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1. The thesis of Ivan Minchev is devoted to questions of current interest in
Differential geometry and Geometric analysis which are related to the study of
quaternionic-contact(QC) structures. These structures were introduced by Olivie
Biquard in 2000 as a tool for studying the conformal boundary at infinity of a
quaternionic-Kähler manifold. Note that the manifolds endowed with such structures
(QC-manifolds) and the strongly pseudoconvex CR-manifolds are model categories
for sub-Riemannian manifolds with special holonomy groups.

The motivation for introducing QC-manifolds is the observation that the Einstein
deformations of the standart invariant metrics of complex, quaternionic and octonionic
symmetric spaces are in one to one correspondence with the metrics of Caratheodory-
Karno type on their conformal boundaries at infinity. Recall that if g is a Riemannian
metric on a manifold M with boundary N , then a conformal class [h] of Riemannian
metrics on N is called conformal infinity of g if there exists a function ρ, positive on
M and vanishing on N of first order, and such that the metric ρ2g can be extended
continuously on N to a metric in [h]. A standard example is the hyperbolic metric on
the ball Bn+1, whose conformal infinity is the conformal class of the standard metric
on the sphere Sn. Having in mind this and other examples, Biquard posed the general
question for finding the Einstein metrics whose conformal infinities are metrics of
Caratheodory-Karno type. This problem has been studied most fully in the complex
case and for Kähler-Enstein manifolds it was solved completely by Cheng and Yau in
1980. For the ball(real hyperbolic space) the above problem was solved by Graham
and Lee in 1991. A general result in dimension 4 was obtained by LeBrun in 1982.
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He proved by using twistor methods that any conformal class on a 3-dimensional
real-analytic manifold N is conformal infinity of a self-dual Einstein metric, defined
in a "small"4-dimensional neighbourhood of N . A natural generalization of this
theorem in the quaternionic case was obtained by Biquard in 2000. He proved that
for n ≥ 2 any real-analytic QC-structure on a (4n + 3)-dimensionaol manifold is
conformal infinity of a uniquely determined quaternionic-Kähler metric, defined in
a small (4n+4)-dimensional neighbourhood. In dimension 7 the problem was solved
by Douchemin in 2006.

Recall that a QC-structure on a (4n+3)-dimensional manifold M is a distribution
H of co-dimension 3 on M , which locally is the kernel of an R3-valued 1-form , such
that the restrictions on H of the exterior derivatives of its coordinate 1-forms are
the fundamental forms of a quaternionic structure on H. This definition determines,
generally speaking, the two main goals of the thesis. The first one is to study the
relations between the geometric properties of quaternionic-Kähler and 3-Sasakian
structures and their QC-structures. The second goal is to use analytic techniques
from sub-Riemannian geometry to solve particularly the QC-Yamabe problem for
the quaternionic Heisenberg groups of arbitrary dimension and to find the optimal
constant in the L2−Folland-Stein inequality on these groups.

Now I’ll describe in more details the content and the main achievements of the
thesis. It is divided into Introduction and 5 chapters.

Chapter 1 of the thesis is an introduction to the subject. In paragraph 1 the
author introduces the main algebraic and differential-geometric notions connected
with quaternionic-Kähler manifolds, the construction of their twistor spaces and the
natural complex and holomorphic contact structures on these spaces. The inverse
twistor correspondence is also described which can be used to construct quaternionic-
Kähler manifolds by means of algebraic geometry methods. The twistor methods
are very important for this theory since they are on the basis of the proofs of the
famous result of LeBrun for existence of infinite dimensional families of complete
quaternionic-Kähler manifolds on the unit ball B4n+4 and the above mentioned
theorem of Biquard. At the end of this paragraph the author gives explicit descriptions
of the twistor spaces of quaternionic projective space HPn = Sp(n + 1)/Sp(n)Sp(1)
and quaternionic hyperbolic space HHn = Sp(n; 1)/Sp(n)Sp(1). The second para-
graph is devoted to the basic properties of the QC-structures. The notion of conformal
infinity is explained precisely and it is illustrated by the model example of quaternio-
nic hyperbolic space and some deformations of its twistor spaces, considered by
LeBrun. Another application of twistor methods is the construction of Biquard of
integrable CR-structures on the twistor spaces of QC-manifolds. The rest of this
paragraph is devoted to the main properties of Biquard connection (Theorem 2.4)
which are used later. In paragraph 3 the author gives a detailed description of
the quaternionic Heisenberg groups G(H) = Hn× ImH and their left-invariant QC-
structures. These groups are a main object of investigation in the thesis in connection
with the solution of the QC-Yamabe problem and finding the optimal constant in
the L2 Folland-Stein inequality on them.

Chapter 2 is based on the results published in [IMV14]. Here the author develops
the needed differential-geometric and analytic techniques for obtaining a partial
solution of QC-Yamabe problem in the conformally flat case, which is equivalent to
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that on the quaternionic Heisenberg groups of arbitrary dimension.
The classical Yamabe problem says that if (M, g) is a compact Riemannian

manifold of dimension ≥ 3, then there exists a metric of constant scalar curvature
in the conformal class of g. The solution of this problem, due to the works of
Yamabe, Trudinger, Aubin, and Schoen, is a milestone in the developement of the
theory of nonlinear PDE’s. In the complex case the analog of Yamabe problem is
for strongly pseudoconvex CR-manifolds. Here the Levi form plays the role of a
metric, that of a conformal metric is played by a contact 1-form which vanishes on
the Levi distribution(pseudohermitian structure), and the scalar curvature is that of
the pseudohermitian structure introduced independently by Webster and Tanaka in
1978. In these terms the CR-Yamabe problem was posed and solved in the general
case by Jerison and Lee in 1987. In 2001 Gamara and Yacoub completed their result
for the remaining cases of 3-dimensional and conformally flat CR-manifolds. The
QC-Yamabe problem is the quaternionic version of that for CR-manifolds. In this
case one seeks a conformal change of the canonical R3-valued contact 1-form whose
Biquard connection has constant scalar curvature. This problem was solved by Wang
in 2005 in the sub-critical case when the Yamabe constant of the QC-manifolds is
less than that of the canonical QC-structure of the quaternionic Heisenberg group
of same dimension.

Biquard has shown that using a special conformal change the QC-Yamabe problem
for a QC-manifold (M4n+3, H) is equivalent to the solution of the following nonlinear
PDE

4
n + 2

n + 1
4u− u Scal = −Cu

n+2
n+1 , (1)

known as QC-Yamabe equation. Here 4 is the horizontal sub-Laplacian of Biquard
connection for a given metric of H; Scal is the QC-scalar curvature, and C is a
positive constant. The QC-Yamabe equation for the (4n+3)-dimensional quaternionic
Heisenberg group has the form

4u =
n∑

α=1

(
T 2

αu + X2
αu + Y 2

α u + Z2
αu

)
= −C(n + 1)

4(n + 2)
u

n+2
n+1 . (2)

Up to a constant this is the Euler-Lagrange equation for the extremals of the L2-
Folland-Stein inequality.

The main idea for solving equation (2) follows the approaches in the papers [LP]
and [JL3] for solving the Riemannian and CR-Yamabe equations. An important
first step is the reduction of this equation to a geometric system. To do this the
author investigates the Biquard connection in paragraphs 4 and 5 of Chapter 2. The
main results in this direction are Theorem 4.13 that the QC-Ricci tensor can be
represented in terms of its torsion, Theorem 5.8 where some very useful identities for
the horizontal divergences of the curvature and the torsion of Biquard connection
are obtained, and Theorem 5.9 that any QC-Einstein metric has constant scalar
curvature. These results are used in the proof of the following:

Theorem C. Let (M4n+3, H, g) be a QC-manifold with positive QC-scalar curvature
which is assumed to be constant when n = 1. The following conditions are equivalent:
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a). (M4n+3, H, g) is a QC-Einstein manifold.
b). M4n+3 is locally a 3-Sasakian manifold.
c). The torsion of Biquard connection vanishes.

The main goal of paragraph 6 is to describe the conformal deformations preserving
the QC-Einstein condition for Biquard connection. The main result is the following:

Theorem A. Let Θ = 1
2h

Θ0 be a conformal deformation of the standard QC-
structure Θ0 on the quaternionic Heisenberg group. If Θ is a QC-Einstein structure
too, then up to a left translation the function h is given by

h(q, ω) = c
[(

1 + ν |q|2
)2

+ ν2 |ω|2
]
, (q, ω) ∈ Hn × ImH,

where c and ν are positive constants. Conversely, all functions h as above have this
property.

In paragraph 7 the author studies some special classes of functions which preserve
the quaternionic structures of quaternonic spaces, their hypersurfaces and QC-
manifolds. The real parts of these functions are called quaternionic pluriharmonic
and they are related to the conformal deformations preserving the QC-Ricci tensors.
Another important class of functions are the so-called anti-CRF functions whose
coordinate functions satisfy the horizontal Cauchy-Riemann-Fueter equations (Propo-
sition 7.17). The real parts of these functions play a very important role in the further
investigations in the thesis. Their analytic properties are proved in Theorem 7.20.

The purpose of paragraph 8 is to study the QC-vector fields whose infinitesimal
automorphisms preserve the QC-structures. In Proposition 8.8 it is shown that they
depend on three functions satisfying some compatibility conditions. This result is
used in the proof of Theorem 8.10 which characterizes in terms of Reeb vector fields
the QC-structures that are homothetic to 3-Sasakian structures.

The results obtained in paragraph 6-8 are used in paragraph 9 to prove one of
the main results in the thesis. This is Theorem B which solves the Yamabe problem
for the quaternionic Heisenberg group under an additional geometric condition.

Theorem B. Let η = f η0 be a conformal deformation of the standard contact 1-
form η0 on the sphere S4n+3. Suppose that η has constant QC-scalar curvature. If the
vertical distribution determined by η is integrable, then up to a constant multiple η is
obtained from η0 by a conformal QC-automorphism of the sphere. In the case n > 1,
the same conclusion holds also for functions f , whose real parts are quaternionic
anti-CRF functions.

The main results of Chapter 3 are published in the paper [IMV16]. Here the
author continuous the investigations on the geometry of QC-Einstein structures and
their relations with the 3-Sasakian structures. Paragraph 10 is devoted to the 7-
dimensional case. The main result is Theorem D which combined with Theorem 5.9
shows that the QC-scalar curvature of any QC-Einstein manifold is constant. An
important consequence of this result is Theorem C that any QC-Einstein manifold
with non-zero QC-scalar curvature is locally QC-homothetic to a 3-Sasakian manifold.
The proof of Theorem D uses an QC-analog of the conformal Weyl tensor introduced
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by Ivanov and Vassilev[IV1] and a generalization of Theorem A for the poitwise
QC-conformal case. In Paragraph 11 the author introduces the so-called vertical
connection of a QC-manifold, which is the main tool for studying QC-Einstein
manifolds. More precisely, Theorem 11.3 characterizes these manifolds as QC-mani-
folds with flat vertical connection. Using this connection the author obtains in
Paragraph 12 the structure equations of QC-Einstein manifolds in terms of the
contact 1-form and its exterior derivative (Theorem 12.1). The main result of the
last paragraph of this chapter is Proposition 13.3 which says that in the general case
the QC-scalar flat QC-Einstein manifolds are bundles over hyper-Kähler manifolds.
It is proved also that any QC-Einstein maniflod with non-zero QC-scalar curvature
has two different Einstein Riemannian metrics which generalizes a well-known result
of Boyer, Galicki, and Mann [BGN] for 3-Sasakian manifolds.

The purpose of Chapter 4 is to find all solutions of the QC-Yamabe problem on
the 7-dimensional sphere S7, i.e. all contact 1-forms of the canonical QC-structure
with constant QC-scalar curvature. The results of this chapter are published in
[IMV10].

Recall that the above problem is solved in Theorem B for any dimension under
the additional assumption for integrability of the vertical distribution. In this chapter
it is shown that in dimension 7 this condition can be removed. More precisely, the
following theorem is true:

Theorem Е. Let η be a conformal deformation of the standart contact 1-form
η0 on the unit sphere S7. If η has constant QC-scalar curvature, then up to a
multiplicative constant, η is obtained from η0 by means of a conformal QC-authomor-
phism of the sphere. In particular, the QC-Yamabe constant λ(S7) is equal to 48 (4π)1/5

and it is attained only for the images of η0 by conformal QC-authomorphisms of the
sphere.

An important motivation for studying the QC-Yamabe problem on the sphere
is its connection with the problem for determining the optimal constant and the
extremals of L2-Folland-Stein inequality. Using Theorem E this problem is solved
completely in dimension 7.

Theorem F. The optimal constant of L2-Folland-Stein inequality for the 7-dimen-
sional Heisenberg group H × ImH is S2 = 2

√
3

π3/5 . Every nonnegative extremal of
this inequality is obtained by a translation and a dilation of the function

v(q, ω) =
211
√

3

π3/5
[(1 + |q|2)2 + |ω|2]−2, (q, ω) ∈ H× ImH.

The proof of Theorem E is based on Theorem 15.4 where a special divergence
formula is obtained for a 7-dimensional QC-manifoldq whose structure is conformally
equivalent to a 3-Sasakian structure. It is an analog of similar formulas in Riemannian
and CR-geometry.

The results in the last chapter of the thesis are published in [IMV12]. Its purpose
is to determine the optimal constant and the positive extremals of L2-Folland-Stein
inequality on quaternionic Heisenberg groups of arbitrary dimension. Note that the
methods used in this chapter are analytic and are based on the properties of the
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conformal sub-Laplacian. In dimensions ≥ 11 however, this approach allows to
determine not all solutions of the QC-Yamabe equation, but only the minimizers
of the QC-Yamabe functional.

Theorem G. a) The optimal constant of L2-Folland-Stein inequality on the (4n+
3)-dimensional quaternionic Heisenberg group is

S2 =
[2−2n ω4n+3]

−1/(4n+6)

2
√

n(n + 1)
,

where ω4n+3 = 2π2n+2/(2n+1)! is the volume of the unit sphere S4n+3 ⊂ R4n+4. The
positive extremals of the inequality are the functions

F (q, ω) = γ
[
(1 + |q|2)2 + |ω|2

]−(n+1)
, (q, ω) ∈ Hn × ImH, γ = const,

(3)
and that obtained from F by translation and homothety.

b) The QC-Yamabe constant of the unit QC-sphere is

λ(S4n+3, Hcan) = 16 n(n + 2) [((2n)!) ω4n+3]
1/(2n+3) . (4)

The proof of Theorem G uses techniques developed in [BFM] and [FL] for
finding the optimal Moser-Trudinger inequality for the CR-sphere and the optimal
logarithmique Hardy-Littlewood-Sobolev inequalities on Heisenberg groups.

In conclusion, I would like to point out that to obtain the results in the dissertation,
the author has overcome a number of technical and conceptual difficulties and he
practically uses the whole apparatus of differential geometry and geometric analysis.

2. The most important results in the thesis are included in 4 papers published
in the reputable math journals Memoirs of AMS (IF-1.727), Journal of European
Mathematical Society(IF-1.353), Math Research Letters(IF-0.716) and Annali della
Scuola Normale Superiore di Pisa(IF-0.683). These papers are written jointly with
S. Ivanov and D. Vassilev and my opinion is that the contribution of Ivan Minchev
is equivalent to the one of the co-authors. This is confirmed also by his statement
which was sent to me further. He has provided information for 13 citations of two
of the above papers in journals with a high impact-factor.

3. I have the following technical remarks:
1. The papers [CDKR1], [D1], [Sal1], [Va2] in the Bibliography of the Abstract

and [CDKR1] in the Bibliography of the thesis are written without the names of the
authors.

2. The title of the thesis in Declaration of authorship is not written correctly.
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4. The abstract correctly reflects the main results and the scientific contributions
of the thesis.

Conclusion. The thesis of Ivan Minchev contains important theoretical generalizati-
ons and solutions of difficult problems of current interest in differential geometry and
geometric analysis of quaternionic-contact manifolds which are significant contributi-
ons in these contemporary mathematical fields. This together with the provided
scientometric indicators shows that the thesis satisfies all requirements of the Law
Act for Development of the Academic Staff in the Republic of Bulgaria, the Statutes
for application of LADASRB, and the Statutes for the conditions and regulations for
acquiring academic degrees and occupying academic posts in Sofia University. So,
I recommend with conviction to the honorable Jury to vote "Yes" for the award of
Ivan Minchev Minchev the degree "Doctor of Science" , Area of Higher Education: 4.
Natural Sciences, Mathematics and Informatics; Professional field: 4.5 Mathematics.

05.05.2020 г. Signed:

(Oleg Mushkarov)


