

Then there is an interpretation of A in B by Lω1ω formulas without
parameters. Moreover, the new interpretation satisfies all of the following.

• For each countable ordinal α, if the interpretation in (B, b) defines D,
≡, and each Ri using Σα formulas from Lω1ω, and F and the orbit
of b in B are both defined by Σα formulas, then the parameter-free
interpretation also uses Σα formulas to define these sets.

• For each countable ordinal α, if the interpretation in (B, b) defines each
of D, ±≡, and ±Ri using Σα formulas, and F and the orbit of b in B are
both defined by Σα formulas, then the parameter-free interpretation
also uses Σα formulas to define its domain, its equivalence relation ∼,
the complement /∼, and its relations ±Ri. (Defining /∼ and ¬Ri this way
is required by the usual notion of effective Σα interpretation.)

• Let X ⊆ N. If the interpretation in (B, b) used X-computable formulas,
and F and the orbit of b in B are both defined by X-computable
formulas, then the parameter-free interpretation also usesX-computable
formulas.

(With X = ∅, X-computable formulas are simply computable formulas.)

5.4 Interpreting ACF (0) - C in a special linear group
SL2(C)

Let C be an algebraically closed field of characteristic 0 - ACF (0). We
write SL2(C) for the group of 2 × 2 matrices over C with determinant 1.
Clearly, SL2(C) is defined in C without parameters. Each particular C has
a computable copy, and that is effectively interpreted in SL2(C). But, there
are infinitely many non-isomorphic C, differing in transcendence degree. We
give finitary existential formulas that (for all C) define C in SL2(C), with a
pair of parameters. Before defining the field as a whole, we look separately at
addition and multiplication. This is a work in progress together with Alvir,
Knight and Miller [AKMS].
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Defining (C,+)

Let A be the set of matrices in SL2(C) of the form [ 1 a
0 1

]. Note that on

A, matrix multiplication gives addition; that is,

[ 1 a
0 1

] ∗ [ 1 b
0 1

] = [ 1 a + b
0 1

] .

We can define A using the parameter p = [ 1 1
0 1

].

Claim 1: The matrices that commute with p have the forms [ 1 b
0 1

],

[ −1 b
0 −1

].

It is easy to check that I is the unique element of SL2(C) that is its own
square. Thus, we can define I by a quantifier-free formula. Now, I has many
square roots apart from ±I. However, these do not commute with p—the
unique square root of I that is not equal to I and commutes with p is −I.

Claim 2: x ∈ A iff x commutes with p and x has a square root that commutes
with p.
Now, (C,+) ≅ (A,∗), so we have a copy of (C,+) defined in SL2(C) using
the parameter p.

5.4.1 Defining (C ∖ {0}, ⋅)

LetM be the set of matrices of form [ a 0
0 a−1 ]. OnM , matrix multiplication

gives multiplication; that is, [ a 0
0 a−1 ] ∗ [ b 0

0 b−1 ] = [ ab 0
0 (ab)−1 ]. We

can define M using a parameter q = [ 2 0

0 1
2

].

Claim 3: x ∈M iff x commutes with q.

We have (C ∖ {0}, ⋅) ≅ (M,∗), so (C ∖ {0}, ⋅) is defined in SL2(C) using
quantifier-free formulas with the parameter q.

5.4.2 Defining (C,+, ⋅)

To define the field (C,+, ⋅), we represent an element a ∈ C by a pair of
matrices (x, y), where x ∈ A and y ∈ M . The most natural choice for x is

[ 1 a
0 1

]. If a /= 0, then we let y = [ a 0
0 a−1 ], while if a = 0, then we let
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y = I. For a = 1, we choose (p, I), and for a = 0, we choose (I, I)—the same
second component. Let T be the set of these pairs (x, y) chosen to represent
elements of C.

Claim 4: (x, y) ∈ T iff either x = y = I (so (x, y) represents 0) or else
x /= I, x ∈ A, y ∈ M , and there is some z such that z ∗ z = y, z ∈ M , and
z ∗ p ∗ z−1 = x. (In the second case, (x, y) represents some a /= 0, and there
are just two possibilities for z, corresponding to the two possible square roots
of a.)

For (x, y) ∈ T , we define addition and multiplication relations as follows:

1. (x, y)⊕ (x′, y′) = (u, v) if x ∗ x′ = u and (u, v) ∈ T ,

2. (x, y)⊗ (x′, y′) = (u, v) if either at least one of (x, y), (x′, y′) is (I, I)
and (u, v) = (I, I), or else neither of (x, y), (x′, y′) is (I, I), and then
y ∗ y′ = v and (u, v) ∈ T .

We have established the following.

Proposition 5.4.1. The field C is defined in SL2(C) using finitary existen-
tial formulas with parameters p and q. (The definition of T is existential,
while the definitions of the operations are quantifier-free.)

Question 5.4.2. Are there formulas that, for all algebraically closed fields
C of characteristic 0, define an effective interpretation of C in SL2(C)? Are
there existential formulas that serve?

Remarks. There are old model theoretic results, due to Poizat [Poi01], that
give uniform definability of a copy of C in SL2(C) using elementary first
order formulas without parameters. But we do not know the complexity of
the defining formulas. We have a formula ϕ(u, v), saying of the formulas D,
± ∼, ⊕, and ⊗ that give our interpretation of C in SL2(C) that they give
an field, not of characteristic 2, in which every element has a square root.
For any (u, v) satisfying this formula, we get an infinite field F(u,v). The
theory of SL2(C) is ω-stable. By an old result of Macintyre, F(u,v) must
be algebraically closed. Poizat’s results show that F(u,v) is isomorphic to C
and that there are unique definable isomorphisms between the fields F(u,v)
corresponding to pairs (u, v) that satisfy ϕ(u, v). These isomorphisms are
functorial. So, we have, not necessarily an effective interpretation without
parameters, but one that is defined by elementary first order formulas. We
do not know the complexity of the formulas.
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Chapter 6

Cohesive powers

The ultimate inspiration for this work is Skolem’s 1934 construction of a
countable non-standard model of arithmetic [Sko34]. Skolem’s construction
can be described roughly as follows. For sets X,Y ⊆ N, write X ⊆∗ Y if X ∖Y
is finite. First, fix an infinite set C ⊆ N that is cohesive for the collection
of arithmetical sets: for every arithmetical A ⊆ N, either C ⊆∗ A or C ⊆∗ A.
Next, define an equivalence relation =C on the arithmetical functions f ∶N→ N
by f =C g if and only if C ⊆∗ {n ∶ f(n) = g(n)}. Then define a structure on the
=C-equivalence classes [f] by [f]+[g] = [f +g], [f]×[g] = [f ×g] (where f +g
and f × g are computed pointwise), and [f] < [g] ⇔ C ⊆∗ {n ∶ f(n) < g(n)}.
Using the arithmetical cohesiveness of C, one then shows that this structure
is elementarily equivalent to (N;+,×,<). The structure is countable because
there are only countably many arithmetical functions, and it has non-standard
elements, such as the element represented by the identity function.

Think of Skolem’s construction as a more effective analog of an ultrapower
construction. Instead of building a structure from all functions f ∶N → N,
Skolem builds a structure from only the arithmetical functions f . The
arithmetically cohesive set C plays the role of the ultrafilter. Feferman,
Scott, and Tennenbaum [FST59] investigate the question of whether Skolem’s
construction can be made more effective by assuming that C is only r-cohesive
(i.e., cohesive for the collection of computable sets) and by restricting to
computable functions f . They answer the question negatively by showing
that it is not even possible to obtain a model of Peano arithmetic in this
way. Lerman [Ler70] investigates the situation further and shows that if
one restricts to cohesive sets C (i.e., cohesive for the collection of c.e. sets)
that are co-c.e. and to computable functions f , then the first-order theory of
the structure obtained is exactly determined by the many-one degree of C.
Additional results in this direction appear in [Hir75, HW75].

Dimitrov [Dim09] generalizes the effective ultrapower construction to
arbitrary computable structures. These cohesive powers of computable
structures are studied in [Dim08, DH15, DHMM14] in relation to the lattice

85
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of c.e. subspaces, modulo finite dimension, of a fixed computable infinite
dimensional vector space over Q. In this work, we investigate a question dual
to the question studied by Lerman. Lerman fixes a computable presentation of
a computable structure (indeed, all computable presentations of the standard
model of arithmetic are computably isomorphic) and studies the effect that
the choice of the cohesive set has on the resulting cohesive power. Instead of
fixing a computable presentation of a structure and varying the cohesive set,
we fix a computably presentable structure and a cohesive set, and then we
vary the structure’s computable presentation. We focus on linear orders, with
special emphasis on computable presentations of ω. We choose to work with
linear orders because they are a good source of non-computably categorical
structures and because the setting is simple enough to be able to completely
describe certain cohesive powers up to isomorphism. This work [DHM+19]
and a greatly expanded version [DHM+20] is a joint with Dimitrov, Harizanov,
Morozov, Shafer, and Vatev.

Our main results are the following, where ω, ζ, and η denote the respective
order-types of the natural numbers, the integers, and the rationals.

• If C is cohesive and L is a computable copy of ω that is computably
isomorphic to the standard presentation of ω (i.e., L has a computable
successor function), then the cohesive power ΠCL has order-type ω+ζη.
(Corollary 6.4.6.)

• If C is co-c.e. and cohesive and L is a computable copy of ω, then
the finite condensation of the cohesive power ΠCL has order-type
1 + η. (Theorem 6.4.4. See Definition 6.3.3 for the definition of finite
condensation.)

• If C is co-c.e. and cohesive, then there is a computable copy L of ω
where the cohesive power ΠCL has order-type ω + η. (Corollary 6.5.2.)

• More generally, if C is co-c.e. and cohesive and X ⊆ N ∖ {0} is either a
Σ0

2 set or a Π0
2 set, thought of as a set of finite order-types, then there is

a computable copy L of ω where the cohesive power ΠCL has order-type
ω + σ(X ∪ {ω + ζη + ω∗}). Here ω∗ denotes the reverse of ω, and σ
denotes the shuffle operation of Definition 6.6.1. Furthermore, if X is
finite and non-empty, then there is a computable copy L of ω where
the cohesive power ΠCL has order-type ω + σ(X). (Theorem 6.6.6.)

The above results provide many examples of pairs of isomorphic com-
putable linear orders with non-elementarily equivalent cohesive powers. We
also give examples of computable linear orders that are always isomorphic to
their cohesive powers and examples of pairs of non-elementarily equivalent
computable linear orders with isomorphic cohesive powers.
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6.1 Basic properties

Definition 6.1.1. An infinite set C ⊆ N is cohesive if for every c.e. set W ,
either C ⊆∗ W or C ⊆∗ W .

Notice that if C is cohesive and X is either c.e. or co-c.e., then C ∩X
being infinite implies that C ⊆∗ X. We use quantifiers ∀∞n and ∃∞n as
abbreviations for ‘for almost every n’ and ‘there are infinitely many n’. So
for example, (∀∞n ∈ C)(n ∈X) means C ⊆∗ X.

Definition 6.1.2 ([Dim09]). Let L be a computable language. Let A be
a computable L-structure with non-empty domain A ⊆ N. Let C ⊆ N be
cohesive. The cohesive power of A over C, denoted ΠCA, is the L-structure
B defined as follows.

• LetD = {ϕ ∣ ϕ∶N→ A is partial computable function and C ⊆∗ dom(ϕ)}.

• For ϕ,ψ ∈D, let ϕ =C ψ denote C ⊆∗ {x ∶ ϕ(x)↓ = ψ(x)↓}. The relation
=C is an equivalence relation on D. Let [ϕ] denote the equivalence
class of ϕ ∈D with respect to =C .

• The domain of B is the set B = {[ϕ] ∶ ϕ ∈D}.

• Let R be an n-ary predicate symbol of L. For [ϕ0], . . . , [ϕn−1] ∈ B,
define

RB([ϕ0], . . . , [ϕn−1]) ⇔ C ⊆∗ {x ∶ (∀i < n)ϕi(x)↓∧
RA(ϕ0(x), . . . , ϕn−1(x))}.

• Let f be an n-ary function symbol of L. For [ϕ0], . . . , [ϕn−1] ∈ B, let
ψ be the partial computable function defined by

ψ(x) ≃ fA(ϕ0(x), . . . , ϕn−1(x)),

and notice that C ⊆∗ dom(ψ) because C ⊆∗ dom(ϕi) for each i < n.
Define fB by fB([ϕ0], . . . , [ϕn−1]) = [ψ].

• Let c be a constant symbol of L. Let ψ be the total computable function
with constant value cA, and define cB = [ψ].

We often consider cohesive powers of computable structures by co-c.e.
cohesive sets. The co-c.e. cohesive sets are exactly the complements of the
maximal sets, which are the co-atoms of the lattice of c.e. sets modulo finite
difference. Such sets exist by a well-known theorem of Friedberg (see [Soa87]
Theorem X.3.3). Cohesive powers are intended to be effective analogs of
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ultrapowers, so in light of this analogy, it makes sense to impose effectivity
on the cohesive set, which plays the role of the ultrafilter, as well as on the
base structure itself. Technically, it helps to be able to learn what numbers
are not in the cohesive set C when building a computable structure A so as
to influence ΠCA in a particular way. Cohesive powers by co-c.e. cohesive
sets also have the helpful property that every member of the cohesive power
has a total computable representative.

A restricted form of  Los’s theorem holds for cohesive powers. If A is
a computable structure, C is a cohesive set, and Φ is a Π3 sentence, then
ΠCA ⊧ Φ implies A ⊧ Φ. In general, this version of  Los’s theorem for cohesive
powers is the best possible. In Sections 6.4, 6.5, and 6.6, we see several
examples of computable linear orders L where the Σ0

3 sentence “there is an
element with no immediate successor” is true of some cohesive power of L
but not true of L.

Theorem 6.1.3 ([Dim09]). Let A be a computable structure, and let C be
a cohesive set.

(1) Let t(v0, . . . , vn−1) be a term. Let [ϕ0], . . . , [ϕn−1] ∈ ∣ΠCA∣. Let ψ be
the partial computable function ψ(x) ≃ tA(ϕ0(x), . . . , ϕn−1(x)). Then
tΠCA([ϕ0], . . . , [ϕn−1]) = [ψ].

(2) Let Φ(v0, . . . , vn−1) be a Boolean combination of Σ0
1 and Π0

1 formulas,
with all free variables displayed. For any [ϕ0], . . . , [ϕn−1] ∈ ∣ΠCA∣,

ΠCA ⊧ Φ([ϕ0], . . . , [ϕn−1]) ⇔ C ⊆∗ {x ∶ (∀i < n)ϕi(x)↓∧
A ⊧ Φ(ϕ0(x), . . . , ϕn−1(x))}.

(3) If Φ is a Π0
2 sentence or a Σ0

2 sentence, then ΠCA ⊧ Φ if and only if
A ⊧ Φ.

(4) If Φ is a Π3 sentence and ΠCA ⊧ Φ, then A ⊧ Φ.

As with structures and their ultrapowers, a computable structure A
always naturally embeds into its cohesive powers. For a ∈ A, let ψa be the
total computable function with constant value a. Then for any cohesive
set C, the map a ↦ [ψa] embeds A into ΠCA. This map is called the
canonical embedding of A into ΠCA. If A is finite and C is cohesive, then
every partial computable function ϕ∶N→ ∣A∣ with C ⊆∗ dom(ϕ) is eventually
constant on C. In this case, every element of ΠCA is in the range of the
canonical embedding, and therefore A ≅ ΠCA. If A is an infinite computable
structure, then every cohesive power ΠCA is countably infinite: infinite
because A embeds into ΠCA, and countable because the elements of ΠCA
are represented by partial computable functions. See [Dim09] for further
details.
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Computable structures that are computably isomorphic have isomorphic
cohesive powers. This fact essentially appears in [Dim09], but we include a
proof here for reference.

Theorem 6.1.4. Let A0 and A1 be computable L-structures that are com-
putably isomorphic, and let C be cohesive. Then ΠCA0 ≅ ΠCA1.

Recall that a computable structure A is called computably categorical
if every computable structure that is isomorphic to A is isomorphic to A
via a computable isomorphism. It follows from Theorem 6.1.4 that if A
is a computably categorical computable structure and C is cohesive, then
ΠCA ≅ ΠCB whenever B is a computable structure isomorphic to A.

Corollary 6.1.5. Let A be a computably categorical computable structure,
let B be a computable structure isomorphic to A, and let C be cohesive.
Then ΠCA ≅ ΠCB.

In Theorem 6.1.4, it is essential that the two structures are isomorphic
via a computable isomorphism. In the next section we present a construction
with two isomorphic structures which cohesive powers are not isomorphic.
In Sections 6.4, 6.5, and 6.6, we see many examples of pairs of computable
linear orders that are isomorphic (but not computably isomorphic) to ω with
non-elementarily equivalent cohesive powers.

6.2 Non-Isomorphic Cohesive Powers of Isomorphic
Structures

Theorem 6.2.1. For every co-maximal set C ⊆ N there exist two isomorphic
computable structures A and B such the cohesive powers ∏C A and ∏C B
are not isomorphic.

Let S be the set of the even numbers. For every infinite set A ⊆ S, such
that S ∖ A is infinite, we construct a computable structure MA = (N, P ),
where P (x,w, y) says that there is an arrow with label w from x to y (e.g.,
x

wÐ→ y) with several properties, including: the formula

Φ(x, y) = ∃wP (x,w, y) ∧ ¬∃w1P (y,w1, x)

will be satisfied by exactly those x, y ∈ A such that x < y. Moreover for any
infinite D, E ⊆ S and such that S ∖D and S ∖ E are infinite and c.e., we
haveMD ≅ME . The formula Θ(x) defines the set A inMA, where

Θ(x) = (∃t) [Φ(x, t) ∨Φ(t, x)] .

For any structureM= (M,P ) in the language with one ternary predicate
symbol let LM = {x ∈M ∣M ⊧ Θ(x)}, and <LM= {(x, y) ∈M ×M ∣M ⊧ Φ(x, y)} .
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Fix A ⊆ S such that S ∖ A is infinite and c.e. It follows that the formula
Φ(x, y) defines inMA the restriction of the natural order < to A. Clearly,
(LMA

,<LMA
) has order type ω.

LetM♯
A =∏CMA. For partial computable functions f and g such that

[f] , [g] ∈ dom(M♯
A) we have:

(i)M♯
A ⊧ Φ([f] , [g])⇔ C ⊆∗ {i∣ (f(i) ∈ A) ∧ (g(i) ∈ A) ∧ (f(i) < g(i))}

(ii) LM♯
A
= {[f] ∈M♯

A∣ f(C) ⊆∗ A} and (LM♯
A
,<LM♯

A

) is a linear order.

For any a ∈ A let fa(i) = a for all i ∈ ω. We will call the element [fa] in
M♯

A a constant inM♯
A.

The set of constants {[fa] ∣a ∈ A} in the structureM♯
A forms an initial

segment of (LM♯
A
,<LM♯

A

) of order type ω.

We now define the following Σ0
3 sentence

Ψ = (∃x) [Θ(x) ∧ (∀y) [Θ(y)⇒ Φ(y, x)]] .

The intended interpretation of Ψ is that when Φ(x, t) defines a linear order
(LM,<LM) , then the order has a greatest element. Note that MA ⊧ ¬Ψ.

This is because (LMA
,<LMA

) has order type ω and hence has no greatest
element.

We use the Proposition 2.1 from [Ler70].

Proposition 6.2.2. (Lerman [Ler70]) Let R be a co-r-maximal set, and
let f be a computable function such that f(R) ∩ R is infinite. Then the
restriction f ↾ R differs from the identity function only finitely.

We now fix a co-maximal (hence co-r-maximal) set C ⊆ S and an infinite
co-infinite computable set D ⊆ S. We haveMC ≅MD. LetM♯

C =∏CMC

andM♯
D =∏CMD.

It is not hard to show that, since C is co-maximal, for every partial
computable function ϕ for which C ⊆∗ dom(ϕ), there is a computable function
fϕ such that [ϕ] = [fϕ] (see [DHMM14]).

To finish the proof we will establish the following facts:
M♯

C ⊧ Ψ
M♯

D ⊧ ¬Ψ
In conclusion, we defined computable isomorphic structuresMC andMD

such that ∏CMC and ∏CMD are not even elementary equivalent. The
structureMC also provides a sharp bound for the fundamental theorem of
cohesive powers. Namely, for the Σ0

3 sentence Ψ,MC ⊧ ¬Ψ but ∏CMC ⊧ Ψ.

6.3 Linear orders and their cohesive powers

We investigate the cohesive powers of computable linear orders, with special
attention to computable linear orders of type ω. A linear order L = (L,≺)
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consists of a non-empty set L equipped with a binary relation ≺ satisfying
the following axioms.

• ∀x (x ⊀ x)

• ∀x∀y (x ≺ y → y ⊀ x)

• ∀x∀y∀z [(x ≺ y ∧ y ≺ z) → x ≺ z]

• ∀x∀y (x ≺ y ∨ x = y ∨ y ≺ x)

Additionally, a linear order L is dense if ∀x∀y∃z (x ≺ y → x ≺ z ≺ y) and has
no endpoints if ∀x∃y∃z (y ≺ x ≺ z). Rosenstein’s book [Ros82] is an excellent
reference for linear orders.

For a linear order L = (L,≺), we use the usual interval notation (a, b)L =
{x ∈ L ∶ a ≺ x ≺ b} and [a, b]L = {x ∈ L ∶ a ⪯ x ⪯ b} to denote open and closed
intervals of L. Sometimes it is convenient to allow b ⪯ a in this notation,
in which case, for example, (a, b)L = ∅. The notation ∣(a, b)L∣ denotes the
cardinality of the interval (a, b)L. The notations min≺{a, b} and max≺{a, b}
denote the minimum and maximum of a and b with respect to ≺.

As is customary, ω denotes the order-type of (N,<), ζ denotes the order-
type of (Z,<), and η denotes the order-type of (Q,<). That is, ω, ζ, and
η denote the respective order-types of the natural numbers, the integers,
and the rationals, each with their usual order. We refer to (N,<), (Z,<),
and (Q,<) as the standard presentations of ω, ζ, and η, respectively. Recall
that every countable dense linear order without endpoints has order-type η
(see [Ros82] Theorem 2.8). Furthermore, every computable countable dense
linear order without endpoints is computably isomorphic to Q (see [Ros82]
Exercise 16.4).

To help reason about order-types, we use the sum, product, and reverse
of linear orders as well as condensations of linear orders.

Definition 6.3.1. Let L0 = (L0,≺L0) and L1 = (L0,≺L1) be linear orders.

• The sum L0 + L1 of L0 and L1 is the linear order S = (S,≺S), where
S = ({0} ×L0) ∪ ({1} ×L1) and

(i, x) ≺S (j, y) if and only if (i < j) ∨ (i = j ∧ x ≺Li y).

• The product L0L1 of L0 and L1 is the linear order P = (P,≺P), where
P = L1 ×L0 and

(x, a) ≺P (y, b) if and only if (x ≺L1 y) ∨ (x = y ∧ a ≺L0 b).

Note that, by (fairly entrenched) convention, L0L1 is given by the
product order on L1 ×L0, not on L0 ×L1.
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• The reverse L∗0 of L0 is the linear order R = (R,≺R), where R = L0

and x ≺R y if and only if y ≺L0 x. We warn the reader that the ∗ in the
notation L∗0 is unrelated to the ∗ in the notation X ⊆∗ Y .

If L0 and L1 are computable linear orders, then one may use the pairing
function ⟨⋅, ⋅⟩ to compute copies of L0 + L1 and L0L1. Clearly, if L is a
computable linear order, then so is L∗.

Definition 6.3.2. Let L = (L,≺L) be a linear order. A condensation of L is
any linear orderM = (M,≺M) obtained by partitioning L into a collection
of non-empty intervals M and, for intervals I, J ∈M , defining I ≺M J if and
only if (∀a ∈ I)(∀b ∈ J)(a ≺L b).

The most important condensation is the finite condensation.

Definition 6.3.3. Let L = (L,≺L) be a linear order. For x ∈ L, let cF(x)
denote the set of y ∈ L for which there are only finitely many elements between
x and y:

cF(x) = {y ∈ L ∶ the interval [min≺L{x, y},max≺L{x, y}]L in L is finite}.

The set cF(x) is always a non-empty interval, as x ∈ cF(x). The finite
condensation cF(L) of L is the condensation obtained from the partition
{cF(x) ∶ x ∈ L}.

For example, cF(ω) ≅ 1, cF(ζ) ≅ 1, cF(η) ≅ η, and cF(ω + ζη) ≅ 1 + η.
Notice that for an element x of a linear order L, the order-type of cF(x) is
always either finite, ω, ω∗, or ζ.

We often refer to the intervals that comprise a condensation of a linear
order L as blocks. For the finite condensation of L, a block is a maximal
interval I such that for any two elements of I, there are only finitely many
elements of L between them. For elements a and b of L, we write a ⋞L b if the
interval (a, b)L (equivalently, the interval [a, b]L) in L is infinite. For a ≺L b,
we have that a ⋞L b if and only if a and b are in different blocks. See [Ros82]
Chapter 4 for more on condensations.

It is straightforward to directly verify that if L is a computable linear
order and C is cohesive, then ΠCL is again a linear order. Furthermore, one
may verify that if L is a computable dense linear order without endpoints,
then ΠCL is again a dense linear order without endpoints. These two facts
also follow from Theorem 6.1.3 because linear orders are described by Π0

1

sentences, and dense linear orders without endpoints are described by Π0
2

sentences.
The case of Q = (Q,<) is curious and deserves a digression. We have

seen that if A is a finite structure, then A ≅ ΠCA for every cohesive set
C. For Q, ΠCQ is a countable dense linear order without endpoints, and
hence isomorphic to Q, for every cohesive set C. Thus Q is an example of an
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infinite computable structure with Q ≅ ΠCQ for every cohesive set C. That
Q is isomorphic to all of its cohesive powers is no accident. By combining
Theorem 6.1.3 with the theory of Fraïssé limits (see [Hod93] Chapter 6, for
example), we see that a uniformly locally finite ultrahomogeneous computable
structure for a finite language is always isomorphic to all of its cohesive powers.
Recall that a structure is locally finite if every finitely-generated substructure
is finite and is uniformly locally finite if there is a function f ∶N → N such
that every substructure generated by at most n elements has cardinality at
most f(n). Notice that every structure for a finite relational language is
uniformly locally finite. Also recall that a structure is ultrahomogeneous if
every isomorphism between two finitely-generated substructures extends to
an automorphism of the structure.

Proposition 6.3.4. Let A be an infinite uniformly locally finite ultrahomo-
geneous computable structure for a finite language, and let C be cohesive.
Then A ≅ ΠCA.

Proposition 6.3.4 implies that if a uniformly locally finite computable
structure for a finite language is a Fräissé limit, then it is isomorphic to all of
its cohesive powers. Thus computable presentations of the Rado graph and the
countable atomless Boolean algebra are additional examples of computable
structures that are isomorphic to all of their cohesive powers. Examples of
this phenomenon that cannot be attributed to ultrahomogeneity appear in
Sections 6.4 and 6.5.

Returning to linear orders, we recall the following well-known lemma
stating that a strictly order-preserving surjection from one linear order onto
another is necessarily an isomorphism.

Lemma 6.3.5. Let L = (L,≺L) and M = (M,≺M) be linear orders. If
f ∶L → M is surjective and satisfies (∀x, y ∈ L)[x ≺L y → f(x) ≺M f(y)],
then f is an isomorphism.

Cohesive powers commute with sums, products, and reverses.

Theorem 6.3.6. Let L0 = (L0,≺L0) and L1 = (L1,≺L1) be computable linear
orders, and let C be cohesive. Then

(1) ΠC(L0 +L1) ≅ ΠCL0 +ΠCL1,

(2) ΠC(L0L1) ≅ (ΠCL0)(ΠCL1), and

(3) ΠC(L∗0) ≅ (ΠCL0)∗.

Sections 6.4, 6.5, and 6.6 concern calculating the order-types of cohesive
powers of computable copies of ω. To do this, we must be able to determine
when one element of a cohesive power is an immediate successor or immediate
predecessor of another, and we must be able to determine when two elements
of a cohesive power are in different blocks of its finite condensation.
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In a cohesive power ΠCL of a computable linear order L, [ϕ] is the
immediate successor of [ψ] if and only if ϕ(n) is the immediate successor of
ψ(n) for almost every n ∈ C. Therefore also [ψ] is the immediate predecessor
of [ϕ] if and only if ψ(n) is the immediate predecessor of ϕ(n) for almost
every n ∈ C.

Lemma 6.3.7. Let L be a computable linear order, let C be cohesive, and
let [ψ] and [ϕ] be elements of ΠCL. Then the following are equivalent.

(1) [ϕ] is the ≺ΠCL-immediate successor of [ψ].

(2) (∀∞n ∈ C)(ϕ(n) is the ≺L-immediate successor of ψ(n)).

(3) (∃∞n ∈ C)(ϕ(n) is the ≺L-immediate successor of ψ(n)).

Lemma 6.3.8. Let L be a computable linear order, let C be cohesive, and
let [ψ] and [ϕ] be elements of ΠCL. Then the following are equivalent.

(1) [ψ] ⋞ΠCL [ϕ].

(2) lim n∈C ∣(ψ(n), ϕ(n))L∣ =∞.

(3) lim supn∈C ∣(ψ(n), ϕ(n))L∣ =∞.

The finite condensation of a computable linear order by a co-c.e. cohesive
set is always dense.

Theorem 6.3.9. Let L = (L,≺L) be a computable linear order, and let C
be co-c.e. and cohesive. Then cF(ΠCL) is dense.

Let [ϕ] and [ψ] be elements of ΠCL with [ψ] ⋞ΠCL [ϕ]. We partially
compute a function θ∶N→ L so that [θ] is an element of ΠCL with [ψ] ⋞ΠCL
[θ] ⋞ΠCL [ϕ].

By Lemma 6.3.8, [ψ] ⋞ΠCL [ϕ] means that lim supn∈C ∣(ψ(n), ϕ(n))L∣ =
∞. We define θ by enumerating graph(θ) = {⟨n,x⟩ ∶ θ(n) = x}. The goal
is to arrange ∣C ∩ dom(θ)∣ = ∞ (so that C ⊆∗ dom(θ) by cohesiveness),
lim supn∈C ∣(ψ(n), θ(n))L∣ =∞, and lim supn∈C ∣(θ(n), ϕ(n))L∣ =∞. It then
follows that [ψ] ⋞ΠCL [θ] ⋞ΠCL [ϕ].

6.4 Cohesive powers of computable copies of ω

We investigate the cohesive powers of computable linear orders of type
ω. Observe that an infinite linear order has type ω if and only if every
element has only finitely many predecessors. We rely on this characterization
throughout. Though not part of the language of linear orders, every linear
order L of type ω has an associated successor function SL∶ ∣L∣ → ∣L∣ given
by SL(x) = the ≺L-immediate successor of x. For the standard presentation
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of ω, the successor function is of course given by the computable function
S(x) = x + 1. It is straightforward to check that a computable copy L of ω
is computably isomorphic to the standard presentation if and only if SL is
computable.

We show that every cohesive power of the standard presentation of ω has
order-type ω + ζη (Theorem 6.4.5). This is to be expected because ω + ζη is
familiar as the order-type of every countable non-standard model of Peano
arithmetic (see [Kay91] Theorem 6.4). Therefore, by Theorem 6.1.4, every
cohesive power of every computable copy of ω that is computably isomorphic
to the standard presentation has order-type ω + ζη; or, equivalently, every
cohesive power of every computable copy of ω with a computable successor
function has order-type ω+ζη. However, being computably isomorphic to the
standard presentation (equivalently, having a computable successor function)
is not a characterization of the computable copies of ω having cohesive powers
of order-type ω + ζη. We show that there is a computable copy of ω that is
not computably isomorphic to the standard presentation, yet still has every
cohesive power isomorphic to ω + ζη (Theorem 6.4.8). Thus to compute a
copy of ω having a cohesive power not of type ω + ζη, one must do more than
simply arrange for the successor function to be non-computable. We show
that for every cohesive set C, there is a computable copy L of ω such that
the cohesive power ΠCL does not have order-type ω + ζη (Theorem 6.4.9).
However, we also show that whenever L is a computable copy of ω and C is
a co-c.e. cohesive set, the finite condensation cF(ΠCL) of the cohesive power
ΠCL always has order-type 1 + η (Theorem 6.4.4).

First, a cohesive power of a computable copy of ω always has an initial
segment of order-type ω.

Lemma 6.4.1. Let L = (L,≺L) be a computable copy of ω, and let C be
cohesive. Then the image of the canonical embedding of L into ΠCL is an
initial segment of ΠCL of order-type ω.

Let L = (L,≺L) be a computable copy of ω, let C be cohesive, and let
ϕ∶N → L be any total computable bijection. Then [ϕ] is not in the image
of the canonical embedding of L into ΠCL, so it must be ≺ΠCL-above every
element in the image of the canonical embedding. Thus ΠCL is of the form
ω +M for some non-empty linear orderM. By analogy with the terminology
for models of Peano arithmetic, we call the elements of the ω-part of ΠCL
(i.e., the image of the canonical embedding) standard and the elements of
theM-part of ΠCL non-standard.

Lemma 6.4.2. Let L = (L,≺L) be a computable copy of ω, let C be cohesive,
and let [ϕ] be an element of ΠCL. Then [ϕ] is non-standard if and only if
lim infn∈C ϕ(n) =∞ (equivalently, lim n∈Cϕ(n) =∞).
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Lemma 6.4.3. Let L = (L,≺L) be a computable copy of ω, let C be cohesive,
and let [ϕ] be a non-standard element of ΠCL. Then there are non-standard
elements [ψ−] and [ψ+] of ΠCL with [ψ−] ⋞ΠCL [ϕ] ⋞ΠCL [ψ+].

Lemmas 6.4.1 and 6.4.3 imply that if L is a computable copy of ω and C
is cohesive, then cF(ΠCL) ≅ 1 +M for some infinite linear orderM. We call
the block corresponding to 1 the standard block and the blocks corresponding
toM non-standard blocks. If we further assume that C is co-c.e., then we
obtain that cF(ΠCL) ≅ 1 + η.

Theorem 6.4.4. Let L be a computable copy of ω, and let C be co-c.e. and
cohesive. Then cF(ΠCL) has order-type 1 + η.

By Lemma 6.4.1, the standard elements of ΠCL form an initial block. By
Theorem 6.3.9 and Lemma 6.4.3, the non-standard blocks of ΠCL form a
countable dense linear order without endpoints. Thus cF(ΠCL) ≅ 1 + η.

Thinking in terms of blocks, showing that a linear order M has type
ω + ζη amounts to showing that M consists of an initial block of type ω
followed by densely (without endpoints) ordered blocks of type ζ.

Theorem 6.4.5. Let N denote the standard presentation of ω, and let C be
cohesive. Then ΠCN has order-type ω + ζη.

By Lemma 6.4.1, ΠCN has an initial segment of order-type ω. To show
that the non-standard blocks each have order-type ζ, we show that every
element of ΠCN has an <ΠCN-immediate successor and that every element of
ΠCN except the first element has an <ΠCN-immediate predecessor.

By Lemma 6.4.3, there is neither a least nor a greatest non-standard
block of ΠCN. We cannot use Theorem 6.3.9 to conclude that the non-
standard blocks are densely ordered because we do not assume that C
is co-c.e. So suppose [ϕ] and [ψ] are such that [ψ] ≪ΠCN [ϕ]. Then
lim n∈C ∣(ψ(n), ϕ(n))∣ = ∞ by Lemma 6.3.8. Define a partial computable
function θ by θ(n) ≃ ⌊(ϕ(n) + ψ(n))/2⌋. Then lim n∈C ∣(ψ(n), θ(n))∣ = ∞
and lim n∈C ∣(θ(n), ϕ(n))∣ = ∞, so [ψ] ≪ΠCN [θ] ≪ΠCN [ϕ]. Thus the non-
standard blocks of ΠCN form a dense linear order without endpoints. Thus
ΠCN ≅ ω + ζη.

Corollary 6.4.6. Let L be a computable copy of ω with a computable
successor function, and let C be cohesive. Then ΠCL has order-type ω + ζη.

We can calculate the order-types of the cohesive powers of many other com-
putable presentations of linear orders by combining Theorems 6.1.4, 6.3.6, 6.4.5,
and the fact that ΠCQ ≅ η.

Example 6.4.7. Let C be a cohesive set. Let N, Z, and Q denote the
standard presentations of ω, ζ, and η.
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(1) ΠCN∗ ≅ ζη + ω∗: This is because

ΠCN∗ ≅ (ΠCN)∗ ≅ (ω + ζη)∗ ≅ ζη + ω∗.

(2) ΠCZ ≅ ζη. This is because Z is computably isomorphic to N∗ +N, so

ΠCZ ≅ ΠC(N∗ +N) ≅ ΠC(N)∗ +ΠC(N) ≅ (ζη + ω∗) + (ω + ζη)
≅ ζη + ζ + ζη ≅ ζη.

(3) ΠC(ZQ) ≅ ζη. This is because

ΠC(ZQ) ≅ (ΠCZ)(ΠCQ) ≅ (ζη)η ≅ ζη.

(4) ΠC(N +ZQ) ≅ ω + ζη. This is because

ΠC(N + ZQ) ≅ ΠC(N) + ΠC(ZQ) ≅ (ω + ζη) + ζη ≅ ω + ζη.

Recall that, by Proposition 6.3.4, an ultrahomogeneous computable struc-
ture for a finite relational language, like the computable linear order Q,
is isomorphic to each of its cohesive powers. Notice, however, that the
computable linear orders ZQ and N + ZQ are not ultrahomogeneous, yet
nevertheless are isomorphic to each of their respective cohesive powers. Thus
it is also possible for a non-ultrahomogeneous computable structure to be
isomorphic to each of its cohesive powers.

Notice also that ΠCN and ΠC(N + ZQ) both have order-type ω + ζη.
Similarly, ΠCZ and ΠC(ZQ) both have order-type ζη. Thus it is possible
for non-isomorphic linear orders to have isomorphic cohesive powers. In
Section 6.5, we give an example of a pair of non-elementarily equivalent linear
orders with isomorphic cohesive powers.

Now we give an example of a computable copy of ω that is not computably
isomorphic to the standard presentation, yet still has all its cohesive powers
isomorphic to ω + ζη.

Theorem 6.4.8. There is a computable copy L of ω such that

• L is not computably isomorphic to the standard presentation of ω, yet

• for every cohesive set C, the cohesive power ΠCL has order-type ω + ζη.

We use a classic example of a computable copy of ω with a non-computable
successor function.

Let C be cohesive. We show that ΠCL ≅ ω + ζη. As in the proof of
Theorem 6.4.5, it suffices to establish the following.

(a) Every element of ΠCL has a ≺ΠCL-immediate successor.
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(b) Every element of ΠCL that is not the ≺ΠCL-least element has a ≺ΠCL-
immediate predecessor.

(c) If [ψ], [ϕ] ∈ ∣ΠCL∣ satisfy [ψ] ⋞ΠCL [ϕ], then there is a [θ] ∈ ∣ΠCL∣
with [ψ] ⋞ΠCL [θ] ⋞ΠCL [ϕ].

Lastly, we show that for every cohesive set C, there is a computable copy
L of ω such that ΠCL is not isomorphic, indeed, not elementarily equivalent,
to ω + ζη. The strategy is to arrange for the element [id] of ΠCL represented
by the identity function id∶N → N to have no ≺ΠCL-immediate successor.
This exhibits an elementary difference between ΠCL and ω + ζη because
every element of ω + ζη has an immediate successor. This also shows that
Theorem 6.1.3 part (4) is tight: “there is an element with no immediate
successor” is a Σ0

3 sentence that is true of ΠCL but not of L.

Theorem 6.4.9. Let C be any cohesive set. Then there is a computable
copy L of ω for which ΠCL is not elementarily equivalent (and hence not
isomorphic) to ω + ζη.

Corollary 6.4.10. Theorem 6.1.3 item (4) is tight in general: There is a
cohesive set C, a computable linear order L, and a Σ0

3 sentence Φ such that
ΠCL ⊧ Φ, but L /⊧ Φ.

Corollary 6.4.10 may also be deduced from Lerman’s proof of Feferman,
Scott, and Tennenbaum’s theorem that no cohesive power of the standard
model of arithmetic is a model of Peano arithmetic (see [Ler70] Theorem 2.1).
Lerman gives a somewhat technical example of a Σ0

3 sentence Φ invoking
Kleene’s T predicate that fails in the standard model of arithmetic but is
true in every cohesive power. Our proof of Corollary 6.4.10 is more satisfying
because it witnesses the optimality of Theorem 6.1.3 item (4) with a natural
Σ0

3 sentence in the simple language of linear orders.
In the next section, we enhance the construction of Theorem 6.4.9 in

order to compute a copy L of ω with ΠCL ≅ ω + η for a given co-c.e. cohesive
set C.

6.5 A cohesive power of order-type ω + η

Given a co-c.e. cohesive set, we compute a copy L of ω for which ΠCL
has order-type ω + η. In order to help shuffle various linear orders into
cohesive powers in Section 6.6, we in fact compute a linear order L = (N,≺L)
along with a coloring function F ∶N→ N that colors the elements of L with
countably many colors. The coloring F induces a coloring F̂ of ΠCL in
the following way. Colors of elements of ΠCL are represented by partial
computable functions δ∶N → N with C ⊆∗ dom(δ). As in Definition 6.1.2,
write δ0 =C δ1 if (∀∞n ∈ C)(δ0(n)↓ = δ1(n)↓), and write JδK instead of [δ]
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for the =C-equivalence class of δ when thinking in terms of colors. Then F̂ is
given by F̂ ([ϕ]) = JF ○ ϕK. So, for example, elements [ϕ] and [ψ] of ΠCL
have the same F̂ -color if and only if ϕ(n) and ψ(n) have the same F -color
for almost every n ∈ C.

Call a color JδK a solid color if there is an x ∈ N such that (∀∞n ∈
C)(δ(n) = x). Otherwise, call JδK a striped color. Observe that if JδK is
striped, then lim n∈Cδ(n) =∞. We compute L and F so that ΠCL ≅ ω + η
and every solid color occurs densely in the η-part. Between any two distinct
elements of the η-part there is also an element with a striped color, but we
do not ask for every striped color to occur densely. In Section 6.6, we show
that replacing each point of L by some finite linear order depending on its
color has the effect of shuffling these finite orders into the non-standard part
of ΠCL.

Theorem 6.5.1. Let C be a co-c.e. cohesive set. Then there is a computable
copy L = (N,≺L) of ω and a computable coloring F ∶N → N of L with the
following property. Let [ϕ] and [ψ] be any two non-standard elements of
ΠCL with [ψ] ≺ΠCL [ϕ]. Then for every solid color JδK, there is a [θ] in ΠCL
with [ψ] ≺ΠCL [θ] ≺ΠCL [ϕ] and F̂ ([θ]) = JδK. Also, there is a [θ] in ΠCL
with [ψ] ≺ΠCL [θ] ≺ΠCL [ϕ], where F̂ ([θ]) is a striped color.

We are working with a co-c.e. cohesive set, so recall that in this situation
every element [ϕ] of ΠCL has a total representative by the discussion following
Definition 6.1.2. Recall also that an element [ϕ] of ΠCL is non-standard if
and only if lim n∈Cϕ(n) =∞ by Lemma 6.4.2.

The goal of the construction of L is to arrange, for every pair of total
computable functions ϕ and ψ with lim n∈Cϕ(n) = lim n∈Cψ(n) =∞, that

(∀∞n ∈ C)(ψ(n)↓ ≺L ϕ(n)↓ ⇒
(∀d ≤ max<{ϕ(n), ψ(n)})(∃k)[(ψ(n) ≺L k ≺L ϕ(n)) ∧ (F (k) = d)]). (∗)

Suppose we achieve (∗) for ϕ and ψ, where lim n∈Cϕ(n) = lim n∈Cψ(n) =∞
and (∀∞n ∈ C)(ϕ(n)↓ ≺L ψ(n)↓). Fix any color d, and let δ be the constant
function with value d. Partially compute a function θ(n) by searching for a k
with ψ(n) ≺L k ≺L ϕ(n) and F (k) = d. If there is such a k, let θ(n) be the first
such k. Property (∗) and the assumption lim n∈Cϕ(n) = lim n∈Cψ(n) =∞
ensure that there is such a k for almost every n ∈ C. Therefore C ⊆∗ dom(θ),
[ψ] ≺ΠCL [θ] ≺ΠCL [ϕ], and F̂ ([θ]) = JδK. Likewise, we could instead define
θ(n) to search for a k with ψ(n) ≺L k ≺L ϕ(n) and F (k) = ϕ(n) and
let θ(n) be the first (if any) such k found. In this case we would have
[ψ] ≺ΠCL [θ] ≺ΠCL [ϕ] and F̂ ([θ]) = JϕK, which is a striped color because
lim n∈Cϕ(n) =∞. Thus achieving (∗) suffices to prove the theorem, provided
we also arrange L ≅ ω. The tension in the construction is between achieving (∗)
and ensuring that for every z, there are only finitely many x with x ≺L z.
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Corollary 6.5.2. Let C be a co-c.e. cohesive set. Then there is a computable
copy L of ω where the cohesive power ΠCL has order-type ω + η.

Example 6.5.3. Let C be a co-c.e. cohesive set, and let L be a computable
copy of ω with ΠCL ≅ ω + η as in Corollary 6.5.2.

(1) There is a countable collection of computable copies of ω whose cohesive
powers over C are pairwise non-elementarily equivalent. Let k ≥ 1, and
let k denote the k-element linear order 0 < 1 < ⋯ < k − 1 as well as
its order-type. Then kL has order-type ω because L has order-type
ω, and ΠCk ≅ k by the discussion following Theorem 6.1.3. Using
Theorem 6.3.6, we calculate

ΠC(kL) ≅ (ΠCk)(ΠCL) ≅ k(ω + η) ≅ ω + kη.

The linear orders ω + kη for k ≥ 1 are pairwise non-elementarily equiv-
alent. The sentence “there are x0 ≺ ⋯ ≺ xk−1 such that every other
y satisfies either y ≺ x0 or xk−1 ≺ y; if y ≺ x0, then there is a z with
y ≺ z ≺ x0; and if xk−1 ≺ y, then there is a z with y ≺ z ≺ xk−1” expressing
that there is a maximal block of size k is true of ω+kη, but not of ω+mη
if m ≠ k. Thus 1L, 2L, . . . is a sequence of computable copies of ω whose
cohesive powers ΠC(kL) are pairwise non-elementarily equivalent.

(2) It is possible for non-elementarily equivalent computable linear orders
to have isomorphic cohesive powers. Consider the computable linear
orders L and L +Q. They are not elementarily equivalent because the
sentence “every element has an immediate successor” is true of L but
not of L+Q. However, using Theorem 6.3.6 and the fact that ΠCQ ≅ η,
we calculate

ΠC(L +Q) ≅ ΠCL +ΠCQ ≅ (ω + η) + η ≅ ω + η ≅ ΠCL.

Thus the cohesive powers ΠCL and ΠC(L + Q) of L and L + Q are
isomorphic.

6.6 Shuffling finite linear orders

The shuffle σ(X) of an at-most-countable non-empty collection X of order-
types is obtained by densely coloring Q with ∣X ∣-many colors, assigning each
order-type in X a distinct color, and replacing each q ∈ Q by a copy of the
linear order whose type corresponds to the color of q.

Definition 6.6.1. Let X be a non-empty collection of linear orders with
∣X ∣ ≤ ℵ0, let (Li)i<∣X ∣ be a list of the elements of X, and write Li = (Li,≺Li)
for each i < ∣X ∣. Let F ∶Q→ ∣X ∣ be a coloring of Q in which each color occurs
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densely. Define a linear order S = (S,≺S) by replacing each q ∈ Q by a copy
of LF (q). Formally, let S = {(q, `) ∶ q ∈ Q ∧ ` ∈ LF (q)} and

(p, `) ≺S (q, r) if and only if (p < q) ∨ (p = q ∧ ` ≺LF (p) r).

Because every color occurs densely, the order-type of S does not depend on
the particular choice of F or on the order in which X is enumerated. For
this reason, S is called the shuffle of X and is denoted σ(X). We typically
think of X as a collection of order-types instead of as a collection of concrete
linear orders.

Let C be co-c.e. and cohesive, let L be the linear order from Corollary 6.5.2
for C, and consider the linear order 2L from Example 6.5.3 item (1). We can
think of 2L as being obtained from L by replacing each element of L by a
copy of 2. This operation of replacing each element by a copy of 2 is reflected
in the cohesive power, and we have that ΠC(2L) ≅ ω + 2η.

Let us now consider this same L = (L,≺L) along with its coloring F ∶L→ N
from Theorem 6.5.1. Collapse F into a coloring G∶L→ {0, 1}, where G(x) = 0
if F (x) = 0 and G(x) = 1 if F (x) ≥ 1. Then the coloring Ĝ of ΠCL induced
by G uses exactly two colors: J0K represented by the constant function with
value 0, and J1K represented by the constant function with value 1. Both
of these colors occur densely in the non-standard part of ΠCL. Compute a
linear order M by starting with L, replacing each x ∈ L with G(x) = 0 by
a copy of 2, and replacing each x ∈ L with G(x) = 1 by a copy of 3. The
cohesive power ΠCM reflects this construction, and we get the linear order
obtained from ΠCL by replacing each point of Ĝ-color J0K by a copy of 2
and replacing each point of Ĝ-color J1K by a copy of 3. Thus we have a
computable copyM of ω with ΠCM ≅ ω + σ({2, 3}). Using this strategy, we
can shuffle any finite collection of finite linear orders into a cohesive power of
a computable copy of ω.

Theorem 6.6.2. Let k0, . . . , kN be non-zero natural numbers. Let C be a
co-c.e. cohesive set. Then there is a computable copy M of ω where the
cohesive power ΠCM has order-type ω + σ({k0, . . . , kN}).

For the remainder of this section, let α denote the order-type ω + ζη +ω∗.
Ultimately, we want to use the method of Theorem 6.6.2 to show that if
X ⊆ N ∖ {0} is either Σ0

2 or Π0
2, then, thinking of X as a set of finite order-

types, there is a cohesive power of ω with order-type ω + σ(X ∪ {α}). We
first consider the particular case X = N ∖ {0} to illustrate how α naturally
appears when shuffling infinitely many finite order-types.

Theorem 6.6.3. Let X be the set of all finite non-zero order-types. Let C
be a co-c.e. cohesive set. Then there is a computable copyM of ω where the
cohesive power ΠCM has order-type ω + σ(X ∪ {α}).
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Let L = (L,≺L) be the linear order from Theorem 6.5.1 for C, along with
its coloring F ∶L → N. Let M = (M,≺M) be the computable linear order
obtained by replacing each x ∈ L by a copy of x + 1 if F (x) = 0 and by a copy
of F (x) if F (x) > 0. ThenM is a computable linear order of type ω.

Consider the projection condensation cπ(ΠCM) of ΠCM as colored by
F̂ . By Theorem 6.5.1, the non-standard elements of cπ(ΠCM) form a linear
order of type η in which the solid F̂ -colors occur densely. Furthermore,
between any two distinct non-standard elements of cπ(ΠCM) there is a
non-standard element with a striped color. If cπ([χ]M) has solid color JkK
for some k > 0, then its order-type is k. We show that if a non-standard
cπ([χ]M) has either solid color J0K or a striped color, then its order-type
is α. It follows that the non-standard elements of ΠCM have order-type
σ(X ∪ {α}), so ΠCM has the desired order-type ω + σ(X ∪ {α}).

Finally, to shuffle Σ0
2 or Π0

2 sets of finite order-types into cohesive powers
of ω, it is convenient to work with linear orders whose domains are c.e.
Cohesive powers of partial computable structures are defined exactly as in
Definition 6.1.2, the only difference being that the domain A of the partial
computable structure A is now c.e. instead of computable. It happens that if
we wish to show that there is a computable copy of ω having a cohesive power
of a certain order-type, it suffices to show that there is a partial computable
copy of ω having a cohesive power of the desired order-type.

Theorem 6.6.4. Let X ⊆ N ∖ {0} be a Π0
2 set, thought of as a set of finite

order-types. Let C be a co-c.e. cohesive set. Then there is a computable copy
M of ω where the cohesive power ΠCM has order-type ω + σ(X ∪ {α}).

We arrangeM to shuffle k into ΠCM when a Π0
2 property holds of k and

to shuffle a fixed k0 into ΠCM when a Π0
2 property fails of k. Assume that

X ≠ ∅, as otherwise we can compute a copyM of ω with ΠCM ≅ ω+σ({α})
by combining the proofs of Theorems 6.6.2 and 6.6.3. Let R be a computable
predicate for which X = {k ∶ ∀a∃bR(k, a, b)}. Let k0 > 0 be the <-least
element of X. Let L = (L,≺L) be the linear order from Theorem 6.5.1 for C,
along with its coloring F ∶L → N. We construct a partial computable copy
M of ω with ΠCM ≅ ω + σ(X ∪ {α}). We defineM from L as follows. If
x ∈ L has F (x) < k0, then replace x by a copy of x + 1 as is done with color 0
in the proof of Theorem 6.6.3. If x ∈ L has F (x) ≥ k0, then first replace x by
a copy of k0. Then for each a ≤ x, search for a b such that R(F (x), a, b). If
(∀a ≤ x)(∃b)R(F (x), a, b), then add further elements to replace x by a copy
of F (x) instead of by a copy of k0. The ultimate effect of this procedure
is that if F (x) ∈ X, then we shuffle F (x) into ΠCM; whereas if F (x) ∉ X,
then we shuffle k0 into ΠCM.

Theorem 6.6.5. Let X ⊆ N ∖ {0} be a Σ0
2 set, thought of as a set of finite

order-types. Let C be a co-c.e. cohesive set. Then there is a computable copy
M of ω where the cohesive power ΠCM has order-type ω + σ(X ∪ {α}).
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The proof is similar to that of Theorem 6.6.4. In this proof, we want
to shuffle k into ΠCM when a Π0

2 property fails of k and to shuffle α into
ΠCM when a Π0

2 property holds of k. Let X ⊆ N ∖ {0} be Σ0
2. Let R be

a computable predicate for which X = {k ∶ ∀a∃bR(k, a, b)}. Let L = (L,≺L
) be the linear order from Theorem 6.5.1 for C, along with its coloring
F ∶L → N. Again, it suffices to produce a partial computable copy M of
ω with ΠCM ≅ ω + σ(X ∪ {α}). We define M from L as follows. If x ∈ L
has F (x) = 0, then replace x by a copy of x + 1 as is done in the proof of
Theorem 6.6.3. If x ∈ L has F (x) > 0, then first replace x by a copy of F (x).
Then for each a ≤ x, search for a b such that R(F (x), a, b). If x ≥ F (x) and
(∀a ≤ x)(∃b)R(F (x), a, b), then add further elements to replace x by a copy
of x + 1 instead of a copy of F (x).

We combine the results of this section into a single statement.

Theorem 6.6.6. Let X ⊆ N ∖ {0} be either a Σ0
2 set or a Π0

2 set, thought of
as a set of finite order-types. Let C be a co-c.e. cohesive set. Then there is
a computable copyM of ω where the cohesive power ΠCM has order-type
ω + σ(X ∪ {α}). Moreover, if X is finite and non-empty, then there is also
a computable copyM of ω where the cohesive power ΠCM has order-type
ω + σ(X).
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Chapter 7

On Cototality and the Skip
Operator

In this chapter we present the notions of cototality and skip operator in the
enumeration degrees. The degree structures as DT and De with ≤, ⊕ and
jump operator are also abstract structures. Here we consider a subclass of
the enumeration degrees De called cototal degrees. We started this project
in 2015 together with Hristo Ganchev, Steffen Lempp, Joseph Miller, and
Mariya Soskova in Sofia, after the CiE 2015 in Bucharest, when Joseph Miller
and Steffen Lempp from University of Madison, Wisconsin, visited Sofia. In
2016 Uri Andrews and Rutger Kuyper from the same university also joined
the project and we present here the results from the paper [AGK+19], in the
journal Transaction of the American Mathematical Society.

A set A ⊆ N is cototal if it is enumeration reducible to its complement, A.
The skip of A is the uniform upper bound of the complements of all sets
enumeration reducible to A. These are closely connected: A has cototal degree
if and only if it is enumeration reducible to its skip. We study cototality and
related properties, using the skip operator as a tool in our investigation. We
give many examples of classes of enumeration degrees that either guarantee
or prohibit cototality. We also study the skip for its own sake, noting that it
has many of the nice properties of the Turing jump, even though the skip
of A is not always above A (i.e., not all degrees are cototal). In fact, there is
a set that is its own double skip.

For an arbitrary set A ⊆ N, the enumeration degree of A and the enu-
meration degree of A, the complement of A, need not be comparable. By
requiring that they are comparable, we can isolate two interesting subclasses
of the enumeration degrees. The first was introduced at the same time as
the enumeration degrees themselves. We know that a set A ⊆ N is total if
A ≤e A, and we call an enumeration degree total if it contains a total set.
Note that A is total if and only if A ≡e A⊕A, where ⊕ denotes the effective
disjoint union of sets. Since every set of the form A⊕A is total, the total
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degrees are exactly the degrees of sets A⊕A for some A ⊆ N. We know that
the map ι ∶ A ↦ A ⊕ A induces an order-preserving isomorphism between
the Turing degrees and the total enumeration degrees. The name “total” is
due to the fact that an enumeration degree is total if and only if it contains
the graph of a total function. In particular, if A is a total set, then de(A)
contains the graph of the characteristic function of A.

It is important to note that total degrees1 always contain nontotal sets
as well. For example, all c.e. sets have total degree because they are all
enumeration equivalent to the empty set, but only computable c.e. sets are
total.

7.1 Cototality

Let remain that a set A ⊆ N is cototal if A ≤e A, and call an enumeration
degree cototal if it contains a cototal set. While we are the first to isolate this
property under this name, both the property and the name have appeared in
the literature. The name was essentially first used, as far as we are aware, in an
abstract of A.V. Pankratov from 2000 [Pan00]. Pankratov used “кототальное”
(Russian for “cototal”) to refer to what we call the graph-cototal degrees,
which turns out to be a proper subclass of the cototal degrees: For any total
function f ∶N→ N, let Gf = {⟨n,m⟩∶ f(n) =m} be the graph of f . It is easy to
see that Gf ≤e Gf , so Gf is a cototal set. If an enumeration degree contains
a set of the form Gf , then we call it graph-cototal.

The graph-cototal sets and degrees were further studied by Solon, Pankra-
tov’s advisor. In [Sol06], he used “co-total” to refer to what we call “graph-
cototal”. However, in the Russian version [Sol05] of the same paper, Solon
used “кототальное” for a different property: Call a degree a weakly cototal if
it contains a set A such that A has total enumeration degree. It is clear that
every cototal degree is weakly cototal, since if A ≤e A, then A is a total set.
So we have

graph-cototal Ô⇒ cototal Ô⇒ weakly cototal.

We show that these three properties are distinct. The harder separation
is given in Section 7.6, where we use an infinite-injury argument relative
to 0′ to construct a cototal degree that is not graph-cototal. In Section 7.5,
we give examples of weakly cototal degrees that are not cototal, as well as
enumeration degrees that are not weakly cototal. Of these properties, we
believe that there is a strong case that cototal is the most fundamental.

Our study of cototality was motivated by two examples of cototal sets
that were pointed out to us by Jeandel [Jea15]. He showed that the set of
non-identity words in a finitely generated simple group is cototal (see also
Thomas and Williams [TW16]). Jeandel also gave an example from symbolic

1We sometimes use the term degree to refer to an enumeration degree.
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dynamics: The set of words that appear in a minimal subshift is cototal.
This is particularly interesting because the Turing degrees of elements of a
minimal subshift are exactly the degrees that enumerate the set of words that
appear in the subshift, so understanding the enumeration degree of this set is
closely related to understanding the Turing degree spectrum of the subshift.

In Section 7.3, we explain Jeandel’s examples in more detail, and we give
several other examples of cototal sets and degrees. We show that every Σ0

2-set
is cototal, in fact, graph-cototal. We show that the complement of a maximal
independent subset of a computable graph is cototal, and that every cototal
degree contains the complement of a maximal independent subset of ω<ω.
Ethan McCarthy proved that the same is true of complements of maximal
antichains in ω<ω. We show that joins of nontrivial K-pairs are cototal, and
that the natural embedding of the continuous degrees into the enumeration
degrees maps into the cototal degrees. Finally, we note that Harris [Har10]
proved that sets with a good approximation have cototal degree.

The earliest reference to a cototality notion seems to be in Case’s disserta-
tion [Cas69, p. 14] from 1969; he wrote “The author does not know if there are
sets A such that A lies in a total partial degree and A lies in a non-total partial
degree, but he conjectures that there are no such sets.” In our language,
Case is conjecturing that if A has weakly cototal degree, then it has total
degree. The same question also appears in the journal version [Cas71, p. 426].
Gutteridge [Gut71, Chapter II] disproved this conjecture by constructing a
quasiminimal graph-cototal degree. Recall that an enumeration degree a is
quasiminimal if it is nonzero and the only total degree below a is 0e = de(∅);
in particular, quasiminimal degrees are nontotal. At least two other inde-
pendent constructions of nontotal cototal degrees appear in the literature:
Sanchis [San78], apparently unaware of Case’s conjecture, gave an explicit
construction of a cototal set that is not total. Aware of Case’s conjecture but
not Gutteridge’s example, Sorbi [Sor88] constructed a quasiminimal cototal
degree. Neither of these constructions explicitly produce a graph-cototal
degree.

As mentioned above, Pankratov [Pan00] claimed that there is a graph-
cototal Σ0

2-enumeration degree that forms a minimal pair with every incom-
plete Π0

1-enumeration degree.2 The graph-cototal degrees were studied more
extensively by Solon [Sol05, Sol06].3 He proved that every total enumera-
tion degree above K contains the graph Gf of a total function f ∶N → N
such that Gf is quasiminimal. He also showed that for every total enu-
meration degree b, there is a graph-cototal enumeration degree a that is
quasiminimal over b. Finally, Solon proved that for every total enumeration

2This result does not appear to be published and we do not know the proof that
Pankratov had in mind, but note that graph-cototality is free because every Σ0

2-enumeration
degree is graph-cototal.

3We note here a slight confusion in Solon’s papers between cototal sets and cototal
degrees, which does not, however, affect his main results.
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degree b aboveK, there is a graph-cototal quasiminimal enumeration degree a
such that a′ = b (see below for more about the enumeration jump). This
strengthens a result of McEvoy [McE85], who proved that the quasiminimal
enumeration degrees have all possible enumeration jumps. Note that all
three of Solon’s results can also be seen as generalizations of Gutteridge’s
construction of a quasiminimal graph-cototal degree.

7.2 The skip

Cototality is closely related, as we mentioned, to the skip operator. Let
{Γe}e∈ω be an effective list of all enumeration operators and let KA =
⊕e∈ω Γe(A) = {⟨e, x⟩ ∣ x ∈ Γe(A)}. Note that KA ≡e A. We define the
skip of A to be A◊ =KA. It is easy to see that the skip is degree invariant,
so it induces an operator on enumeration degrees. We use a◊ to denote the
skip of a. Note that the complements of elements of de(A) are enumeration
reducible to A◊; indeed, they are columns of A◊. In other words, de(A◊)
is the maximum possible degree of the complement of an element of de(A).
One consequence of this characterization is the connection between the skip
and cototality:

Proposition 7.2.1. A set A ⊆ N has cototal degree if and only if A ≤e A
◊.

This connection is quite useful; the separations we prove in Section 7.5
rely on our study of the skip operator in Section 7.4.

In some ways, the skip is analogous to the jump operator in the Turing
degrees. For example, a standard diagonalization argument shows that
A◊ ≰e A. In Proposition 7.4.1, we restate the well-known fact that A ≤e B
if and only if A◊ ≤1 B

◊, mirroring the jump in the Turing degrees. Finally,
in Theorem 7.4.3, we prove a skip inversion theorem analogous to Friedberg
jump inversion: If S ≥e K, then there is a set A such that A◊ ≡e S.

The biggest difference between the skip and the Turing jump is that it is
not always the case that A ≤e A

◊ (because not all enumeration degrees are
cototal). In fact, as we will see in Section 7.4.2, there is a skip 2-cycle, i.e.,
a set A ⊆ N such that A = A◊◊. If we modify the skip to ensure that it is
increasing in the enumeration degrees, then we recover the definition of the
enumeration jump as introduced by Cooper4 [Coo84].

The enumeration jump of a set A ⊆ N is A′
e =KA ⊕KA ≡e A⊕A◊. (We

also use A′ to denote A′
e). So A has cototal degree if and only if A′

e ≡e A
◊.

Of course, the enumeration jump is degree invariant and induces an operator
on the enumeration degrees; we use a′ for the jump of a. The definition of
the enumeration jump ensures that A <e A

′
e, as we expect from a jump. On

4Cooper [Coo84] thanks his student McEvoy for helping provide the correct definition of
the enumeration jump operator. Sorbi recalled (in private communication) that Cooper’s
original “incorrect” definition was actually our definition of the skip operator.
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the other hand, we lose two of the properties that the skip shares with the
Turing jump. The enumeration jump is always total, so it cannot possibly
map onto all enumeration degrees above 0′e. However, by Friedberg jump
inversion, it does map onto the total degrees above 0′e. A′

e ≤1 B
′
e does not

necessarily imply that A ≤e B. So neither the skip nor the enumeration jump
is the perfect analogue of the Turing jump; we believe that both have a role
in the study of the enumeration degrees.

7.3 Examples of cototal sets and degrees

7.3.1 Total degrees

For any set A ⊆ N, the set A ⊕A is clearly cototal. Therefore, every total
degree is cototal.

7.3.2 The complement of the graph of a total function

As we have noted, if f ∶N→ N is total, then Gf , the complement of the graph
of f , is a cototal set. This is because ⟨n,m⟩ ∈ Gf if and only if there is m′ ≠m
such that ⟨n,m′⟩ ∈ Gf . The class of graph-cototal enumeration degrees turns
out to lie strictly between the total degrees and the cototal degrees. The hard
part is showing that there is a cototal degree that is not graph-cototal. We
do that in Section 7.6. To see that every total degree is graph-cototal, recall
that each total degree contains the graph of the characteristic function χA of
some total set A; it also contains the complement of the graph of χA. We
already saw that GχA ≤e GχA . But now since ⟨n,m⟩ ∈ GχA if and only if
m ∈ {0,1} and ⟨n,1 −m⟩ ∈ GχA , we have that GχA ≡e GχA . The next result
implies that there are nontotal graph-cototal degrees.

Proposition 7.3.1. Every enumeration degree a ≤ 0′e is graph-cototal.

The enumeration degrees below 0′e consist entirely of Σ0
2-sets. So, fix an

enumeration degree a ≤ 0′e and a Σ0
2-set A ∈ a. We show that there is a set

G ≡e A that is the complement of the graph G of a total function, using
Σ0

2-approximation {As}s<ω to the set A.
It is worth pointing out that the argument above cannot be extended

to further levels of the arithmetical hierarchy. In Section 7.5, we show that
there are Π0

2-sets that do not even have cototal enumeration degree. On the
other hand, it is easy to see that every Π0

2-set has weakly cototal degree. This
is because every set A is enumeration equivalent to A⊕K, where K is the
halting set. So, if A is Π0

2 then A⊕K = A⊕K ≡e K ∈ 0′e. As for higher levels
of the arithmetical hierarchy, we see in Section 7.5 that there are ∆0

3-sets
that are not even weakly cototal.

Let G be the complement of the graph G of a total function. If x ∈ G,
then there is a unique axiom in Γ that enumerates x into Γ(G). We say
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that G reduces to G via a unique axiom reduction. We will next see that
this property characterizes the graph-cototal enumeration degrees among all
cototal enumeration degrees.

Proposition 7.3.2 (Unique Axiom Characterization). An enumeration de-
gree a is graph-cototal if and only if it contains a cototal set A that reduces
to A via a unique axiom reduction.

We can make this characterization even tighter by noting that the reduc-
tion Γ used to witness that G ≤e G is furthermore a singleton operator : every
axiom in Γ is of the form ⟨a,{b}⟩ where a ≠ b.

We therefore are interested in finding examples of cototal enumeration
degrees that do not satisfy the Unique Axiom Characterization, as we would
like to separate the cototal degrees from the graph-cototal degrees. The next
example, which comes from graph theory, is motivated by this desire.

7.3.3 Complements of maximal independent sets

Recall that an (undirected) graph is a pair G = (V,E), where V is a set of
vertices and E is a set of unordered pairs of vertices, called the edge relation.

Definition 7.3.3. An independent set for a graph G = (V,E) is a set of
vertices S ⊆ V such that no pair of distinct vertices in S is connected by
an edge. An independent set is maximal if it has no proper independent
superset.

In other words, an independent set S is maximal if and only if every
vertex v ∈ V is either in S or is connected by an edge to an element of S.
The maximal independent sets for the graph of the cube are illustrated in
the figure below, courtesy of David Eppstein and Wikipedia.

Figure 7.1: Maximal independent sets for the cube

Consider an infinite graph G = (N,E) with a computable edge relation.
For example, we can think of the tree ω<ω as a computable graph on the
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natural numbers by fixing an effective coding of the finite sequences of natural
numbers and putting an edge between any non-root node and its immediate
predecessor. If S is a maximal independent set for G, then S can enumerate
its complement:

S = {v ∣ (∃u ∈ S)[{u, v} ∈ E]}.
It follows that complements of maximal independent sets in computable
graphs on N are cototal. Our main reason for considering this example is
that, in general, this reduction does not have the unique axiom property. This
is well illustrated by Figure 7.1: the maximal independent set in the middle
of the first row, for example, would enumerate each element of its complement
with three distinct correct axioms. Hence we might hope that complements of
maximal independent sets allow us to move beyond the graph-cototal degrees.
They do, and in fact, they are universal for the cototal enumeration degrees.

Theorem 7.3.4. Every cototal degree contains the complement of a maximal
independent set for ω<ω.

Fix a cototal set A and let A = Γ(A). We build a set G ⊆ ω<ω which is
the complement of a maximal independent set for ω<ω.

7.3.4 Complements of maximal antichains in ω<ω

A closely related example comes from simply considering maximal antichains
in ω<ω. In this case, the partial ordering on finite sequences of natural
numbers is defined by σ ≤ τ if and only if σ ⪯ τ . An antichain is a subset
of ω<ω such that no two elements in it are comparable, and an antichain
is maximal if it cannot be extended to a proper superset that is also an
antichain. Examples of computable maximal antichains are easy to come up
with: For any fixed n, the set of all elements of ω<ω of length n is a maximal
antichain.

If S is a maximal antichain, then S ≤e S as σ ∈ S if an only if there
is some τ ∈ S that is comparable with σ. As in the example above, this
reduction does not have the unique axiom property. Consider for example
the maximal antichain of all strings of length n. Then every string of length
m < n has infinitely many reasons to be enumerated into the complement of
this maximal antichain. Ethan McCarthy has shown that complements of
maximal antichains are also universal for the cototal enumeration degrees.

Theorem 7.3.5 (McCarthy [McC18]). Every cototal degree contains the
complement of a maximal antichain in ω<ω.

7.3.5 The set of words that appear in a minimal subshift

We will next give a more detailed account of our motivating examples,
introduced by Jeandel [Jea15]. The first one requires us to recall some
definitions from symbolic dynamics.
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Definition 7.3.6. Let X ⊆ 2ω be closed in the usual topology on Cantor
space.

1. X is a subshift if X is closed under the shift operation, which removes
the first bit in a binary sequence, i.e., aα ∈X implies α ∈X.

2. If X is a subshift then the language of X is the set

LX = {σ ∈ 2<ω ∶ (∃α ∈X)[σ is a subword of α]}.

The set LX is called the set of forbidden words.

3. A subshift X is minimal if it has no nonempty proper subset that is
also a subshift. This is equivalent to saying that every σ ∈ LX is a
subword of every α ∈X.

Jeandel discovered an interesting relationship between the enumeration
degree of the language of a minimal subshift and the Turing degrees of the
elements of the subshift: The Turing degrees of elements in X are exactly
the Turing degrees that enumerate LX . This fact is particularly interesting if
one takes into account Selman’s characterization of enumeration reducibility.
For an arbitrary set A, let EA denote the set of all Turing degrees whose
elements compute enumerations of A. Selman [Sel71] proved that A ≤e B
if and only if EB ⊆ EA. Thus, the enumeration degree of the set LX can be
characterized by ELX , which turns out to be exactly the set of Turing degrees
that compute elements of the minimal subshift X. It is then natural to ask
what additional properties an enumeration degree must have in order to be
the enumeration degree of the language of a minimal subshift. The following
theorem shows that it must be cototal.

Theorem 7.3.7 (Jeandel [Jea15]). LX ≤e LX .

Ethan McCarthy has very recently shown that, in fact, cototality precisely
characterizes the enumeration degrees of languages of minimal subshifts.

Theorem 7.3.8 (McCarthy [McC18]). If A is cototal, then A ≡e LX for
some minimal subshift X.

7.3.6 The non-identity words in a finitely generated simple
group

The second example from Jeandel [Jea15] is related to group theory.

Definition 7.3.9. Let G be a group.

1. G is finitely generated if there are finitely many elements in G, called
generators, such that every element in G can be expressed as a product
of these generators. (For convenience, we will assume that the set of
generators is closed under inverses.)
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2. G is simple if its only normal subgroups are G and the trivial group.

3. The set of identity words of G is the set WG of all words (i.e., finite
sequences of generators) that represent the identity element.

4. A presentation of G is a pair ⟨F ∣ R⟩ such that F is a set of generators
and WG is the normal closure of R ⊂WG.

The word problem for a group G is the problem of deciding the set WG.
Kuznetsov [Kuz58] showed that if G is a finitely generated simple group with
a presentation ⟨F ∣ R⟩ such that R is computable, then it has a decidable
word problem. Jeandel considered the collection of all finitely generated
simple groups without restricting the complexity of their presentation. He
showed that the set of non-identity words in a finitely generated simple
group is cototal. This was also independently observed by Thomas and
Williams [TW16].

Theorem 7.3.10 (Jeandel [Jea15]; Thomas and Williams [TW16]). If G is
a finitely generated simple group then WG ≤eWG.

This generalizes Kuznetsov’s result, as if a group G = ⟨F ∣ R⟩ has a
computable set of relations R, then WG is automatically c.e. The fact that
WG ≤eWG shows that WG is also c.e. and hence WG is computable.

7.3.7 Joins of nontrivial K-pairs

Our next example relates to a class of pairs of enumeration degrees that
have been recently shown to play an important role when it comes to the
first-order definability of relations on De.

Definition 7.3.11. A pairs of sets {A,B} form a K-pair if there is a c.e.
set W such that A×B ⊆W and A×B ⊆W . A K-pair is nontrivial if neither
of its components is c.e.

K-pairs were introduced by Kalimullin [Kal03]. He showed that they are
first-order definable in the structure of the enumeration degrees and used
them to give a first-order definition of the enumeration jump. Cai, Ganchev,
Lempp, Miller, and M. Soskova [CGL+16] used K-pairs to define the class of
total enumeration degrees. It is therefore reasonable to always keep an eye on
the class of K-pairs as it might hold the key to the first-order definability of
relations that we are considering in this article as well: cototal enumeration
degrees and the skip operator. In the next section, K-pairs will give us a
wide variety of examples of sets that do not have cototal degree. When one
considers the join A⊕B, however, of a nontrivial K-pair {A,B}, one always
gets a cototal set. To see this, we need to review an important property of
K-pairs.
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Proposition 7.3.12 (Kalimullin [Kal03]). If {A,B} is a nontrivial K-pair
then

• A ≤e B and B ≤e A;

• B ≤e A⊕K and A ≤e B ⊕K.

It follows from the first part that if {A,B} forms a nontrivial K-pair,
then A⊕B ≤e B ⊕A ≡e A⊕B.

We would like to point out that this example generalizes the fact that
every total degree is cototal, as by Cai, Ganchev, Lempp, Miller, and
M. Soskova [CGL+16], the total degrees are exactly the ones that contain the
join of a particular kind of a K-pair. The joins of nontrivial K-pairs therefore
form a first-order definable class of cototal enumeration degrees that contains
the total enumeration degrees. Unfortunately, they do not contain all cototal
degrees. Ahmad [Ahm89] showed that there are nonsplitting Σ0

2-enumeration
degrees, i.e. degrees that are not the least upper bound of any pair of strictly
smaller degrees. So, even though, as we have already seen, all Σ0

2-enumeration
degrees are cototal, the nonsplitting ones cannot be joins of nontrivial K-pairs.

7.3.8 Continuous degrees

Motivated by a question of Pour-El and Lempp from computable analysis,
Miller [Mil04] introduced a degree structure that captures the complexity
of elements of computable metric spaces, such as C[0,1] and [0,1]ω. This
structure naturally embeds into the enumeration degrees, and the range of
this embedding is strictly between the class of total enumeration degrees and
the class of all enumeration degrees.

As an example, consider the metric space C[0,1] of continuous functions
on the unit interval with the standard metric

d(f, g) = max
x∈[0,1]

∣f(x) − g(x)∣.

A computable presentation of a metric space M consists of a fixed dense
sequence QM = {qn}n<ω on which the metric is computable as a function on
indices. For a computable presentation of C[0,1] we can fix, for example,
a reasonable enumeration of the polygonal functions having segments with
rational endpoints. A name nf for a continuous function f is a code (say, as
an element of ωω) that gives a way to approximate f . Specifically, a name nf
should code a function taking a rational number ε > 0 and producing an
index nf(ε) such that d(f, qnf (ε)) < ε. For f, g ∈ C[0,1], we say that f is
reducible to g if every name for g computes a name for f . In the same way,
we can compare the complexity of elements from arbitrary metric spaces.
This reducibility induces a degree structure, the continuous degrees. It turns
out that every continuous degree contains an element of C[0,1].
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In order to understand the embedding of the continuous degrees into the
enumeration degrees, it is easier to focus on another computable metric space:
The Hilbert cube is [0,1]ω along with the metric

d(α,β) = ∑
n∈ω

2−n∣α(n) − β(n)∣.

A dense set witnessing that [0, 1]ω is computable is, for example, a reasonable
enumeration of the rational sequences with finite support. As was the case
with C[0,1], every continuous degree contains an element of [0,1]ω.

Miller gave a way to assign to a sequence α ∈ [0,1]ω a set Aα such that
EAα (defined in Section 7.3.5) is the set of all Turing degrees that compute
names of α. This induces an embedding of the continuous degrees into the
enumeration degrees.

Definition 7.3.13 (Miller [Mil04]). For α ∈ [0,1]ω, let

Aα =⊕
i<ω

({q ∈ Q ∣ q <Q α(i)}⊕ {q ∈ Q ∣ q >Q α(i)}).

It is not hard to see that Aα has the desired property: Computing a name
for α is exactly as hard as enumerating Aα. We say that the enumeration
degree of Aα is continuous. By showing that there is a nontotal continuous
enumeration degree, Miller proved that there are continuous functions that
do not have a name of least Turing degree, which answered Pour-El and
Lempp’s question.

Note that if α does not have any rational entries, then Aα is a total set.
If, on the other hand, α does have rational entries, then every component
of Aα is nonuniformly equivalent to a total set. The existence of nontotal
continuous enumeration degrees shows that this nonuniformity is significant.
We are nevertheless able to show that all continuous degrees are cototal.

Proposition 7.3.14. Every continuous degree is cototal.

7.3.9 Sets with good approximations have cototal degree

Lachlan and Shore [LS92] introduced the following general notion of an
approximation to a set.

Definition 7.3.15. Let A be a set of natural numbers. A uniformly com-
putable sequence of finite sets {As}s<ω (given by canonical indices) is a good
approximation to A if

• for every n, there is a stage s such that A ↾ n ⊆ As ⊆ A; and

• for every n, there is a stage s such that for every t > s, if At ⊆ A then
A ↾ n ⊆ At.
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This definition can be seen as a generalization of Cooper’s notion of a
Σ0

2-approximation with infinitely many thin stages, used to show the density
of the Σ0

2-enumeration degrees [Coo84]. Lachlan and Shore [LS92] introduced
the hierarchy of the n-c.e.a. sets. A set is 1-c.e.a. if it is c.e., and (n+1)-c.e.a.
if it is the join of an n-c.e.a. set X and a set Y c.e. in X. It is not difficult
to see that the enumeration degrees of the 2-c.e.a. sets are exactly the
Σ0

2-enumeration degrees. Lachlan and Shore proved that every set that is
n-c.e.a. has a good approximation and then showed that the enumeration
degrees of the n-c.e.a. sets are dense. Harris [Har10] proved that sets that
have good approximations always have cototal enumeration degrees.

Proposition 7.3.16 (Harris [Har10, Proposition 4.1]). If A has a good
approximation, then KA ≤e KA.

In particular, we obtain that the enumeration degrees of n-c.e.a. sets
are cototal. Very recently J. Miller and M. Soskova [MS18] proved that the
cototal enumeration degrees are exactly the enumeration degrees of sets with
good approximations and they are dense.

7.4 The skip

In the previous section, we saw many examples of cototal sets and enumeration
degrees. In this section, we study the skip operator, in part to provide a wide
variety of examples of degrees that are not cototal. Recall that the skip of a
set A ⊆ N is A◊ = KA. As we saw in the introduction, the skip gives us an
easy way to determine whether or not a degree is cototal. For the reader’s
convenience, we restate that result:

Proposition 7.2.1. A set A ⊆ N has cototal degree if and only if A ≤e A
◊.

In addition to being a tool in our study of cototality, the skip is a natural
operator in its own right. As we discussed in the beginning, the enumeration
jump fails to have some of the nice properties of the Turing jump. For
example, it is well-known that A ≤T B if and only if KA ≤1 KB, where KA

denotes the halting set relative to A. The analogous property does not
hold, in general, for the enumeration jump. It is true that A ≤e B implies
KA ⊕KA ≤1 KB ⊕KB, but the reverse implication can fail. The skip, on
the other hand, gives us an embedding of the enumeration degrees into the
1-degrees.

Proposition 7.4.1. A ≤e B if and only if A◊ ≤1 B
◊.

This shows that we can define the skip operator on degrees.

Definition 7.4.2. The skip of the enumeration degree a is a◊ = de(A◊) for
any member A ∈ a.
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7.4.1 Skip inversion

It follows from Proposition 7.2.1 that an enumeration degree a is cototal if
and only if a ≤ a◊, if and only if a◊ = a′. The definition of the enumeration
jump operator restricts its range to the total enumeration degrees and by
monotonicity to the total enumeration degrees in the cone above 0′e. By
transferring the Friedberg Jump Inversion Theorem through the standard
embedding into the enumeration degrees, we see that every total enumeration
degree above 0′e is in the range of the jump operator. The range of the skip
operator is also restricted by monotonicity to enumeration degrees above
0◊e = 0′e. We show that this is the only restriction on the range of the skip
operator, thereby providing a further analogy between the skip and the Turing
jump. Recall that K, the complement of the halting set, is a representative
of the degree 0′e.

Theorem 7.4.3. For any set S ≥e K, there is a set A such that A◊ ≡e S. (In
fact, we also have S ≡e A ≡e A⊕K and S ≤e A⊕K.)

Given a set S ≥e K, we build a set A such that S ≡e A ≤e A
◊ ≤e A⊕K.

Theorem 7.4.6. Let n ≥ 2. For any Π0
n-set S ≥e K, there is a Σ0

n-set A such
that A◊ ≡e S. Furthermore, for any Σ0

n-set S ≥e K, there is a Π0
n-set A such

that A◊ ≡e S.

From Definition 2.3.9 we know that an enumeration degree a is quasimin-
imal if it is nonzero and the only total enumeration degree bounded by a
is 0e.

McEvoy [McE85] proved that the enumeration jump restricted to the
quasiminimal degrees has the same range as the unrestricted jump operator.
We show that the skip has the same property. Actually, we prove with Soskov
[SS13] the same property for the degree spectrum: every element of the jump
spectrum is a jump of a quasi minimal degree with respect to the spectrum
and co-spectrum.

Corollary 7.4.8. For any set S ≥e K, there is a set A of quasiminimal degree
such that A◊ ≡e S.

7.4.2 Further properties of the skip operator and examples

We will now investigate the possible behavior of the iterated skip operator.

Definition 7.4.9. Fix A ⊆ N. We inductively define A⟨n⟩, the n-th skip of A.

• A⟨0⟩ = A,

• A⟨n+1⟩ = (A⟨n⟩)◊.

The n-th skip of de(A) is de(A)⟨n⟩ = de(A⟨n⟩).
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0e

a

0′e

a◊

0′′e

a◊◊

0′′′e

a⟨3⟩⋮

a

a◊

a◊◊

a⟨3⟩

Figure 7.2: Iterated skips of a degree: the zig-zag

If a is a cototal enumeration degree, then every iteration of the skip of a
agrees with the corresponding iteration of the jump of a, i.e., for all n < ω,
we have that a⟨n⟩ = a(n). Theorem 7.4.3 proves that there are non-cototal
enumeration degrees, e.g., the skip invert of a nontotal enumeration degree.
It is natural to ask what we can say in general about the sequence {a⟨n⟩}n∈ω.
One immediate observation is that even though the skip of A need not be
above A, its double skip always is: For any set A, we know that A ≤1 A

◊.
Applying this twice, we have A ≤1 A◊ ≤1 A

◊◊, so a fortiori A ≤e A
◊◊. It

follows that a⟨n⟩ ≤ a⟨n+2⟩ for all n. In addition, by monotonicity, we have
that for every n, 0(n)

e ≤ a⟨n⟩. If a⟨n⟩ is not cototal for every natural number n,
then we have a form of zig-zag behavior of the skip, illustrated in Figure 7.2.
We search for examples of degrees whose skips have this general behavior.

Skips of generic sets

We start by investigating the skip for the class of enumeration degrees of
1-generic sets. Definition 2.3.8 defines a relativized form of 1-genericity,
suitable for the context of the enumeration degrees. Let me remind that
we use the notation “relative to ⟨X⟩” to denote “relative to the enumeration
degree of X”.

From Definition 2.3.10 we know that the degree a is a strong quasiminimal
cover of b if b < a and every total enumeration degree x bounded by a is
below b.

We proved in Proposition 2.3.11 the following properties of 1-generic
relative to ⟨X⟩ set G:

1. de(G⊕X) is a strong quasiminimal cover of de(X).

2. G is 1-generic relative to ⟨X⟩.
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We know from Corollary 2.2.8 that the Turing jump of a 1-generic set has
a nice characterization: KG ≡T G⊕K, or, in other words, G is generalized low.
This property relativizes: If G is 1-generic relative X, then KG⊕X ≡T G⊕KX .
A similar property is true of the skip of a 1-generic set G relative to ⟨X⟩.

Proposition 7.4.10. labelprop:genskip If G is 1-generic relative to ⟨X⟩,
then (G⊕X)◊ ≡e G⊕X◊.

Now, we can easily give an example of a set G whose iterated skips form
a zig-zag. Consider G to be a set that is arithmetically generic, i.e., G is
1-generic relative to ⟨∅(n)⟩ for every natural number n. Note that G has the
same property. Then by induction using the characterization above we can
show that for all n < ω:

• If n is odd then G⟨n⟩ ≡e G⊕∅(n) and (G)⟨n⟩ ≡e G⊕∅(n).

• If n is even then G⟨n⟩ ≡e G⊕∅(n) and (G)⟨n⟩ ≡e G⊕∅(n).

Furthermore, all iterates of the skip for both sets G and G are not total,
as their degrees are quasiminimal covers of the corresponding iterate of the
jump of 0e. It follows that they also do not have cototal degree, as by
Proposition 7.2.1 sets H of cototal degree have total skips: KH ≡e H ≤e H

◊ =
KH . This gives an example of a double zig-zag as in Figure 7.3. It is worth
noting that only the reductions implied by the diagram occur. For example,
G ≰e G

⟨3⟩; otherwise G⟨3⟩ ≡e G⊕G⟨3⟩ ≡e G⊕G⊕∅⟨3⟩ would be total.

0e

g g

0′e

g◊g◊

0′′e

g◊◊ g◊◊

0′′′e

g⟨3⟩g⟨3⟩ ⋮

g

g◊

g◊◊

g⟨3⟩

g

g◊

g◊◊

g⟨3⟩

Figure 7.3: The iterated skips of the degrees of an arithmetically generic set
and its complement: double zig-zag

Skips of nontrivial K-pairs.

Kalimullin [Kal03] relativized the notion of a K-pair in a way similar to how
we relativized the notion of 1-genericity.
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Definition 7.4.11. A pair of sets of natural numbers {A,B} forms a K-pair
relative to ⟨X⟩ if there is a set W ≤e X such that A ×B ⊆W and A ×B ⊆W .
The pair {A,B} is a nontrivial K-pair relative to ⟨X⟩ if, in addition, A ≰e X
and B ≰e X.

Note that if {A,B} forms a nontrivial K-pair, then {A,B} forms a
nontrivial K-pair relative to every ⟨X⟩ such that A,B ≰e X. We summarize
some properties of relativized K-pairs below.

Proposition 7.4.12 (Kalimullin [Kal03]). Let A,B,X ⊆ N and suppose that
{A,B} forms a nontrivial K-pair relative to ⟨X⟩.

1. If C ≤e B then {A,C} forms a K-pair relative to ⟨X⟩.

2. A ≤e B ⊕X.

3. A ≤e B ⊕X◊.

4. de(A⊕X) and de(B ⊕X) are strong quasiminimal covers of de(X).

5. For every Z ⊆ N, the degrees de(A⊕X ⊕Z) and de(B ⊕X ⊕Z) have a
greatest lower bound, and it is de(X ⊕Z).

Note that items (1), (2) and (3) are symmetrically true if we swap A
and B.

The skip of a nontrivial K-pair relative to ⟨X⟩ has the following properties:

Proposition 7.4.13. If {A,B} forms a nontrivial K-pair relative to ⟨X⟩,
then

(A⊕X)◊ ≤e B ⊕X◊ and (B ⊕X)◊ ≤e A⊕X◊.

The oracle set X is of cototal degree if and only if for every nontrivial K-pair
{A,B} relative to ⟨X⟩,

(A⊕X)◊ ≡e B ⊕X◊ and (B ⊕X)◊ ≡e A⊕X◊.

If {A,B} is a nontrivial K-pair and both A and B are not arithmetical,
then {A,B} is a nontrivial K-pair relative to ⟨∅(n)⟩ for every natural num-
ber n. As every set ∅(n) is of (co)total enumeration degree, it follows by
Proposition 7.4.13 that the iterated skips of A and B also form a double
zigzag: For all n < ω,

• if n is odd then A⟨n⟩ ≡e B ⊕∅(n) and B⟨n⟩ ≡e A⊕∅(n), and

• if n is even then A⟨n⟩ ≡e A⊕∅(n) and B⟨n⟩ ≡e B ⊕∅(n).

Furthermore, by Proposition 7.4.12, for every natural number n, {de(A)⟨n⟩,
de(B)⟨n⟩} forms a minimal pair of quasiminimal degrees above 0

(n)
e .
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A pair of enumeration degrees {a,b} forms a K-pair (relative to x) if
there are representatives A ∈ a and B ∈ b that form a K-pair (relative to x).
We use the characterization of the skips of K-pairs along with the following
theorem of Ganchev and Sorbi [GS16] to give an example of degrees whose
iterated skips behave quite differently.

Theorem 7.4.14. (Ganchev, Sorbi [GS16]) For every enumeration degree
x > 0e, there is a degree a ≤ x such that a is half of a nontrivial K-pair and
such that a′ = x′.

Using this we construct an example of an enumeration degree such that
all iterations of its skip are total enumeration degrees, but mismatch its
iterations of the jump by one iteration:

b◊ < b′ = b◊◊ < b′′ = b⟨3⟩ < ⋅ ⋅ ⋅ < b(n) = b⟨n+1⟩ < ⋯.

We end this discussion with some thoughts about the definability of the
skip operator. Kalimullin [Kal03] proved that the relation “{a,b} forms a
K-pair relative to x” is first-order definable with parameter x. Using this
result, he showed that the enumeration jump operator is first-order definable.
Combining these results with the characterization of the skip operator for
nontrivial K-pairs, we immediately obtain the following result.

Corollary 7.4.15. The relation

SK = {(a,a◊) ∣ a is half of a nontrivial K-pair }

is first-order definable in De.

It remains an open question whether or not the skip operator is first-order
definable in De.

A skip 2-cycle

As seen above, the skip can exhibit a form of zig-zag behavior. We now show
that there is another extreme case that could occur: The double skip a◊◊ of
an enumeration degree a could be equal to a itself. Perhaps surprisingly, this
degree is not constructed in a way that is common in computability theory.
Instead, we use the following theorem due to Knaster and Tarski.

Theorem 7.4.16 (Knaster–Tarski Fixed Point Theorem). Let L be a com-
plete lattice and let f ∶L→ L be monotone, i.e., for all x, y ∈ L, we have that
x ≤ y implies that f(x) ≤ f(y). Then f has a fixed point. In fact, the fixed
points of f form a complete lattice.

We apply the Knaster–Tarski theorem to a function on 2ω, which we view
as the power set lattice of N, ordered by subset inclusion.
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Theorem 7.4.17. There is a set A such that A◊◊ = A.

Let f ∶2ω → 2ω be the double skip operator, i.e., f(A) = A◊◊. Note that
if A ⊆ B, then KA ⊆KB, so A◊ ⊇ B◊. Applied twice, we obtain A◊◊ ⊆ B◊◊,
so f is monotone. Hence, by the Knaster–Tarski Fixed Point Theorem, there
is an A such that A◊◊ = A.

Note that we do not just have that A and A◊◊ are enumeration equivalent,
but they are equal as sets. However, we will mainly be interested in the
fact that the enumeration degree a of A satisfies a◊◊ = a. If we have such a
degree a, then we will say that a and a◊ form a skip 2-cycle.

As we show next, skip 2-cycles are computationally very complicated;
namely, they compute all hyperarithmetic sets.

Proposition 7.4.18. Let a and a◊ form a skip 2-cycle. Then a ≥ b for every
total hyperarithmetic degree b.

Given the fact that we have shown the existence of a skip 2-cycle, it is
only natural to consider whether (proper) skip n-cycles exist for any other
natural number n ≥ 1. This turns out to be false.

Proposition 7.4.19. Let n ∈ ω be nonzero such that a⟨n⟩ = a. Then a◊◊ = a.

The set A we obtained in Theorem 7.4.17 allows us to give the example of
a pair of sets A and B = A◊ =KA that illustrate the flaw in the enumeration
jump mentioned in the last paragraph of Section 7.2.

Proposition 7.4.20. labelprop:flaw A′
e ≡1 B

′
e does not necessarily imply

A ≡e B.

7.5 Separating cototality properties

7.5.1 Degrees that are not weakly cototal

Let us begin by showing that the weakest cototality property we introduced,
aptly named weakly cototal, is nontrivial, i.e., that there are degrees that are
not weakly cototal. We present three different examples in this section. First,
we note that sufficiently generic sets are not weakly cototal.

Proposition 7.5.1. If a is a 2-generic enumeration degree, then a is not
weakly cototal.

Next, we show that we can also get such examples using K-pairs.

Proposition 7.5.2. Let a,b /≤e 0
′
e form a nontrivial K-pair. Then a is not

weakly cototal.

For our final example of a degree that is not weakly cototal, recall from
Theorem 7.4.17 that there is a degree a such that a◊◊ = a. Such a degree is
not weakly cototal.
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Proposition 7.5.3. Let a be such that a◊◊ = a. Then a is not weakly
cototal.

7.5.2 Weakly cototal degrees that are not cototal

We prove the next separation using the skip inversion we proved in Theo-
rem 7.4.3 above.

Proposition 7.5.4. There is a degree a that is weakly cototal, but not
cototal.

Let B ≥e K be any total set, and let S =KB. Then note that S ≡e B, so
the degree of S is total, but S is not total as a set. Now apply Theorem 7.4.3
to obtain an A such that A◊ ≡e S and S ≤e A⊕K.

Then A is weakly cototal since A ≡e KA and KA = A◊ ≡e S, which has
total degree. Let a be the degree of A. We claim that a is not cototal. By
Proposition 7.2.1, it suffices to show that A /≤e A

◊. Towards a contradiction,
assume that A ≤e A

◊. Since A◊ ≥e K always holds, we now see that

S ≡e A
◊ ≥e A⊕K ≥e S

so S would be a total set, which is a contradiction.
The proof above combined with Theorem 7.4.6 yields the promised Π0

2

degree that is not cototal. Of course, as noted earlier, such a degree can be
obtained using a theorem of Badillo and Harris [BH12] proving the existence
of a Π0

2-enumeration degree that contains only properly Π0
2-sets. As all

Π0
2 enumeration degrees are weakly cototal, this gives us a more concrete

separation result.
An alternative way to separate the weakly cototal degrees from the cototal

degrees is given by the following proposition.

Proposition 7.5.5. If b /≤ 0′e but forms a nontrivial K-pair with a ≤ 0′e,
then b forms a minimal pair with b◊.

Towards a contradiction, assume there is a nonzero degree c such that
c ≤ b and c ≤ b◊. The fact that c ≤ b gives us that a and c form a
K-pair by Proposition 7.4.12(1). Using this, Proposition 7.4.12(2), and
Proposition 7.4.13 twice, we have

b ≤ a◊ = c⊕ 0′e ≤ b◊ = a⊕ 0′e = 0′e.

So b ≤ 0′e, which is a contradiction.

Corollary 7.5.6. If b is as in the previous proposition, then b is weakly
cototal, but not cototal.

The only separation left to prove is the separation of the cototal degrees
from the graph-cototal degrees. We prove this result in the next section.
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7.6 There is a cototal degree that is not graph-
cototal

Theorem 7.6.1. There is a cototal enumeration degree that is not graph-
cototal.

We fix the undirected graph G = (ω<ω,E), where the edge relation is given
by E(a, b) if and only if a− = b or a = b− (i.e., a is an immediate successor of b
or the immediate predecessor of b). We build the complement of a maximal
independent set for the graph G. Recall that this is a subset A ⊆ ω<ω with
the property that every element a ∈ ω<ω is either outside A or is connected
by an edge to an element outside A, but not both.

Our other condition on the set A will be that it is not enumeration
equivalent to a graph-cototal set. We construct A as such using a construction
in the framework of a 0′′′-priority construction over 0′. We start by listing
an infinite sequence of requirements that collectively ensure that we meet our
goal. We then make use of a tree of strategies. Strategies on the tree inherit
the standard ordering of nodes: We use α ⪯ β to denote that α is a prefix of
β and α <L β to denote that α is to the left of β in the tree. Every strategy
is assigned one of the requirements. At every stage we build a finite path
through this tree, activating strategies along it and injuring all strategies to
the right of it. Activated strategies perform actions towards satisfaction of
their requirements. Injured strategies are initialized—they must start over
as if they were never activated before. The intention is that there is a true
path, a leftmost infinite path of nodes visited at infinitely many stages, such
that every strategy along this path succeeds in satisfying the requirement
that is assigned to it. We refer the reader to Soare [Soa87] for a more
detailed introduction to priority arguments and the tree method. We warn
the reader that our argument differs from standard infinite-injury arguments
in a couple of ways: There are some strategies α which intentionally injure
other strategies β with α ≺ β, and this will cause injury along the true path.
Also, we have strategies β which cause strategies α ≺ β to revert to a previous
state in α’s construction, though for every α each state in α’s construction
will only be susceptible to reversion by finitely many β ≻ α. Finally, we make
use of the notion of moment to refer to substages in the construction. We
assume that actions that strategies make, such as injury and initialization,
have immediate effect during moments in the construction, rather than at
the end of a stage.

Our set A ⊆ ω<ω we construct, satisfies the following requirements, for all
a ∈ ω<ω and all enumeration operators Φ and Ψ.
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Requirements:

global ∶ (∀x, y ∈ ω<ω ∖A)[¬ xEy]
Na ∶ a ∉ A or (∃x)[xEa ∧ x ∉ A]
RΦ,Ψ∶ A = Ψ(Φ(A)) Ô⇒ Φ(A) ≠ Gf for any total function f ∶N→ N

Clearly, our global requirement and the Na-requirements and RΦ,Ψ-require-
ments ensure that A is of cototal (see Section 7.3.3) but not of graph-cototal
enumeration degree.

7.7 Open questions

In this section, we collect the open questions arising from this paper, some of
which have already been asked.
Definability

As mentioned above, Kalimullin [Kal03] showed that the enumeration
jump is first-order definable. Is this also true for the skip?

Question 7.7.1. Is the skip first-order definable in the enumeration degrees?

Furthermore, we have discussed several cototality notions in this paper.
Which of these are definable?

Question 7.7.2. Which cototality notions are first-order definable in the
enumeration degrees?

Note that a positive answer to the first question would imply, by Proposi-
tion 7.2.1, that the cototal degrees are definable.
Arithmetical zigzag

In Section 7.4.2, we have shown that the skip can exhibit a form of zigzag
behavior : There are degrees a such that none of the finite skips of a are total.
However, the examples constructed there are not arithmetical. We suspect
that this is not a coincidence.

Conjecture 2. If a is an arithmetical enumeration degree, then a⟨n⟩ is total
for some n ∈ ω.

Graph-cototal degrees
Theorem 7.6.1 constructed a cototal ∆0

3-degree that is not graph-cototal.
On the other hand, Proposition 7.3.1 proves that every Σ0

2-degree is graph-
cototal. This leaves the following open:

Question 7.7.3. Is every Π0
2 cototal enumeration degree graph-cototal?

We do not know of a simpler proof of the existence of a cototal enumeration
degree that is not graph-cototal. A more informative separation result would
be derived from a positive answer to the following question:
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Question 7.7.4. Is there a continuous enumeration degree that is not graph-
cototal?

Skip cototality
Let us say that a degree a is skip cototal if a◊ is total. Notice that every

skip cototal degree a is weakly cototal, and that every cototal degree is
skip cototal. Furthermore, note that in the proofs of Proposition 7.5.4 and
Corollary 7.5.6, we in fact constructed a degree a that is skip cototal but not
cototal. Even the alternative example of a weakly cototal degree given by
Badillo and Harris [BH12]—the degree that is entirely composed of properly
Π0

2-sets—is also a skip cototal degree.

Conjecture 3. Every weakly cototal degree a is skip cototal.

As mentioned above, every Π0
2-degree is weakly cototal. Therefore, a proof

of our conjecture would in particular imply that the skip of every Π0
2-degree

is total, which is also open.
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editors, Computation and Logic in the Real World, pages 716–
726, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[Sos13] Ivan N. Soskov. A note on ω-jump inversion of degree spectra
of structures. In Paola Bonizzoni, Vasco Brattka, and Benedikt
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