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Introduction

In the thesis we consider a variety of problems related to the theory of
quaternionic-contact (QC) manifolds. The QC geometry was first introduced by
O. Biquard [Biq] to describe a type of geometric structure that appears naturally
at the boundary at infinity of the quaternionic hyperbolic space. In general, a QC
structure on a real (4n+3)-dimensional manifold M is a codimension three distribu-
tion H (to be called contact or horizontal distribution) which is locally given as the
kernel of a 1-form η = (η1, η2, η3), with values in R3, such that the three 2-forms
dηi|H (the exterior derivatives of ηi, restricted to the contact distribution) are the
fundamental 2-forms of some quaternionic structure on H (see also Definition 5.1
below). It is a fundamental theorem of Biquard [Biq] that a QC structure on a real
analytic (4n+3)-dimensional manifold M is always the conformal infinity of a unique
quaternionic-Kähler metric defined in a “small” (4n+ 4)-dimensional neighborhood
of M . This theorem generalizes an earlier result of LeBrun [LeB82] stating that
a real analytic conformal 3-manifold is always the conformal infinity of a self-dual
Einstein metric. From this point of view, the QC geometry is a natural generaliza-
tion of the classical concept of a conformal 3-dimensional Riemannian geometry to
the higher dimensions of the type 4n+ 3.

Furthermore, the QC geometry provides a natural setting for certain Yamabe-
type problem concerning the extremals and the best constant of a special L2 Sobolev-
type embedding on the quaternionic Heisenberg group known as the Folland-Stein
embedding theorem [FS74]. Obtaining a solution to this problem on the Heisenberg
group is one of our main goals in the theses. To explain this in some more details, let
us consider a 1-form η, with values in R3, that defines a QC structure H. This form
is not uniquely determined by the contact distribution H but it is rather determined
only up to a conformal factor and the action of the group SO(3) on R3. Therefore H
is equipped with a conformal class [g] of metrics and a 3-dimensional quaternionic
bundle Q ⊂ End(H) over M . The associated 2-sphere bundle S2(Q)→M is called
the twistor space of the QC-structure. The transformations preserving the QC struc-
ture, i.e., the transformations of the type η̄ = µΨ · η for a positive smooth function
µ and an SO(3) matrix Ψ with smooth functions as entries, are called quaternionic-
contact conformal (QC conformal) transformations. If the function µ is constant,
we have quaternionic-contact homothetic (QC homothetic) transformations. To each
metric in the fixed conformal class [g] on H, one can associate a linear connection
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2 INTRODUCTION

preserving the QC structure [Biq] which we call Biquard connection. This connec-
tion is invariant under QC homothetic transformations, but changes in a non-trivial
way under QC conformal transformations. The scalar curvature, Scal, with respect
to the Biquard connection is one of the most important differential invariants in the
QC geometry with a fixed metric tensor g ∈ [g]. In this setting, the quaternionic-
contact Yamabe problem is the problem of finding all metrics g ∈ [g] for which the
associated scalar curvature Scal is constant.

Already by the very appearance of the new concept of QC geometry, in the year
2000, it was clear that there exist infinitely many examples of such manifolds. The
argument for this came from a paper of LeBrun [LeB91] who managed to proof,
by using the deformation theory of complex manifolds, the existence of an infinite
dimensional family of special complete quaternionic-Kähler metrics on the unite Ball
B4n+4. LeBrun observed that, if multiplied by a function that vanishes along the
boundary sphere S4n+3 to order two, each of his special metrics on the ball extends
smoothly across the boundary sphere S4n+3 where its rank drops to four. It was
discovered later by Biquard [Biq] that the arising structure on S4n+3 is essentially
a QC structure and therefore, on the sphere, we have infinitely many (globally
defined) such structures. Clearly, the whole construction is very non-explicit and
the argument of LeBrun does not help much for the construction of any explicit
examples of QC structures. In fact, the number of the explicitly known examples of
QC manifolds remains so far very restricted. There is essentially only one generic
method for obtaining such structures explicitly. It is based on the existence of
a certain very special type of Riemannian manifolds, the so called 3-Sasaki-like
spaces. These are Riemannian manifolds that admit a special triple R1, R2, R3 of
Killing vector fields, subject to some additional requirements (see Chapter ?? and
the references therein for more details), which carry a natural QC structure defined
by the orthogonal complement of the triple R1, R2, R3. So far, there are no explicit
examples of QC structures (not even locally) for which it is proven that they can
not be generated by the above construction. Investigating the relationship between
the 3-Sasakian spaces and the QC geometry will be one of our main tasks here.

The first chapter of the thesis (with title ”Preliminaries”) is intended to be
an introduction to the subject, where we explain our motivation for studying
quaternionic-contact geometry and recall the main results known in this area. The
rest of the thesis is built on original material most of which was published already
in separate papers.

The core of the thesis is Chapter 2; it is based on results published in [IMV14].
Here we develop the basic concepts in the QC geometry and proof a number of
important results upon which the rest of the thesis is build. In theorems A and
B of this chapter, we obtain a partial solution to the QC Yamabe problem on
the quaternionic Heisenberg group. Theorem C presents our first result relating
the Riemannian geometry of 3-Sasakian manifolds to the geometry of QC Einstein
spaces.
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In Chapter 3, we proceed with the investigations, started in Chapter 2, concern-
ing the geometry of QC Einstein spaces. In Theorem 5.9 (Chapter 2), we show that
the QC scalar curvature of a QC Einstein space of dimension at least eleven is con-
stant but we leave the seven dimensional case open. In Theorem D (Chapter 3), we
extend this result to cover also the more difficult 7 dimensional case. Furthermore,
in this chapter, we show that, depending on the value of the QC scalar curvature,
the QC Einstein spaces are ”essentially” bundles over quaternionic-Kähler or hyper-
Kähler manifolds. The results presented here are published in [IMV16].

In Chapter 4, we use the techniques developed in Chapter 2 to obtain a com-
plete solution to the QC Yamabe problem on the seven dimensional quaternionic
Heisenberg group (theorems E and F). The results here are published in [IMV10].

In Chapter 5, we determine the best (optimal) constant in the L2 Folland-Stein
inequality (Theorem G) on the quaternionic Heisenberg group (in all dimensions)
and the non-negative extremal functions, i.e., the functions for which equality holds.
The argument presented here is purely analytical. In this respect, even though the
QC Yamabe functional is involved, the QC scalar curvature is used in the proof
without much geometric meaning. Rather, it is the conformal sub-laplacian that
plays a central role and the QC scalar curvature appears as a constant determined
by the Cayley transform and the left-invariant sub-laplacian on the quaternionic
Heisenberg group. The method employed here does not give all solutions of the
QC Yamabe equation on the quaternionic-contact sphere but only these that realize
the infimum of the QC Yamabe functional. Therefore, if considering the seven
dimensional case, the result presented here is weaker than Theorem E of Chapter 3.
All results here are published in [IMV12].





Preliminaries

1. Quaternionic-Kähler geometry

1.1. Quaternions. The algebra H of quaternions is by definition the vector
space R4 endowed with a multiplication operation (z, w) 7→ zw which is associative,
satisfies the left and right distributivity axioms, and for which the element

1
def
= (1, 0, 0, 0)

is the neutral element. Using the notation

i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1),

the multiplication of the basis elements is defined by the following list of identities,
called also the quaternionic identities:

(1) i2 = j2 = k2 = −1, ij = −ji = k.

The algebra of quaternions is a division ring, that is, every nonzero element in H
has an inverse. To see this, consider the conjugation z 7→ z̄ in H : If

z = a+ bi + cj + dk, a, b, c, d ∈ R,

then, by definition,

(2) z̄ = a− bi− cj− dk.

A simple computation shows that

z̄z = a2 + b2 + c2 + d2 = |z|2

and that zw = w z. Therefore, the inverse element z−1 of a non-zero z ∈ H is
explicitly given by

z−1 =
z̄

|z|2
.

1.2. Quaternionic structure on a vector space. Consider a real vector
space V and a 3-dimensional subspace Q of the algebra of all real endomorphisms
of V , Q ⊂ End(V ). We say that Q is a quaternionic structure on V , if there exists
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6 PRELIMINARIES

a basis I1, I2, I3 of Q that satisfies the quaternionic identities

(3) I2
1 = I2

2 = I2
3 = −id, I1I2 = −I2I1 = I3.

Note that if Q is a quaternionic structure on V then on Q we have canonically
induced scalar product 〈., .〉 and orientation. Indeed, the elements I ∈ Q of unit
length are precisely those that satisfy the equation I2 = −id, and two elements
I, J ∈ Q are orthogonal with respect to 〈., .〉 if and only if IJ = −JI.

Furthermore, it follows that a triple J1, J2, J3 of elements of Q satisfies the
quaternionic identities

J2
1 = J2

2 = J2
3 = −id, J1J2 = −J2J1 = J3,

if and only if the 3× 3 matrix, obtained by expressing J1, J2, J3 with respect to the
initial basis I1, I2, I3, is an element of the group SO(3).

1.3. The group Sp(1). Observe that, since H is a non-commutative algebra,
we must distinguish between left and right modules (vector spaces) over H. Each
finite dimensional left or right H-vector space is, of course, isomorphic to one of the
coordinate spaces Hn with its natural left or right multiplication operation.

We shell fix (once and for all) a real vector space isomorphism Hn ∼= R4n.
Then, the right H-multiplication on Hn defines a natural quaternionic structure
Q = span{I1, I2, I3} on R4n with I1(z) = zī, I2(z) = zj̄, I3(z) = zk̄ for all z ∈ Hn.
Obviously, Q is then a 3-dimensional Lie subalgebra of the Lie algebra End(R4n),
isomorphic to the classical Lie algebra so(3) = sp(1).

The unique connected Lie subgroup G ⊂ GL(4n,R) with Lie algebra Q is ex-
plicitly given by

G = {a0id+ a1I1 + a2I2 + a3I3 | as ∈ R, a2
0 + a2

1 + a2
2 + a2

3 = 1}

Since, obviously, G is a simply-connected Lie group, it is necessarily isomorphic to
the classical group Sp(1). In the sequel, we shell often identify these two groups
without any further comment.

Typically one introduces a quaternionic valued, positive definite Hermitian scalar
product on Hn by the formula 〈z̄, w〉H =

∑
s z̄sws, z, w ∈ Hn. The real part of the

latter is just the standard real scalar product in R4n, i.e. 〈z, w〉R = Re(〈z̄, w〉H).
Since Sp(1) clearly preserves the Hermitian form 〈z̄, w〉H, we have Sp(1) ⊂ SO(4n).

1.4. The groups GL(n,H) and Sp(n). By definition, GL(n,H) is the group
of the non-degenerate quaternionic n × n matrices. Clearly, GL(n,H) acts from
the left on Hn and, by this action, the elements of GL(n,H) represent the endo-
morphisms of Hn that commute with the right multiplication with H. By the real
isomorphism Hn ∼= R4n which we assume fixed (cf. section 1.3), we can identify the
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group GL(n,H) with a certain subgroup of GL(4n,R) by

GL(n,H) = {A ∈ GL(4n,R) | AJ = JA, J ∈ Q}.

Take P to be the stabilizer in GL(n,H) of the Hermitian form 〈z̄, w〉H, i.e.

P = {A ∈ GL(n,H) | ĀtA = E} = {B ∈ SO(4n) | BJ = JB, J ∈ Q}.

Then, clearly, the Lie group P is isomorphic to the classical group Sp(n) and in the
sequel we shell identify these two. Let us remark explicitly here that the notation
which we have just introduced brings a certain ambiguity in the case n = 1. In this
case, the just defined group P and the previously defined group G (in section 1.3)
are both identified with the same classical group Sp(1) but, in fact, P and G are two
different subgroups of SO(4). Despite the ambiguity, this is a convenient notation
that has been adopted by many authors in the area and therefore, we shell use it as
well. Usually, it is quite clear from the context which of the two different copies of
Sp(1) in SO(4) we are working with at any particular moment.

Following the above notation, the product groups Sp(n)Sp(1) ∼= Sp(n) ×
Sp(1)/Z2 and GL(n,H)Sp(1) can be described as a subgroups of GL(4n,R) as
follows:

Sp(n)Sp(1) = {A ∈ SO(4n) | A−1JA ∈ Q, J ∈ Q}

GL(n,H)Sp(1) = {A ∈ GL(4n,R) | A−1JA ∈ Q, J ∈ Q}.

1.5. Riemannian holonomy. Let (M, g) be a connected Riemannian m-
manifold, and let p ∈M be a chosen base point. The holonomy group of (M, g) at p
is the subgroup of End(TpM) consisting of those transformations that are induced
by parallel transport around piecewise-smooth loops based at p. The restricted ho-
lonomy group is similarly defined, using only loops representing 1 ∈ π1(M, p). The
latter is automatically a connected Lie group and may be identified with a Lie sub-
group of SO(m) by choosing an orthogonal frame for TpM. Changing the base point
only changes the subgroup by conjugation.

Excluding Riemannian products and symmetric spaces, very few subgroups of
SO(m) can be restricted holonomy groups, as was first pointed by Berger [Ber].
In fact, the full list is as follows: SO(m), U(m/2), SU(m/2), Sp(m/4)Sp(1)
(in dimension m ≥ 8); G2 (in dimension 7); and Spin(7) (in dimension 8).

1.6. Quaternionic-Kähler manifolds. A Riemannian manifold (M, g) of di-
mension m = 4n ≥ 8 is called Quaternionic-Kähler (QK) if its group of holonomy
is contained in Sp(n)Sp(1). Equivalently, (M, g) is a QK manifold if there exists
a pointwise quaternionic structure Q (cf. section 1.2) on the tangent bundle of M
such that ∇Q ⊂ Q holds everywhere on M , with ∇ being the Levi-Civita connection
of g. If for a given QK manifold, F → M denotes the principle Sp(n)Sp(1)-bundle
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generated by parallel transport of an arbitrary orthonormal frame, then Q may be
described as the vector bundle associated to F, corresponding to the adjoint repre-
sentation of the group Sp(n)Sp(1) on sp(1).

The above definition of a QK manifold explicitly excludes the 4-dimensional
case. Indeed, since SO(4) = Sp(1)Sp(1), nothing interesting can generally be said
about 4-manifolds with this holonomy group. The proper definition here is: A
Riemannian 4-manifold is said to be Quaternionic-Kähler if it is Einstein and half-
conformally flat. Recall that a Riemannian 4-manifold is called half-conformally flat
if there exists an orientation with respect to which the conformal curvature satisfies
∗W = W (or alternatively ∗W = −W ), where ∗ is the Hodge star. Historically, the
four dimensional case was considered first (cf. [Pen, AHS]) and the results achieved
there gave the motivation for introducing the concept of the higher dimensional QK
manifolds.

2. Twistor construction

Let (M, g) be a QK manifold of dimension 4n ≥ 4 and take F → M to be the
corresponding principle bundle over M with structure group Sp(n)Sp(1). Consiser
the stabilizer Sp(n)U(1) ⊂ Sp(n)Sp(1) of the fixed endomorphism I1 of R4n (as
defined in 1.3) and let Z be the quotient bundle F/(Sp(n)U(1)). Then, π : Z →M
is a 2-sphere bundle over M and each element I of Z corresponds to an orthogonal
complex structure (to be denoted identically)

I : TpM → TpM, I2 = −1, g(IX, IY ) = g(X, Y ),

where p = π(I) and X, Y ∈ TpM. Each fiber Zp = π−1(p) is topologically a 2-sphere
that can be described explicitly as

Zp = {I ∈ Qp | I2 = −id}.

Using the Levi-Civita connection ∇ of the Riemannian metric g we can split the
tangent bundle of Z into horizontal and vertical parts, TZ = D ⊕ V ; the vertical
part V is the kernel of the differential π∗ of the projection map π : Z → M . Since
π∗ : DI → TpM is an isomorphism of real vector spaces, we can lift each element
I ∈ Zp to be an endomorphism J

′
I : DI → DI , (J

′
I)

2 = −1, so that D ⊂ TZ
becomes a complex vector bundle, where the multiplication with

√
−1 is given by

J
′
. On the other hand the fibers of π are oriented metric 2-spheres and so may be

considered as Riemann surfaces. Therefore, the vertical tangent space V = kerπ∗
carries also an endomorphism J

′′
: V → V with (J

′′
)2 = −1. This allows us to define

an almost complex structure J on the whole of TZ = D⊕V by setting J = J
′⊕J ′′ .

It was discovered independently by Salamon [Sal1] and Bérard-Bergery [Brd] that
the almost complex structure J is always integrable, i.e, that its Nijenhuis tensor
vanishes and thus, by the Newlander-Nirenberg theorem, Z is in fact a complex
manifold.
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Furthermore, D ⊂ TZ is a holomorphic subbundle and the projection TZ →
TZ/D gives a holomorphic line-bundle-valued 1-form Θ ∈ Γ(Z,Ω1(L)), L := TZ/D,
which satisfies Θ ∧ (dΘ)n 6= 0, i.e., Θ is a holomorphic contact structure on Z. The
map σ : Z → Z, given by I 7→ −I and corresponding to the antipodal map on each
2-sphere π−1(p), is an antiholomorphic involution (σ2 = 1) without fixed points.
By definition, the twistor space of the QK manifold (M, g) is given by the triple
(Z,Θ, σ).

3. Inverse twistor construction

It is essential that the above twistor construction is actually invertible [LeB89,
PP, BE]. Indeed, let (Z,Θ, σ) be a triple, where Z is a (2n+ 1)-dimensional com-
plex manifold, Θ is a holomorphic contact 1-form on Z that takes values in some
holomorphic line bundle L over Z, and σ : Z → Z is a fixed-point-free antiholo-
morphic involution compatible with the contact structure Θ. Following [LeB91],
we define M c to be the set of all genus zero compact complex curves C ⊂ Z which
have normal bundle isomorphic to the bundle O(1)⊗C2n. Here O(k)→ CP1, k ∈ Z,
is the line bundle of Chern class k. Since the group H1(CP1,O(1)⊗ C2n) vanishes,
it follows, by a theorem of Kodaira [Kod], that the set M c (if not empty) must
be a 4n-dimensional complex manifold with tangent space at any point C ∈ M c

given by H0(CP1,O(1) ⊗ C2n) ∼= C4n. The subset M ⊂ M c of all C ∈ M c that are
σ-invariant is a real analytic manifold which sits in M c as a real slice. By Proposi-
tion 1 in [LeB91], the subset Sc ⊂M c consisting of those C ∈M c that are tangent
to the contact distribution D = ker(Θ) is (if not empty) a non-singular, complex
hypersurface in M c. Moreover, the set S of all σ-invariant C ∈ Sc is a real slice
of Sc, and it is a smooth close hypersurface in M. The real manifold M − S car-
ries a natural pseudo Riemannian metric of holonomy Sp(n − l)Sp(1), 0 ≤ l ≤ n,
with non-vanishing scalar curvature (cf. Theorem 1.3 in [LeB89]) and twistor space
given by the triple (Z,Θ, σ).

This inverse construction is also unique in the following sense: If (Z,Θ, σ) is
the twistor space of some QK-manifold N , then N is naturally isometric to an open
subset of M − S. Furthermore, the germ of the geometry at any point p ∈ M − S
determines the germ of Z along the corresponding curve Cp up to a biholomorphism.

4. Geometry of the boundary surface S

It was observed by Biquard [Biq] that the hypersurface S ⊂ M (we are using
the notation form the previous section 3), which is a (4n− 1)-dimensional real ana-
lytic submanifold, carries a natural geometrical structure which Biquard introduced
as quaternionic-contact (QC) geometry. This structure can be described in the fol-
lowing way: Take any point p ∈ M c and denote by Cp the corresponding compact
complex curve in Z. By assumption Cp ∼= CP1 (biholomorphic equivalence) and the
normal bundle Np := TZ/TCp over Cp is isomorphic to O(1) ⊗ C2n. The L-valued
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contact form Θ determines an isomorphism

(4) Θ ∧ dΘn : Λ2n+1(TZ)→ Ln+1.

If restricting only to the curve Cp, we have

TZ|Cp ∼= TCp ⊕Np

and therefore, via the isomorphism (4),

Λ2n+1(TZ)|Cp ∼= TCp ⊗ Λ2nNp.

Since TCp ∼= O(2) and Λ2nNp
∼= Λ2nO(1) ∼= O(2n), we obtain

(L|Cp)n+1 ∼= O(2n+ 2),

and thus L|Cp ∼= O(2). Consequently, the bundle (T ∗Cp)⊗ (L|Cp) ∼= O(−2)⊗O(2) is
trivial over each separate curve Cp. But can one find a uniform trivialization that
works for all the curves Cp, p ∈M c simultaneously? To answer this, denote by Lp the
1-dimensional space of holomorphic sections of the bundle (T ∗Cp)⊗ (L|Cp)→ Cp. If
L = ∪p∈McLp, then L is a holomorphic line bundle over M c and the restriction of the
contact form Θ to the tangent spaces TCp determines a holomorphic section θ of L,
i.e., there is indeed a uniform trivialization for the bundles (T ∗Cp)⊗(L|Cp)→ Cp only
if we consider domains in M c where θ is non-vanishing. Clearly, the hypersurface
Sc ⊂ M c is precisely the zero locus of θ which is known to be non-degenerate by
Proposition 1 in [LeB91].

In what follows, we shell often need to assume that there exists a square root
L

1
2 of the bundle L. Since L|Cp ∼= O(2) ∼= O(1)2, this assumption is certainly true if

restricting to sufficiently small open subsets of M c, although, even then, there will
exist different possible choices for the square root L

1
2 . The final conclusions from

the considerations below, however, will not depend on the local choices for L
1
2 that

we could make, and thus will remain true also without the assumption about the
global existence of L

1
2 .

Consider the 2-dimensional holomorphic vector bundle H over M c with fibers
Hp = H0(Cp,L

1
2 ) (note that H0(Cp,L

1
2 ) ∼= H0(CP1,O(1)) ∼= C2 for any fixed

p ∈M c). The Wronskian

W : Λ2(Hp)→ H0(Cp, T
∗Cp ⊗ L) ∼= Lp

u ∧ v 7→ u⊗ dv − v ⊗ du

defines a non-degenerate L-valued 2-form on the bundle H → M c, i.e., it defines
an Sp(1,C)-structure on H, and thus also an SO(3,C)-structure on the bundle



5. QC STRUCTURES 11

Sym2(H)→M c of symmetric 2-tensors on H. Since

Sym2(Hp) = Sym2
(
H0(Cp,L

1
2 )
)

= H0(Cp,L),

the bundle Sym2(H) does not depend on the choice of the square root L
1
2 and

therefore, it is well defined globally over M c.
Now let p ∈ Sc = θ−1(0). The tangent space TpS

c is given by ker(dθ) ⊂ TpM
c.

Since Θ(TCp) = 0 the contact form Θ induces a linear map η : H0(Cp, Np) →
H0(Cp,L), i.e., a linear map η : TpM

c → Sym2(Hp). If restricting to ker(dθ) we
obtain a rank three linear map η : TpS

c → Sym2(Hp). Let Hc
p ⊂ TpS

c be the
kernel of this map. Then Hc is a holomorphic codimension three distribution on the
hypersurface Sc. If we take a local SO(3,C) equivariant trivialization Sym2(H) ∼= C3

then we obtain a triple η1, η2, η3 of local one-forms on Sc by the composition

TpS
c → Sym2(Hp)→ C3.

It follows from the considerations in [Biq], III.2.C that there exist a non-degenerate
holomorphic symmetric 2-tensor g on Hc and a triple of holomorphic endomor-
phism I1, I2, I3 of Hc, satisfying the quaternionic identities such that dηs(X, Y ) =
2g(IsX, Y ), X, Y ∈ Hc, s = 1, 2, 3. Thus, if we go to the real slice S ⊂ Sc (through
the antiholomorphic involution σ), we obtain that (S,H) is an analytic quaternionic-
contact manifold in the sense of definition 5.1.

5. QC structures

5.1. Definition and basic properties. Let M be a 4n+3-dimensional (n ≥ 2)
manifold and consider any codimension three distribution H on M. Denote by L
the three dimensional quotient bundle L = TM/H, and by L∗ its dual. For a fixed
point p ∈M, each element η ∈ L∗p is, by definition, a linear map Lp → R. If we take
the composition of η with the projection TpM → Lp, we obtain an element of T ∗pM.
Therefore, we have an identification

(5) L∗p
∼= {λ ∈ T ∗pM : λ|H = 0}

and the sections of L∗ are simply the 1-forms on M that are vanishing along the
distribution H.

Definition 5.1. A quaternionic-contact structure (QC structure) on a (4n+3)-
dimensional (n ≥ 2) manifold M is a codimension three distribution H with the
property that locally, around each point p ∈M , there exist:

i) sections η1, η2, η3 of L∗;
ii) sections I1, I2, I3 of the bundle End(H) satisfying the quaternionic identities

I2
1 = I2

2 = I2
3 = −idH I1I2 = −I2I1 = I3;
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iii) a symmetric and positive definite section g of the bundle H∗ ⊗H∗,
so that all these satisfy the identities

(6) dηs(X, Y ) = 2g(IsX, Y ), s = 1, 2, 3.

Any ordered list

(7) (η1, η2, η3, I1, I2, I3, g)

of local sections with the same type and properties as in the above Definition 5.1 will
be called admissible set for the QC structure H on M . The 1-form η = (η1, η2, η3)
with values in R3 will be called simply – contact form. Neither the contact form
η nor the admissible set (η1, η2, η3, I1, I2, I3, g) (which we shall often abbreviate to
(ηs, Is, g), presuming that s is an index running from 1 to 3) are uniquely determined
by the QC structure H. In fact, we have the following

Lemma 5.2. Let (ηs, Is, g) and (η′s, I
′
s, g
′) be two admissible sets for the same QC

structure H on M , defined on some open set U ⊂ M . Then, there exists a positive
function f : U → R and a matrix-valued function A = (aij) : U → SO(3) so that

(I ′1, I
′
2, I
′
3) = (I1, I2, I3)A, (η′1, η

′
2, η
′
3) = f(η1, η2, η3)A, g′ = f g.

Proof. By assumption, H = ∩3
i=1ηi = ∩3

i=1η
′
i. Thus there exists a matrix-

valued function B = (bij) : U → GL(3) with η′s =
∑3

t=1 bstηt, s = 1, 2, 3. Taking the
exterior derivative of the above equations we obtain

(8) (dη′s)|H =
∑
t

bst(dηt)|H .

Let us fix a symmetric and positive definite section h of the bundle H∗ ⊗H∗ which
we will use as a ”background” metric on H. With respect to this metric, consider
the restrictions of the 2-forms (dη′s)|H to H as endomorphisms of H, i.e., sections
of the bundle End(H) = H∗ ⊗ H. This identification depends on the choice of h.
However, it is easy to see that the composition of two endomorphisms of the form
((dη′s)|H)−1◦(dη′t)|H , is an endomorphism independent of the choice of h. For (i, j, k)
a cyclic permutation of (1, 2, 3) and h = g′ we have

(9) ((dη′j)|H)−1 ◦ (dη′i)|H = I ′k.

The above equation holds for any choice of the “background” metric h on H, in
particular, also for h = g. Using 8, we conclude that

I ′k = ((dη′j)|H)−1 ◦ (dη′i)|H ∈ spanR {idH , I1, I2, I3}.

Note that spanR {idH , I1, I2, I3} ⊂ End(H) is an algebra with respect to the usual
composition of endomorphisms, which is isomorphic to the algebra of the quaternions
H = spanR {1, i, j, k}. If an element of H has square −1 then this element belongs
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to Im(H). Therefore, I ′s ∈ span{I1, I2, I3} and hence

spanR {I1, I2, I3} = spanR {I ′1, I ′2, I ′3}.

Now, still identifying H∗ ⊗ H with End(H), using h = g, and recalling that the
metric g is Is- and I ′s-compatible, we observe that each of the endomorphisms (dη′k)H
anti-commutes with both I ′i and I ′j. This implies that, as an endomorphism, (dη′k)H
is proportional to I ′k, which gives g′ = f g for some f > 0. The fact that the matrix
valued function

A
def
=

1

f
B

takes values in SO(3) follows from the requirement that both (I1, I2, I3) and
(I ′1, I

′
2, I
′
3) satisfy the quaternionic identities. �

Let us remark that the above lemma (which is a well known fact as a sort of
mathematical folklore) reveals a property that is very particular for the QC geometry
in contrast with the situation in the CR case. The lemma implies that with each
QC manifold (M,H) we have the following list of naturally associated objects:

i) There is a 3-dimensional bundle

Q = span{I1, I2, I3} ⊂ End(H)

over M which we shall call quaternionic structure of H. Note that Q is
canonically endowed with a scalar product 〈., .〉 and orientation in such a
way that for any admissible set (7), the basis I1, I2, I3 of Q is orthonormal
and oriented.

ii) The conformal class [g] of symmetric sections of H∗ ⊗H∗ from (7) is well
defined globally on M . Using the standard partition of unity argument,
it is easily seen that in [g] we can always pick a globally defined positive
definite representative, which we call metric on the contact distribution H
.

iii) The bundle L∗ is canonically endowed with an CSO(3) structure (i.e., a
conformal structure). This is done by declaring that for each admissible set
(7) the basis η1, η2, η3 is orthogonal and oriented.

5.2. Quaternionic-contact structures in dimension 7. It turns out that
for n = 1 the definition 5.1 is too weak and one needs some further assumptions in
order to make it reasonable.

To clarify the problem here, consider an arbitrary orientable 4-dimensional dis-
tribution H on a 7-dimensional manifold M , and choose some volume form ε on
H—here, by volume form, we mean a globally defined non-vanishing section ε of
the bundle Λ4(H∗) over M. Since for any two φ, ψ ∈ Λ2(H∗), the wedge product
φ ∧ ψ is proportional to ε, we can define a bilinear symmetric 2-form B on Λ2(H∗)
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by the equation φ ∧ ψ = B(φ, ψ)ε. Then, B is non-degenerate, of signature (3, 3),
and it defines an inner-product on the bundle Λ2(H∗) over M. For any local frame
η1, η2, η3 of L∗ (with L = TM/H), consider, pointwise, the subspace

Γ = span{(dη1)H , (dη2)H , (dη3)H} ⊂ Λ2(H∗).

It is an easy observation that Γ depends only on the distribution H, but not on
the particular choice of the frame η1, η2, η3. Now, a simple calculation shows that
the distribution H satisfies the conditions of Definition 5.1 if and only if Γ is 3-
dimensional at each point of M (i.e., if Γ is non-degenerate) and the restriction of B
to Γ is either positive or negative definite. Clearly, each of the above two conditions
is generic (i.e., it defines an open subset in the set of all distributions on M with
respect to some natural topology) which makes the set of distribution that satisfy
it uncomfortably “large”.

As shown in [D1], the proper definition in dimension 7 requires one to add an
extra assumption to the conditions of definition 5.1; namely, the assumption about
the existence of Reeb vector fields which we shall explain below.

5.3. Existence of Reeb vector fields. Assume H is a 4n-dimensional dis-
tribution on a (4n + 3)-dimensional manifold M that satisfies the requirements of
definition 5.1 without the assumption n ≥ 2, i.e., here, we allow also dim(M) = 7.

We fix some admissible set (ηs, Is, g) for H. If V is any complementary to H
distribution, i.e., such that

TM = H ⊕ V,

then clearly there exists a unique frame (ξ1, ξ2, ξ3) of V dual to (η1|V , η2|V , η3|V ).
In what follows it will be important to find a special complementary distribution

V̄ in such a way that the associated dual frame (ξ̄1, ξ̄2, ξ̄3) would satisfy in addition
the relations

(10) dηs(ξ̄t, X) = −dηt(ξ̄s, X) s, t = 1, 2, 3, X ∈ H.

If such a complement V̄ exist, then the vector fields of the associated dual frame
(ξ̄1, ξ̄2, ξ̄3) will be called Reeb vector fields of the contact form η = (η1, η2, η3).

Following [Biq], consider the 3×3 matrix with entries the elements of H∗, given
by

ast = dηs(ξt, .) + dηt(ξs, .), s, t = 1, 2, 3,

with respect to some starting complement V . One could think of the matrix ast as
the local representation of a certain section of the bundle Q⊗Q⊗H∗ given by the
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formula

(11)
3∑

s,t=1

Is ⊗ It ⊗ ast.

Clearly, (11) remains unchanged if rotating the admissible set (ηs, Is) by an SO(3)
matrix and therefore it depends only on the choice of the complement V but not
on the choice of the admissible set. Now the problem of finding a dual basis with
the properties (10) is equivalent to the problem of finding a complement V̄ with
vanishing associated section

(12)
∑

Is ⊗ It ⊗ āst

of the bundle Q⊗Q⊗H∗.
Since the matrix ast is symmetric, by definition, the (12) is actually an element

of the bundle Q�Q⊗H∗, where Q�Q denotes the symmetric component of Q⊗Q.
The bundle Q � Q ⊗ H∗ decomposes into exactly three irreducible components
with respect to the natural Sp(n)Sp(1) action. With the standard notation for the
irreducible Sp(n)Sp(1)-representations, we have

Q�Q⊗H∗ = [λ1σ5]⊕ [λ1σ3]⊕ [λ1σ1].

Of particular interest for us is the component [λ1σ5] that can be described explicitly
by

[λ1σ5] = {
∑
st

Is ⊗ It ⊗ xst ∈ Q⊗Q⊗H∗ : xst = xts,
∑
t

Itxst = 0}.

The other two components can be described similarly:

[λ1σ3] = {
∑
st

Is ⊗ It ⊗ (Isyt + Itys) ∈ Q⊗Q⊗H∗ : ys ∈ H∗,
∑
s

Isys = 0},

[λ1σ1] = {
∑
st

Is ⊗ It ⊗ (δsty) ∈ Q⊗Q⊗H∗ : y ∈ H∗}.

Explicitly the [λ1σ5]-component
∑
Is⊗ It⊗ bst of a section

∑
Is⊗ It⊗ ast, that

has been associated to some complementary distribution V , is given by

bst = ast +
1

5

3∑
r=1

(IsIratr + ItIrasr − δstarr).
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In fact, by using some simple representation theoretic arguments or by a direct cal-
culation, it is easy to show that the above component

∑
Is ⊗ It ⊗ bst is actually

independent of the choice of the starting V , and therefore it is an object that char-
acterizes the given QC-structure as a whole. With a bit more effort this section
could be viewed as a component of the intrinsic torsion of the QC-structure but
this will not be considered here further. For our purposes, significant is only the
following:

Proposition 5.3. There exists a complementary distribution V̄ to H for which
the associated dual frame (ξ̄1, ξ̄2, ξ̄3) satisfies equations (10) if and only if the [λ1σ5]-
component

∑
Is ⊗ It ⊗ bst vanishes for some (and hence for each) complementary

distribution V .

Proof. Indeed, assume that bst = 0 s, t = 1, 2, 3 for some fixed V with associ-
ated dual frame (ξ1, ξ2, ξ3). If we define the three vector fields r1, r2, r3 ∈ H by the
formula

g(rs, X) = −1

5

∑
p

(Ipasp +
1

2
Isapp)(X), s = 1, 2, 3, X ∈ H,

then the dual frame ξ̄s = ξs − 1
2
rs will have the desired property (10). �

If dim(M) > 7, the [λ1σ5]-component
∑
Iα ⊗ Iβ ⊗ bαβ vanishes automatically,

by a result in [Biq], and therefore the existence of Reeb vector fields is provided
without any further assumptions about the QC structure H.

In dimension 7, however, the [λ1σ5]-component
∑
Is ⊗ It ⊗ bst may not vanish

in general and there are examples of distributions in dimension 7 that satisfy all the
requirements of definition 5.1 (but the assumption n ≥ 2) for which there exist no
Reeb vector fields at all (cf. [D1]).

5.4. Special agreement in dimension 7. If the dimension of the QC-
manifold M is 7 then we will assume in addition to definition 5.1 that the [λ1σ5]-
component

∑
Is⊗It⊗bst (cf. section 5.3) for some (and hence for each) complement

V to H vanishes and thus the existence of the Reeb vector fields is provided.

5.5. Biquard connection. Let (M4n+3, H) be a quaternionic-contact manifold
and fix some admissible set (ηs, Is, g) for H. As explained in section 5.1, the contact
form η = (η1, η2, η3) in the admissible set is determined only up to a conformal
factor and the action of SO(3) on R3. The distribution H is equipped with a
conformal class [g] of metrics and a 3-dimensional quaternionic bundle Q. According
to Lemma 5.2 the most general transformation of the contact form η has the type
η̄ = µΨ · η for a positive smooth function µ and an SO(3) matrix Ψ with smooth
functions as entries. We call such transformations quaternionic-contact conformal
(QC conformal). If the function µ is constant we say that the transformation is
quaternionic-contact homothetic. Clearly, the contact forms η̄ which one obtains
by applying homothetic quaternionic-contact transformations are precisely those for
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which the corresponding metric ḡ (in the corresponding to η̄ admisible set) is a
constant multiple of g. If the tensor g in the natural conformal class [g] is fixed we
will say that (M,H, g) is a quaternionic-contact metric manifold. To every metric
in the conformal class [g] on H one can associate a linear connection preserving
the QC structure (M,H, g) (cf. [Biq]) which we shall call the Biquard connection.
This connection is invariant under QC homothetic transformations but changes in
a non-trivial way under QC conformal transformations. If following the analogy
with the 3-dimensional conformal geometry mentioned in ??, one should think of
the Biquard connection as an analog of the Levi-Civita connection.

Next we explain briefly the construction of the Biquard connection (for more
details see [Biq]). Let us first consider the general situation of a manifold M with
an arbitrary distribution H ⊂ TM and a general vector bundle E over M. A partial
connection on E along H is, by definition, a bilinear map ∇Xσ defined for vec-
tor fields X with values in H and sections σ of E such that ∇fXσ = f∇Xσ and
∇X(fσ) = X(f)σ + f∇Xσ for every smooth function f on M .

If g is a metric on H then (as shown in [Biq, Lemma II.1.1]) for any supple-
mentary distribution V of H in TM , there is a unique partial connection ∇ on H
along H such that

(i) ∇Xg = 0, X ∈ H;
(ii) for any two sections X, Y of H, the torsion T (X, Y ) = ∇XY −∇YX−[X, Y ]

satisfies the identity T (X, Y ) = −[X, Y ]V , where the subscript V means
”the component in V ”.

Now let (M,H, g) be a quaternionic-contact metric manifold with admissible set
(ηs, Is) and Reeb vector fields ξ1, ξ2, ξ3. Chose V to be the span of ξ1, ξ2, ξ3. Each
endomorphism f of H extends naturally to an endomorphism of TM by setting
f(ξ) = 0, ξ ∈ V . With this agreement we may consider the endomorphism in the
basis {I1, I2, I3} of Q as endomorphisms of the tangent bundle TM. We define the
fundamental 2-forms ω1, ω2, ω3 of Q by

(13) ωs(A,B) = g(IsA, (B)H), A,B ∈ TM, s = 1, 2, 3,

where the subscript H means ”the component in H”. Definition 5.1 imply that

(14) ωs(A,B) =

{
1
2
dηs(A,B), A,B ∈ H

0, A ∈ V, B ∈ TM for s = 1, 2, 3.

.
Take ∇ to be the partial connection on H along H that corresponds to the

fixed supplementary distribution V . Then according to [Biq, Proposition II.1.7],
the partial connection ∇ preserves the bundle Q, i.e., we have

(iii) ∇XQ ⊂ Q, X ∈ H.
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More precisely, for each cyclic permutation (i, j, k) of the numbers (1, 2, 3) and any
X ∈ H there are the relations

∇Xωi = −αj(X)ωk + αk(X)ωj;(15)

∇XIi = −αj(X)Ik + αk(X)Ij,

where αi(X) := dηk(ξj, X).
Let us introduce an inner-product 〈., .〉 on the bundle V by setting the Reeb

vector fields ξ1, ξ2, ξ3 to be an orthonormal basis of V. Given a section ξ of V and a
section X of H, set ∇Xξ = [X, ξ]V . By [Biq, Proposition II.1.9], the latter formula
defines a partial connection on V along H such that ∇〈., .〉 = 0.

The natural assignment

(16) ξs → Is, s = 1, 2, 3,

determines a bundle isomorphism ϕ : V → Q. The isomorphism ϕ has the property
that

(iv) ∇Xϕ = 0 for X ∈ H.

Indeed, by (15), we have

∇X(ϕ(ξt)) = ∇XIt = −
∑3

s=1 dηt(ξs, X)Is =
∑3

s=1 dηs(ξt, X)Is =
∑3

s=1 ηs([X, ξt]V )Is =∑3
s=1 ηs(∇Xξt)ϕ(ξs) = ϕ(∇Xξt)

Set

P = {A ∈ End(H) | A is skew-symmetric and AI = IA for every I ∈ Q}.

This is a subbundle of End(H) of rank 2n2 + n, orthogonal to Q and such that the
commutator [A1, A2] of two endomorphisms A1, A2 ∈ P is also in P . Clearly, every
fibre of P (resp. Q) is isomorphic to the Lie algebra sp(n) (resp. sp(1)).

It is shown in [Biq, Lemma II.2.1] that there is a unique partial connection ∇
on H along V such that

(v) ∇ξg = 0, ξ ∈ H;
(vi) ∇ξQ ⊂ Q, ξ ∈ H;

(vii) setting T (ξ,X) = ∇ξX − ∇Xξ − [ξ,X] for ξ ∈ V and X ∈ H, every
endomorphism

Tξ : H ∈ X → T (ξ,X) = ∇ξX − [ξ,X]H ∈ H

is an element of (P ⊕Q)⊥ ⊂ End(H).

Note, that we have a bundle isomorphism {(P ⊕ Q)⊥ ⊂ End(H)} ∼= {(sp(n) ⊕
sp(1))⊥ ⊂ gl(4n)}.
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Since ∇ξQ ⊂ Q for every ξ ∈ V , we can transfer ∇ξ from Q to V via the
isomorphism ϕ : V → Q. In this way get a partial connection on V along V with
the property

(viii) ∇ξϕ = 0, ξ ∈ Q.

Combining the partial connections we have defined, we obtain a connection ∇ on
TM having the properties (i)-(viii). We shall call ∇ the Biquard connection of
the metric QC-structure (M,H, g). This connection is uniquely determined by its
properties (i)-(viii).

By using the isomorphism ϕ : V → Q we can transfer to V the metric and the
orientation of Q. Then any frame ξ1, ξ2, ξ3 associated to an admissible set of the
QC-structure is orthonormal and positively oriented. Putting together the metric
of V and the metric g of H we obtain a metric on TM = H ⊕V for which H and V
are orthogonal. This metric on TM will be also denoted by g and it is also parallel
with respect to the Biquard connection, ∇g = 0.

Summing up the facts from the above discussion, we have obtained the following
result which is originally due to O. Biquard:

Theorem 5.4. [Biq] Let (M,H, g) be a quaternionic-contact metric manifold
of dimension 4n + 3 ≥ 7. Then, there exists a unique connection ∇ with torsion T
on M and a unique supplementary distribution V to H in TM , such that:

i) ∇ preserves the decomposition H ⊕ V and the metric g;
ii) for X, Y ∈ H, one has T (X, Y ) = −[X, Y ]|V ;

iii) ∇ preserves the Sp(n)Sp(1)-structure on H, i.e., ∇g = 0 and ∇Q ⊂ Q;
iv) for ξ ∈ V , the endomorphism T (ξ, .)|H of H lies in (sp(n)⊕ sp(1))⊥ ⊂ gl(4n);
v) the connection on V is induced by the natural identification ϕ of V with the

subspace sp(1) of endomorphisms of H, i.e., ∇ϕ = 0.

5.6. Further properties of the Biquard connection. Any endomorphism
Ψ of H can be naturally decomposed, with respect to some admissible set (ηs, Is),
into four parts (this we call Sp(n)-invariant decomposition of Ψ)

Ψ = Ψ+++ + Ψ+−− + Ψ−+− + Ψ−−+,

where Ψ+++ commutes with all three Ii, Ψ+−− commutes with I1 and anti-commutes
with the others two and etc. Explicitly,

4Ψ+++ = Ψ− I1ΨI1 − I2ΨI2 − I3ΨI3, 4Ψ+−− = Ψ− I1ΨI1 + I2ΨI2 + I3ΨI3,

4Ψ−+− = Ψ + I1ΨI1 − I2ΨI2 + I3ΨI3, 4Ψ−−+ = Ψ + I1ΨI1 + I2ΨI2 − I3ΨI3.

The two Sp(n)Sp(1)-invariant components are given by

(17) Ψ[3] = Ψ+++, Ψ[−1] = Ψ+−− + Ψ−+− + Ψ−−+.
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Denoting the corresponding (0,2) tensor via g by the same letter one sees that
the Sp(n)Sp(1)-invariant components are the projections on the eigenspaces of the
Casimir operator

(18) † = I1 ⊗ I1 + I2 ⊗ I2 + I3 ⊗ I3

corresponding, respectively, to the eigenvalues 3 and −1, see [CSal]. If n = 1
then the space of symmetric endomorphisms commuting with all Ii, i = 1, 2, 3 is
1-dimensional, i.e. the [3]-component of any symmetric endomorphism Ψ on H is

proportional to the identity, Ψ3 = tr(Ψ)
4
Id|H .

The supplementary ”vertical” (sub-)space V is the linear span of the Reeb vector
fields {ξ1, ξ2, ξ3} The vector fields ξ1, ξ2, ξ3 are called Reeb vector fields or fundamen-
tal vector fields. We shall extend g to a metric on M by requiring

(19) span{ξ1, ξ2, ξ3} = V ⊥ H and g(ξs, ξk) = δsk.

The extended metric does not depend on the action of SO(3) on V , but it changes
in an obvious manner if η is multiplied by a conformal factor. Clearly, the Biquard
connection preserves the extended metric on TM,∇g = 0. We shall also extend the
quternionic structure by setting Is|V = 0.

Suppose the Reeb vector fields {ξ1, ξ2, ξ3} have been fixed. The restriction of
the torsion of the Biquard connection to the vertical space V satisfies [Biq]

(20) T (ξi, ξj) = λξk − [ξi, ξj]|H ,

where λ is a smooth function on M , which will be determined in Corollary ??.
Here (i, j, k) is any cyclic permutation of 1, 2, 3. Further properties of the Biquard
connection are encoded in the properties of the torsion endomorphism

Tξ = T (ξ, .) : H → H, ξ ∈ V.

Decomposing the endomorphism Tξ ∈ (sp(n) + sp(1))⊥ into its symmetric part T 0
ξ

and skew-symmetric part bξ,

Tξ = T 0
ξ + bξ,

we summarize the description of the torsion due to O. Biquard in the following
Proposition.

Proposition 5.5. [Biq] The torsion Tξ is completely trace-free,

(21) trTξ =
4n∑
a=1

g(Tξ(ea), ea) = 0, trTξ ◦ I =
4n∑
a=1

g(Tξ(ea), Iea) = 0, I ∈ Q,
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where e1 . . . e4n is an orthonormal basis of H. The symmetric part of the torsion
has the properties:

(22) T 0
ξi
Ii = −IiT 0

ξi
, i = 1, 2, 3.

In addition, we have

(23)
I2(T 0

ξ2
)+−− = I1(T 0

ξ1
)−+−, I3(T 0

ξ3
)−+− = I2(T 0

ξ2
)−−+,

I1(T 0
ξ1

)−−+ = I3(T 0
ξ3

)+−−.

The skew-symmetric part can be represented in the following way

(24) bξi = Iiu, i = 1, 2, 3,

where u is a traceless symmetric (1,1)-tensor on H which commutes with I1, I2, I3.
If n = 1 then the tensor u vanishes identically, u = 0 and the torsion is a

symmetric tensor, Tξ = T 0
ξ .

Let R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ] be the curvature tensor of the Biquard con-
nection. The QC Ricci curvature Ric, the QC Ricci forms ρs and the QC scalar
curvature Scal are defined respectively by

Ric(A,B) =
4n∑

a,b=1

g(R(eb, A)B, eb), A,B ∈ TM,

ρs(A,B) =
1

4n

4n∑
a=1

g(R(A,B)ea, Isea), Scal =
4n∑

a,b=1

g(R(eb, ea)ea, eb),

where e1, ..., e4n is an orthonormal basis of H. The restriction of the Ricci curva-
ture Ric to H is a symetric 2-tensor ([Biq]) which could be Sp(n)Sp(1)-invariantly
decomposed in exactly three components.

6. Quaternionic Heisenberg group

A very basic example of a QC manifold is provided by the quaternionic Heisen-
berg group G (H). These group can be modeled on the product space Hn × ImH
(n ≥ 1) with a group law given by

(q′, ω′) = (qo, ωo) ◦ (q, ω) = (qo + q, ω + ωo + 2 Im qo q̄),

where q, qo ∈ Hn and ω, ωo ∈ ImH. In coordinates, with the obvious notation,
a basis of left invariant horizontal vector fields Tα, Xα = I1Tα, Yα = I2Tα, Zα =
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I3Tα, α = 1 . . . , n is given by

Tα = ∂tα + 2xα∂x + 2yα∂y + 2zα∂z Xα = ∂xα − 2tα∂x − 2zα∂y + 2yα∂z

Yα = ∂yα + 2zα∂x − 2tα∂y − 2xα∂z Zα = ∂zα − 2yα∂x + 2xα∂y − 2tα∂z .

The central (vertical) vector fields ξ1, ξ2, ξ3 are

ξ1 = 2∂x ξ2 = 2∂y ξ3 = 2∂z .

We have the following commutator relations

(25) [Ij Tα, Tα] = 2ξj [Ij Tα, Ii Tα] = 2ξk,

where (i, j, k) is any cyclic permutation of the indices (1, 2, 3).
With respect to the local coordinates (q′, ω) ⊂ G (H), the standart 3-contact

form Θ̃ = (Θ̃1, Θ̃2, Θ̃3) is given by

(26) 2Θ̃ = dω − q′ · dq̄′ + dq′ · q̄′.

The kernel of the contact form Θ̃ is given by the distribution H which is easily
seen to satisfy all the conditions of Definition 5.1 and thus defines a QC structure
on G (H). Since the distribution H and the contact form Θ̃ are left-invariant, they
are preserved by the natural left-invariant connection on G (H). Let g be the left
invariant metric on H which is determined by Θ̃. Then, the central vector fields
ξ1, ξ2, ξ3 coincide with the correponding Reeb vector fields (cf. 5.3). If V is the
linear span of these Reeb vector fields. Then V is a left-invariant distribution on
G (H) and TG (H) = H ⊕ V. Moreover, the left-invariant connection on G (H) is
easily seen to coincide with the the Biquard connection of the quaternionic-contact
metric structure (G (H), H, g).

The translations τ(qo,ωo) on G (H)—mapping each (q, ω) to a point (q+qo, ω+ωo)
of the group—and the dilations δλ, λ > 0—defined by δλ (q, ω) = (λq, λ2ω)—are
transformation of the group that preserve the QC distribution H. Such transfor-
mations are called conformal QC automorphisms of the group. If u(q, ω) is any
function, then under the action of the translations and the dilations it is trans-
formed to another function by the formulas:

(27) τ(qo,ωo)ū (q, ω)
def
= ū(qo + q, ω + ωo),

(28) uλ
def
= λ(nh−2)/2 u ◦ δλ,

where nh = 4n+ 6 denotes the homogeneous dimension of the group.
We shall often identify G (H) with the boundary Σ of a Siegel domain in Hn×H,

Σ = {(q′, p′) ∈ Hn ×H : Re p′ = |q′|2},
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by the mapping (q′, ω) 7→ (q′, |q′|2 − ω). Since dp′ = q′ · dq̄′ + dq′ · q̄′ − dω,
under the identification of G (H) with Σ we have also 2Θ̃ = −dp′ + 2dq′ · q̄′.
Taking into account that Θ̃ is purely imaginary, the last equation can be written in
the following form

4 Θ̃ = (dp̄′ − dp′) + 2dq′ · q̄′ − 2q′ · dq̄′.

6.1. Folland-Stein inequality. On the quaternionic Heisenberg group G (H),
there is a natural left-invariant measure known as the Haar measure dH of the group.
Using this and the left-invariant metric g on G (H), we have the following classical
result due to Folland and Stein [FS74]:

Theorem 6.1 (Folland-Stein). There exists a constant S > 0 such that for
each u ∈ C∞o (i.e., for each smooth function u with compact support), we have the
inequality

(29)

(∫
G (H)

|u|2∗ dH
)1/2∗

≤ S

(∫
G (H)

|(∇u)H |2 dH
)1/2

,

where (∇u)H denotes the H-component of the gradient of u with respect to the split-
ting TG (H) = H ⊕ V , and 2∗ stands for the constant 2nh

nh−2
= 1 + n+2

n+1
, where

nh = 4n+ 6 is the so called homogeneous dimension of the group.

This theorem raises the following very natural question—known as the QC Yam-
abe problem—about the sharpness of the above inequality:

∗ What is the best possible choice for the constant S in the above inequality
and for which functions u does this inequality become an equality?

Following the analogy with the classical Sobolev inequality one shows (see [GV1,
Va2, IMV10]) that the above question reduces to the solvability of the following
second order differential equation on the quaternionic Heisenberg group:

(30) 4u = −Cu2∗−1,

where C is a positive constant and 4 is the horizontal sub-Laplacian defined in
terms of the Biquard connection ∇ (which in this case is just the flat, left-invariant,
connection of G (H)) by the formula

(31) 4u =
4n∑
s=1

(∇du)(es, es), e1, . . . , e4n is any g-orthonormal basis of H.

In general, the equation

(32) 4u = −Cuq
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is a sort of a non-linear eigenvalue problem for the operator 4 on G (H), whose
analytic properties depend on the value of the exponent q. For q = 1, we have the
linear eigenvalue problem; if the value of q is close to 1, the analytic behavior of
(32) is very similar to the linear case and the problem is easily solved. For large q,
all the methods based on linear theory are useless. The value 2∗ − 1 of the Yamabe
equation (30) appears to be critical for the exponent q in the senses that if q is less,
then (32) is easy to solve and if q is more, it might be impossible to solve at all.
This accounts for the complexity of the QC Yamabe equation.

6.2. QC sphere. The unit sphere S4n+3 ⊂ Hn+1 (n ≥ 1) is given in the usual
way:

S4n+3 =
{

(q, p) ∈ Hn ×H
∣∣∣ |q|2 + |p|2 = 1

}
.

The canonical QC structure on S4n+3 can be described as follows: By differ-
entiating the sphere equation p · p̄ + q · q̄ = 1, we obtain that at any fixed point
x = (q, p) ∈ S4n+3, the tangent space of the sphere is

TxS
4n+3 =

{
(dq, dp) ∈ Hn ×H

∣∣∣ Re(dq · q̄ + dp · p̄) = 0
}

Then, the canonical contact 1-form η̃ with values in Im(H) = R3 on S4n+3 is defined
by

η̃ = Im(dq · q̄ + dp · p̄).

The kernel of η̃ gives a QC structure in S4n+3 since it coincides with the canonical
distribution Hcan on S4n+3 that have been introduced in Section ?? as the conformal
infinity of the quternionic hyperbolic space.

6.3. Cayley transform. The Cayley transform, C, is a natural identification
between the sphere S4n+3 with one point deleted and the quternionic Heisenberg
group. It plays a roll in the QC geometry that is very close to this of the classical
stereographic projection in the conformal Riemannian geometry.

If idenitfyign G (H) with Σ as above, we have that, by definition, C identifies
each point (q, p) ∈ S4n+3, p 6= 1, with a point (q′, p′) ∈ Σ,

(q′, p′) = C
(

(q, p)
)
, q′ = (1 + p)−1 q, p′ = (1 + p)−1 (1− p).

The inverse map (q, p) = C−1
(

(q′, p′)
)

is given by

q = 2(1 + p′)−1 q′, p = (1 + p′)−1 (1− p′).
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The above equations are consistent with our definitions since

Re p′ = Re
(1 + p̄)(1− p)
|1 + p |2

= Re
1− |p|
|1 + p |2

=
|q|2

|1 + p |2
= |q′|2.

Writing the Cayley transform in the form: (1 + p)q′ = q, (1 + p)p′ = 1 − p,
gives

dp · q′ + (1 + p) · dq′ = dq, dp · p′ + (1 + p) · dp′ = −dp,

from where we find

(33)
dp′ = −2(1 + p)−1 · dp · (1 + p)−1

dq′ = (1 + p)−1 · [dq − dp · (1 + p)−1 · q].

The Cayley transform is a quaternionic-contact diffeomorphism between the quater-
nionic Heisenberg group with its standard QC structure Θ̃ and the sphere minus
a point with its standard QC structure Hcan; a fact which can be seen as follows.
Equations (33) imply the following identities

(34) 2C∗ Θ̃ = −(1 + p̄)−1 · dp̄ · (1 + p̄)−1 + (1 + p)−1 · dp · (1 + p)−1

+ (1 + p)−1 [dq − dp · (1 + p)−1 · q] · q̄ · (1 + p̄)−1

− (1 + p)−1 q · [dq̄ − q̄ · (1 + p̄)−1 · dp̄ ] · (1 + p̄)−1

= (1 + p)−1
[
dp · (1 + p)−1 · (1 + p̄) − |q|2 dp · (1 + p)−1

]
(1 + p̄)−1

+ (1 + p)−1
[
− (1 + p) · (1 + p̄)−1 · dp̄ + |q|2 (1 + p)−1dp̄

]
(1 + p̄)−1

+ (1 + p)−1
[
dq · q̄ − q · dq̄

]
(1 + p̄)−1 =

1

|1 + p |2
λ η̃ λ̄,

where λ = |1 + p | (1 + p)−1 is a unit quaternion and η̃ is the standard contact form
on the sphere.

Since |1 + p| = 2
|1+p′| , we have λ = 1+p′

|1+p′ | and equation (34) can be put in the

form

λ · (C−1)∗ η̃ · λ̄ =
8

|1 + p′ |2
Θ̃.

We see that (C−1)∗η̃ and Θ̃ correspond to the same QC structure on Σ.
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6.4. The QC Yamabe problem. Following the classical scheme, we can trans-
late question (∗) from Section 6.1 to an equivalent problem on the QC sphere S4n+3

via Cayley transform

C : S4n+3 − {Point} −→ G (H)

(cf. [K] and [CDKR1]). It turns out that [∗], with a standard argumentation (cf.
[IMV10]), reduces to the following question, known as the Yamabe problem on the
Sphere:

∗∗ What are the representatives g of the natural conformal class [g] of the
QC structure Hcan on S4n+3 for which the QC scalar curvature Scal of the
associated Biquard connection is a non-zero constant?

More generally, given a QC manifold (M,H), the QC Yamabe problem is the
problem of finding a global representative g of constant QC scalar curvature in the
natural conformal class of metrics [g] on H. This problem reduces to the solvability
of the equation ([Biq]),

(35) Lu := 4
n+ 2

n+ 1
4u− uScal = −Cu2∗−1 ,

known as the QC Yamabe equation. Here4 is the horizontal sub-Laplacian, defined
by (31), with respect to the Biquard connection ∇ of some fixed (arbitrary) metric
g on H; Scal is the QC-scalar curvature of g and C is a positive constant.

In the case of the quaternionic Heisenberg group G (H), the QC Yamabe equa-
tion takes the form

(36) Lu ≡
n∑

α=1

(
T 2
αu + X2

αu + Y 2
αu + Z2

αu
)

= −C(n+ 1)

4(n+ 2)
u2∗−1,

which is, up to scaling, the Euler-Lagrange equation describing the extremals in the
L2 Folland-Stein embedding theorem 6.1.

More generally, on a compact QC manifold M , the QC Yamabe equation char-
acterizes the extremals of the Yamabe functional Υ,

(37) Υ(u)
def
=

∫
M

4
n+ 2

n+ 1
|∇u|2 + Scal · u2 dvg,

∫
M

u2∗ dvg = 1, u > 0,

where dvg is the volume form on M associated to g. Note that according to [GV2]
the extremals of the above variational problem are C∞ functions, so we will not
consider regularity questions here.
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The Yamabe constant λ(M,H) of a compact QC manifold is given, by definition,
as the infimum of the Yamabe functional,

λ(M,H)
def
= inf{Υ(u) :

∫
M

u2∗ dvg = 1, u > 0}.

If λ(M,H) is less than the Yamabe constant λ(S4n+3, Hcan) of the standard QC
sphere (cf. Section 6.2), the existence of solutions of the Yamabe equation is shown
in [W]. The proof of this is a straightforward generalization of the argument known
from [JL2] concerning the CR case. Thefore, it is only relevant to studdy the
problem on manifolds with the same Yambe constant as the sphere.





Overview of the results in the thesis

7. Chapter 2 of thesis

In this chapter, we develop the differential geometry of quaternionic-contact
manifolds with an emphasis on the QC Yamabe problem (cf. Section 6.4). The
origin and the form of this problem are very similar to those arising in the classical
theory concerning the Riemannian [LP] and CR [JL1, JL2, JL3, JL4] cases. Both
the Riemannian and the CR Yamabe problems have been a very fruitful subject in
geometry and analysis and have been completely sloved. An important step in
the achieved solution was the understanding of the conformally flat case, given
by the correponding Heisenberg group; in the Riemannian case, this is just Rn

(0-dimensional center); in the CR case, it is the complex Heisenberg group (1-
dimensional center), whereas here we are dealing with the quaternionic Heisenberg
group (three dimensional center).

In general, the quaternionic-contact Yamabe problem is about the possibility of
finding, in the natural conformal class [g], associated to given QC manifold (M,H),
a representative of constant QC scalar curvature. The question reduces to the
solvability of a certain nonlinear differential equation known as the QC Yamabe
equation. In fact, if taking the conformal factor in the form η̄ = u1/(n+1)η, the QC
Yamabe equation reduces to

4
n+ 2

n+ 1
4u− uScal = −u2∗−1 Scal,

where 4 is the horizontal sub-Laplacian, defined by 31, whereas Scal and Scal
are the QC scalar curvatures corresponding to the two contact forms η and η̄ re-
spectively; the number 2∗ is given by 2nh

nh−2
, where nh = 4n + 6 is the so called

homogeneous dimension of the problem. In the case of the quaternionic Heisenberg
group, this is, up to scaling, the Euler-Lagrange equation describing the extremals
in the L2 Folland-Stein embedding theorem, cf. Section 6.1.

If the Yamabe constant

λ(M) = λ(M,H)
def
= inf{Υ(u) :

∫
M

u2∗ dvg = 1, u > 0}

29
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is strictly less than that of the standard QC sphere S4n+3 (cf. Section 6.4), the
existence of solutions is shown in [W], see also [JL2]. Therefore, it is only relevant
to study the problem on manifolds with the same Yambe constant as the sphere.

In this chapter, we provide a partial solution to the Yamabe problem on the
standard QC sphere or, equivalently, on the quaternionic Heisenberg group. Let us
observe that [GV2] solves the same problem in a more general setting, but under the
assumption that the solution is invariant under a certain group of rotation. If one
is on the flat models, i.e., the groups of Iwasawa type [CDKR1] the assumption
in [GV2] is equivalent to the a-priori assumption that, up to a translation, the
solution is radial with respect to the variables in the first layer. The proof goes on
by using the moving plane method and showing that the solution is radial also in the
variables from the center, after which a very non-trivial identity is used to determine
all cylindrical solutions. In this chapter, the a-priori assumption is of a different
nature (see further below) and the partial solution that we obtain here serves as
an intermediate step for the results presented in the subsequent chapters. The
strategy, following the steps of [LP] and [JL3], is to solve the Yamabe problem on the
quaternionic sphere by replacing the non-linear Yamabe equation by an appropriate
geometrical system of equations which can be solved.

Our first observation is that if n > 1 and the QC Ricci tensor is trace-free (QC
Einstein condition) then the QC scalar curvature is constant (Theorem 5.9). Study-
ing conformal deformation of QC structures preserving the QC Einstein condition,
we describe explicitly all global functions on the quaternionic Heisenberg group that
deform conformally the standard flat QC structure to another QC Einstein struc-
ture. Our main result here is the following Theorem.

Theorem A. Let

Θ =
1

2h
Θ̃

be a conformal deformation of the standard QC structure Θ̃ on the quaternionic
Heisenberg group G (H). If Θ is also QC Einstein, then up to a left translation the
function h is given by

h = c
[(

1 + ν |q|2
)2

+ ν2 (x2 + y2 + z2)
]
,

where c and ν are positive constants. All functions h of this form have this property.

The crucial fact which allows the reduction of the Yamabe equation to a system
preserving the QC Einstein condition is Proposition 9.2 from the disertation which
asserts that, under some ”extra” conditions, QC structures with constant QC scalar
curvature obtained by conformal deformations of a QC Einstein metric on a compact
manifold must be again QC Einstein. The prove of this relies on detailed analysis
of the Bianchi identities for the Biquard connection. Using the quaternionic Cayley
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transform combined with Theorem A we obtain a partial solution for the QC Yamabe
problem on the sphere:

Theorem B. Let η = f η̃ be a conformal deformation of the standard QC
structure η̃ on the sphere S4n+3. Suppose η has constant QC scalar curvature. If
the vertical space of η is integrable then up to a multiplicative constant η is
obtained from η̃ by a conformal quaternionic-contact automorphism. In the case
n > 1, the same conclusion holds when the function f is a real part of anti-CRF
function.

The solutions (conformal factors) we find agree with those conjectured in [GV1].
The above theorem is only a partial solution to the problem because of the “extra”
assumption (printed in bold in the theorem) about the integrability of the vertical
space of η. As we show later, in Chapter 4 of the thesis, this condition could actually
be dropped, if the dimension is 7, but the argument for this is more involved.

Studying the geometry of the Biquard connection, our main geometrical tool
towards understanding the geometry of the Yamabe equation, we show that the
QC Einstein condition is equivalent to the vanishing of the torsion of the Biquard
connection. In our third main result here, we give a local characterization of such
spaces as 3-Sasakian manifolds:

Theorem C. Let (M4n+3, H, g) be a QC manifold with positive QC scalar cur-
vature Scal > 0, assumed to be constant if n = 1. The next conditions are equivalent:

a) (M4n+3, H, g) is a QC Einstein manifold.

b) M4n+3 is locally 3-Sasakian, i.e., locally there exists an SO(3)-matrix Ψ with

smooth entries, such that, the local contact form 16n(n+2)
Scal

Ψ · η is 3-Sasakian.

c) The torsion of the Biquard connection is identically zero.

In particular, a QC Einstein manifold of positive QC scalar curvature, assumed in
addition to be constant if n = 1, is an Einstein manifold of positive Riemannian
scalar curvature.

Organization of the chapter:
Section 4 of the thesis. 1

Here we develop some important properties and formulae concerning the Biquard
connection that will be important for the future investigations in the thesis. We
show that the torsion of the Biquard connection is essentially determined by two
tensors—T 0, U , and one function—tr(ũ), where

T 0(X, Y )
def
= g((T 0

ξ1
I1 + T 0

ξ2
I2 + T 0

ξ3
I3)X, Y ),

U(X, Y )
def
= g(uX, Y ), X, Y ∈ H.

(38)

1This is the first section of Chapter 2 of the dissertation
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It is easily observed that T 0 and U are Sp(n)Sp(1)-invariant and traceless symmetric
tensors with the properties:

T 0(X, Y ) + T 0(I1X, I1Y ) + T 0(I2X, I2Y ) + T 0(I3X, I3Y ) = 0,

3U(X, Y )− U(I1X, I1Y )− U(I2X, I2Y )− U(I3X, I3Y ) = 0.

Our main result here shows that the Ricci curvature is completely determined by
the torsion of the Bquard connection:

Theorem 4.13. Let (M4n+3, H, g) be a quaternionic-contact (4n + 3)-
dimensional manifold, n > 1. For any X, Y ∈ H the QC Ricci tensor and the
QC scalar curvature satisfy

(39)

Ric(X, Y ) = (2n+ 2)T 0(X, Y ) + (4n+ 10)U(X, Y )

+ (2n+ 4)
tr(ũ)

n
g(X, Y ),

Scal = (8n+ 16)tr(ũ).

For n = 1, we have

Ric(X, Y ) = 4T 0(X, Y ) + 6
tr(ũ)

n
g(X, Y ).

Section 5 of the thesis.
Here we write explicitly the Bianchi identities and use them to obtain a differ-

ential system relating divergences of some important tensors:

Theorem 5.8. The horizontal divergences of the curvature and torsion tensors
satisfy the system B b = 0, where

B =

 −1 6 4n− 1 3
16n(n+2)

0

−1 0 n+ 2 3
16(n+2)

0

1 −3 4 0 −1

 ,

b =
(
∇∗ T 0, ∇∗ U, A, d Scal |

H
,
∑3

j=1Ric (ξj, Ij . )
)t
,

with T 0 and U defined in (38) and

A(X) = g(I1[ξ2, ξ3] + I2[ξ3, ξ1] + I3[ξ1, ξ2], X).
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Using this theorem we derive the following important result in the dissertation:

Theorem 5.9. The QC scalar curvature of a QC Einstein quaternionic-contact
manifold of dimension at least 11 is a global constant. In addition, the vertical
distribution V of a QC Einstein structure is integrable. On a seven dimensional
QC Einstein manifold the constancy of the QC scalar curvature is equivalent to the
integrability of the vertical distribution. In both cases the Ricci tensors are given by

ρt|H = τt|H = −2ζt|H = − Scal

8n(n+ 2)
ωt s, t = 1, 2, 3.,

Ric(ξs, X) = ρs(X, ξt) = ζs(X, ξt) = 0, s, t = 1, 2, 3.

Later on, in Chapter 3 of the dissertation, we show that the printed in bold
condition, excluding the 7-dimensional case in the theorem, can be actually removed.
The argument for this is developed further below in the thesis.

Using Theorem 5.8, in this section, we also proof Theorem C.

Section 6 of the thesis.
Here we describe the conformal transformations preserving the QC Einstein con-

dition. Note that a conformal quaternionic contact automorphism of a QC manifold
is a diffeomorphism Φ which satisfies

Φ∗η = µ Ψ · η,

for some positive smooth function µ and some matrix Ψ ∈ SO(3) with smooth
functions as entries; η = (η1, η2, η3)t is considered as an element of R3. Let us note
that the Biquard connection does not change under rotations as above, i.e., the
Biquard connection of Ψ · η coincides with this of η. In particular, when studying
conformal transformations we can consider only transformations with Φ∗η = µ η.
We find all conformal transformations preserving the QC Einstein condition on
the quaternionic Heisenberg group or, equivalently, on the QC sphere, and prove
Theorem A.

Section 7 of the thesis.
This section concerns a special class of functions, which we call anti-regular,

defined respectively on the quaternionic space, real hyper-surface in it, or on a
quaternionic-contact manifold, cf. Definitions 7.6 and 7.15 from the thesis, as func-
tions preserving the quaternionic structure. The anti-regular functions play a role
somewhat similar to this played by the CR functions, but the analogy is not com-
plete. The real parts of such functions will be also of interest in connection with
conformal transformation preserving the QC Einstein tensor and should be thought
of as generalization of pluriharmonic functions. Let us stress explicitly that regular
quaternionic functions have been studied extensively, see [S] and many subsequent
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papers, but they are not as relevant for the considered geometrical structures. Anti-
regular functions on hyperkähler and quaternionic Kähler manifolds are studied in
[CL1, CL2, LZ] in a different context, namely in connection with minimal sur-
faces and quaternionic maps between quaternionic Kähler manifolds. The notion
of hypercomplex contact structures will appear in this section again since on such
manifolds the real part of anti-CRF functions have some interesting properties, as
we show in

Theorem 7.20. If f : M → R is the real part of an anti-CRF function

f + iw + ju+ kv

on a (4n+3)-dimensional (n > 1) hyperhermitian contact manifold (M, η,Q), then
the following equivalent conditions hold true.

i) The next equalities hold

(40) DDIif = λωi − 4(ξjf)ωk mod η.

ii) For any X, Y ∈ H we have the equality

(41) (∇Xdf)(Y ) + (∇I1Xdf)(I1Y ) + (∇I2Xdf)(I2Y ) + (∇I3Xdf)(I3Y )

= λg(X, Y ) + df(X)α3(I3Y ) + df(I1X)α3(I2Y )

− df(I2X)α3(I1Y )− df(I3X)α3(Y ) + df(Y )α3(I3X)

+ df(I1Y )α3(I2X)− df(I2Y )α3(I1X)− df(I3Y )α3(X).

iii) The function f satisfies the second order system of partial differential equa-
tions

(42) <(DTβDTαf) = λg(Tβ, Tα)

+ df(∇TβTα) + df(∇I1TβI1Tα) + df(∇I2TβI2Tα) + df(∇I3TβI3Tα)

+ df(Tβ)α3(I3Tα) + df(I1Tβ)α3(I2Tα)− df(I2Tβ)α3(I1Tα)− df(I3Tβ)α3(Tα)

+ df(Tα)α3(I3Tβ) + df(I1Tα)α3(I2Tβ)− df(I2Tα)α3I1(Tβ)− df(I3Tα)α3(Tβ)

<(iDTβDTαf) = <(DI1TβDTαf), <(jDTβDTαf) = <(DI2TβDTαf),

<(jDTβDTαf) = <(DI3TβDTαf).
(43)

The function λ is determined by

(44) λ = 4 [(ξ1w) + (ξ2u) + (ξ3v)] .
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Section 8 of the thesis.
In this section, we study infinitesimal conformal automorphisms of QC structures

(QC vector fields) and show that they depend on three functions satisfying some
differential conditions thus establishing a ’3-hamiltonian’ form of the QC vector fields
(Proposition 8.8 from dissertation). The formula becomes very simple expression
on a 3-Sasakian manifolds (Corollary 8.9 from dissertation). We characterize the
vanishing of the torsion of Biquard connection in terms of the existence of three
vertical vector fields whose flow preserves the metric and the quaternionic structure.
We show that among them, 3-Sasakian manifolds are exactly those admitting three
transversal QC vector fields:

Theorem 8.10. Let (M,H, g) be a QC manifold with positive QC scalar curva-
ture, assumed constant in dimension seven. The following conditions are equivalent.

i) Each of the Reeb vector fields is a QC vector field.

ii) The QC structure is homothetic to a 3-Sasakian structure. In particular, the
Reeb vector fields are infinitesimal isometries.

Section 9 of the thesis.
In the final section of this chapter, we complete the proof of Theorem B.

8. Chapter 3 of thesis

An extensively studied class of QC structures is provided by the 3-Sasakian
spaces. In Therem C of Chapter 2, we have shown that a QC manifold is locally
3-Sasakian iff it is QC Einstein with poitive and constant QC scalar curvature.
Furthermore, as a consequence of the Bianchi identities, in Theorem 5.9 (Chapter 2),
we have shown that the QC scalar curvature of a QC Einstein manifold of dimension
at least eleven is constant while the seven dimensional case was left open. In this
chapter, we extend this two results starting with:

Theorem D. The QC scalar curvature of a 7-dimensional QC Einstein mani-
fold is always a constant.

The main application of Theorem D is the removal of the a-priori assumption
of constancy of the QC scalar curvature in some previous results concerning seven
dimensional QC Einstein manifolds. As a consequence of this theorem we show that
on each 7-dimensional QC Einstein manifold, the associated vertical distribution V
is always integrable (Corollary 10.3 of the thesis) and the corresponding fundamental
4-form

Ω = ω1 ∧ ω1 + ω2 ∧ ω2 + ω3 ∧ ω3
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is necessarily closed (Corollary 10.4 of the thesis).
Recall that the complete, and regular 3-Sasakian and nS-spaces (called negative

3-Sasakian here) have a canonical fibering with fiber Sp(1) or SO(3), and base
a quaternionic-Kähler manifold. In this chapter we show that if the QC scalar
curvature is strictly positive (resp. strictly negative), the QC Einstein manifolds
are ”essentially” SO(3) bundles over quaternionic-Kähler manifolds with positive
(resp. negative) scalar curvature. We show also that in the ”regular” case, a QC
Einstein manifold of zero QC scalar curvature fibers over a hyper-Kähler manifold
(cf. Proposition 13.3 of the thesis).

Organization of the chapter:
Section 10 of the thesis.
Here we prove Theorem D. In the proof, we use the concept of QC conformal

curvature introduced in [IV1] that characterizes the QC conformally flat structures
in any dimension. We use also a result of Kulkarni [Kul] on the algebraic properties
of curvature tensors in four dimensions, and an extension of Theorem A (Chap-
ter 2) describing explicitly the different QC Einstein structures defined locally on
the quaternionic Heisenberg group which are also point-wise QC conformal to the
flat one.

Section 11 of the thesis.
Here we introduce a special (vertical) connection ∇̃ on the 3-dimensional canon-

ical vector bundle V over M which is associated to a fixed metric g of the QC
structure. We prove the following:

Theorem 11.3. A QC manifold M is QC Einstein iff the connection ∇̃ is flat.

The vertical connection ∇̃ is used in this chapter as a technical tool for revealing
the various properties of QC Einstein spaces.

Section 12 of the thesis.
Using the vertical connection ∇̃, here, we develop certain differential equations

describing the QC Einstein spaces via the contact form η = (η1, η2, η3) and its
exterior derivative dη = (dη1, dη2, dη3):

Theorem 12.1. Let M be a QC manifold. The following conditions are equiv-
alent:

a) M is a QC Einstein manifold;

b) locally, the given QC structure is defined by 1-form (η1, η2, η3) such that for some
constant S we have

(45) dηi = 2ωi + Sηj ∧ ηk;
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c) locally, the given QC structure is defined by 1-form (η1, η2, η3) such that the cor-
responding connection 1-forms vanish on H, αs = −Sηs.

Section 13 of the thesis.
Here we consider the relation between the QC Einstein spaces (M,H, g) and

the geometry of the naturally associated Riemannian matric h on M , defined by
requiring that span{ξ1, ξ2, ξ3} = V ⊥ H and that

(46) h|H = g, h|V = η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3.

By Theorem C (Chapter 2 of the thesis), if the QC scalar curvature of M is
positive, then (M,h) is locally a 3-Sasakian space. The case of negative QC scalar
curvature can be treated similarly to show that M is a negative locally 3-Sasakian
space. If the QC scalar curvature vanishes, Lemma 13.2 of the thesis shows that the
Reeb vector fields of the QC structure are Killing vector fields for h but unlike the
3-Sasakian case, the Lie brackets of each pair must be zero.

The main result of this section is Propsition 13.32, showing that the QC Einstein
spaces of vanishing QC scalar curvature are ”essentially” bundles over hyper-Kähler
manifolds.

Here we show also that on each QC Einstein manifold of vanishing QC scalar
curvature there is a pair of naturally associated Riamannian Einstein metrics. Note
that in the 3-Sasakian case (i.e., the case of positive QC scalar curvature) the cor-
responding result is well known, cf. [BGN].

9. Chapter 4 of thesis

The QC Yamabe problem on S7 is about the determinantion of all contact 1-
forms η of the canonical QC structure on the sphere that have constant QC scalar
curvature. In Chapter 2 of the thesis, we conjectured that these are precisely the
forms that can be obtained as pull-back φ∗(η̃) of the standard contact form η̃, where
φ is a conformal quaternionic-contact automorphism of the sphere. In Theorem B
(Chapter 2 of the thesis), we have shown a weaker result, namely, that the same
conclusion holds provided the vertical space of η is integrable. The purpose of this
chapter is to remove this extra assumption and to prove the conjecture when the
dimension is seven:

Theorem E. Let η̃ = 1
2h
η be a conformal deformation of the standard qc-

structure η̃ on the unit sphere S7. If η has constant QC scalar curvature, then
up to a multiplicative constant η is obtained from η̃ by a conformal quaternionic-
contact automorphism. In particular, the Yamabe constant λ(S7) of the sphere is

2The number corresponds to the notation in the thesis
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48 (4π)1/5 and this minimum value is achieved only by η̃ and its images under con-
formal quaternionic-contact automorphisms.

An important motivation for studying the QC Yamabe problem on the sphere
comes from its connection with the determination of the norm and extremals of the
related Folland-Stein embedding on the quaternionic Heisenberg group G (H), cf.
Theorem 6.1. Using Theorem E, we obtain:

Theorem F. Let

G (H) = H× ImH

be the seven dimensional quaternionic Heisenberg group. The best constant in the
L2 Folland-Stein embedding theorem is

S2 =
2
√

3

π3/5

An extremal is given by the function

v =
211
√

3

π3/5
[(1 + |q|2)2 + |ω|2]−2, (q, ω) ∈ G (H)

Any other non-negative extremal is obtained from v by translations (27) and dilations
(28).

Our result confirms the Conjecture made after [GV1, Theorem 1.1]. In [GV1,
Theorem 1.6], a similar result is obtained in all dimensions, but with the extra
assumption of partial-symmetry. Here with a completely different method, we show
that the symmetry assumption is superfluous in the case of the first quaternionic
Heisenberg group.

A key step in the present result is the establishment of a suitable divergence for-
mula, Theorem 15.4 3, see [JL3] for the CR case and [Ob], [LP] for the Riemannian
case. With the help of this divergence formula we show that the ’new’ structure
is also QC Einstein, thus we reduce the Yamabe problem on S7 from solving the
non-linear Yamabe equation to a geometrical system of differential equations de-
scribing the QC Einstein structures conformal to the standard one. Invoking the
(quaternionic) Cayley transform, which is a contact conformal diffeomorphism (cf.
Section 6.3), we turn the question to the corresponding system on the quaternionic
Heisenberg group. On the latter, all global solutions were explicitly described in
Theorem A (Chapter 2 of the thesis) and this is enough to conclude the proof of the
result.

3The number corresponds to the notation in the thesis
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Organization of the chapter:
Section 14 of the thesis.
In this section we develop various formulas concerning conformal deformations of

the canonical QC structure of the sphere S7. In general, any conformal deformation
of the associated metric to a QC structure yields a deformation of the Reeb vector
fields and the vertical distribution V . The Biquard connection changes, as well, in
a non-trivial way under such deformations.

Section 15 of the thesis.
Here we construct the divergence formula (47), which is the key step from the

proof of Theorems E and F.

Theorem 15.4. Suppose (M7, η) is a quaternionic-contact structure conformal
to a 3-Sasakian structure η̃, η̃ = 1

2h
η. If

Scalη = Scalη̃ = 16n(n+ 2),

then with f given by

f =
1

2
+ h +

1

4
h−1|∇h|2,

the following identity holds

(47) ∇∗
(
fD +

3∑
s=1

dh(ξs)Fs + 4
3∑
s=1

dh(ξs)IsAs −
10

3

3∑
s=1

dh(ξs) IsA
)

= f |T 0|2 + h 〈QV, V 〉.

Here, Q is a positive semi-definite matrix and

V = (D1, D2, D3, A1, A2, A3)

with As, Ds defined, correspondingly, in (48) and (49).

Explicitly, we have:

(48) Ai = Ii[ξj, ξk],

(49)

D1(X) = −h−1T 0+−−(X,∇h)

D2(X) = −h−1T 0−+−
(X,∇h)

D3(X) = −h−1T 0−−+

(X,∇h).
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The matrix Q is given by

Q :=



2 0 0
10

3
−2

3
−2

3

0 2 0 −2

3

10

3
−2

3

0 0 2 −2

3
−2

3

10

3
10

3
−2

3
−2

3

22

3
−2

3
−2

3

−2

3

10

3
−2

3
−2

3

22

3
−2

3

−2

3
−2

3

10

3
−2

3
−2

3

22

3


The eigenvalues of Q are

{0, 0, 2 (2 +
√

2), 2 (2−
√

2), 10, 10}.

Section 16 of the thesis.
Here we complete the proof of Theorems E and F. By integrating the divergence

formula (47) and applying Proposition 9.1 (Chapter 2 of the thesis), we conclude that
the integral obtained from the LHS of (47) is zero and therefore the integral from
the RHS must vanish. This observation produces an equation which implies that
“new” contact form η must have vanishing torsion and therefore it is QC Einstein
(cf. Theorem 4.13). We complete the proof by applying the Cayley transform (cf.
Section 6.3) and Theorem A (Chapter 2 of the thesis).

10. Chapter 5 of thesis

In this chapter we determine the best (optimal) constant in the L2 Folland-
Stein inequality (cf. Theorem 6.1) on the quaternionic Heisenberg group (in all
dimensions) and the non-negative extremal functions, i.e., the functions for which
equality holds:

Theorem G.
a) Let G (H) = Hn × ImH be the quaternionic Heisenberg group. The best

constant in the L2 Folland-Stein embedding inequality (29) is

S2 =
[2−2n ω4n+3]

−1/(4n+6)

2
√
n(n+ 1)

,
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where ω4n+3 = 2π2n+2/(2n+1)! is the volume of the unit sphere S4n+3 ⊂ R4n+4. The
non-negative functions for which (29) becomes an equality are given by the functions
of the form

(50) F = γ
[
(1 + |q|2)2 + |ω|2

]−(n+1)
, γ = const,

and all functions obtained from F by translations (??) and dilations (??).
b) The QC Yamabe constant of the standard QC structure of the sphere is

(51) λ(S4n+3, Hcan) = 16n(n+ 2) [((2n)!)ω4n+3]1/(2n+3) .

The proof relies on a realization of Branson, Fontana and Morpurgo [BFM],
used also by Frank and Lieb [FL], that the old idea of Szegö [Sz], see also Hersch
[He], can be used to find the sharp form of (logarithmic) Hardy-Littlewood-Sobolev
type inequalities on the Heisenberg group. The argument presented here is purely
analytical. In this respect, even though the QC Yamabe functional is involved, the
QC scalar curvature is used in the proof without much geometric meaning. Rather, it
is the conformal sub-laplacian that plays a central role and the QC scalar curvature
appears as a constant determined by the Cayley transform and the left-invariant
sub-laplacian on the quaternionic Heisenberg group. This method does not give
all solutions of the QC Yamabe equation on the quaternionic-contact sphere but
only these that realize the infimum of the QC Yamabe functional. Therefore, if
considering the seven dimensional case, the result presented here is clearly weaker
than Theorem E of Chapter 3.

Organization of the chapter:
Section 17 of the thesis.
In this section we obtain a variety of preliminary result needed for the proof of

the main results in the chapter. In Lemma4 17.4 we show that the first eigenvalue of
the sub-Laplacian on the sphere S4n+3 ⊂ Hn×H is λ1 = 2n and that the restriction
of the real coordinate functions in Hn ×H to the sphere are the λ1-eigenfunctions.

Section 18 of the thesis.
In this section we proof Theorem G. The proof is split into a number of steps

formulated as separate lemmas. The first step is given by Lemma4 18.1, showing
that for each L1 function v on the sphere that satisfies∫

S4n+3

v V olη̃ = 1,

4The number corresponds to the notation in the thesis
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there exists a conformal QC automorphism ψ of the sphere so that∫
S4n+3

ψ v V olη̃ = 0.

The second step is Lemma5 18.2 which asserts that one is always allowed to
assume that the infimum of the Yamabe functional is achieved on a function u that
satisfies the additional condition of being “well centered”, i.e., that it satisfies∫

S4n+3

P u2∗(P )V olη̃ = 0, P ∈ R4n+4 = Hn ×H.

The third step is Lemma5 18.3, showing that if u is a “well centered” local
minimum for the Yamabe functional, then u ≡ const.

By using this three lemmas, the proof of Theorem G is obtained as follows: Let
F be any minimizer (local minimum) of the Yamabe functional on the quternionic
Heisenberg group, and let g be the corresponding function on the sphere. By
Lemma 18.2, the function g0 = φ−1(g ◦ ψ−1) is a “well centered“ minimizer for the
Yamabe functional on the sphere. Then, by Lemma 18.3, we must have go = const.
Looking back at the corresponding function on the group, we see that

F0 = γ
[
(1 + |q′|2)2 + |ω′|2

]−(nh−2)/4

for some γ = const > 0. Furthermore, the proof of Lemma 18.1 shows that F0 is
obtained from F by a conformal QC transformation. Correspondingly, any positive
minimizer (local maximum) of problem is given up to a conformal QC transformation
of the sphere by the function

F = γ
[
(1 + |q′|2)2 + |ω′|2

]−(nh−2)/4
, γ = const > 0.

5The number corresponds to the notation in the thesis
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