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Abstract: Marine toxins originate in unicellular algae. About 2% (60-80 species) of 
the estimated 3400-4000 known phytoplankton taxa are toxic. In response to favorable 
conditions in their environment, toxic microalgae (dinoflagellates and diatoms) may 
proliferate and/or aggregate to form dense concentrations of cells called "harmful algal 
blooms" (HABs). Such cases, but also low cell concentration of toxic phytoplankton 
species may result in contamination of the whole food chain. Filter-feeding shellfish, 
zooplankton, and herbivorous fishes ingest these algae and act as vectors to humans 
either. The aim of this study was to summarize and review the marine toxin content along 
the Black Sea food chain levels (phytoplankton and mussels), to discuss the metabolic 
changes they may undergo as they move to higher trophic level and the potential impact 
to the apex consumer – the human. Plankton and mussels were sampled in the period 
2016-2018 on the South Black Sea coast of Bulgaria. Lipophilic toxins and domoic acid 
were detected on LC-MS/MS and saxitoxins and its analogues on HPLC-Fl. Domoic acid 
(DA) was the toxin with the highest detected concentrations: in plankton - 962963.0 pg/
net haul and in mussels – 618859.8 pg/g. In addition, yessotoxins (YTX), pectenotoxin-2 
(PTX2) and gonyautoxin-2 (GTX2) were also found in the samples.  Despite of the low 
toxin concentrations detected, distribution and mobility of toxin producing algae in 
harvest waters, toxin accumulation potential of mussels, etc. need to be considered to 
protect human from contamination.

INTRODUCTION

The Black Sea has unique ecological characteristics, such as positive freshwater 
balance, presence of the toxic hydrogen sulfide in the deep waters, etc. provide a 
unique environment (Golemansky, 2007, Trayanov, 2014). The Black Sea ecosystem 
provides many species as a matter of commercialization -fishes, mussels, rapana etc. 
(Ministry of Agriculture and Food, 2016) due to their nutritional quality (Dobreva, et 
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al., 2018; Merdzhanova, et al., 2016; Stancheva, et al., 2012). Nevertheless, marine 
food webs are strongly influenced by the accumulation of hazardous compounds 
(Islam & Tanaka, 2004). Contaminants with anthropogenic origin (e.g. pesticides, oils, 
heavy metals, etc.) from the Bulgarian coast of the Black Sea have been studied in the 
last ten years in details. Organochlorine pesticides (such as 1,1,1-trichloro- 2,2 - bis 
(4-chlorophenyl) ethane (DDT) and its metabolites) and polychlorinated biphenyls 
(PCBs) were detected in fish and mussel species in concentrations, comparable to 
those found in other marine ecosystems (Peteva, et al., 2018a, Stancheva, et al., 2017; 
Georgieva, et al., 2012).  Likewise, heavy metals such as Cu, Zn, Pb, As etc. were 
detected in selected fish and shellfish species (Makedonski, et al., 2017; Stancheva, et 
al., 2012). 

Other harmful substances, such as marine toxins have biogenic origin (Gregg, et 
al., 2018; Fabro, et al., 2017). Primary marine toxins producers are phytoplankton 
species, mainly diatoms and dinoflagellates (Van Dolah, 2000) that are also detected 
in European coastal waters (Table 1).  About 2% (60-80 species) of the estimated 
3400-4000 known phytoplankton taxa are toxic (Van Dolah, 2000). Constantly, the 
list of harmful species on a world scale is growing rapidly. A sudden increase in the 
microalgae population due to suitable growth and physical conditions and adaptive 
strategies in considered as harmful algal bloom (HAB) (originally called “red tide”) 
(Maso & Garces, 2006). The phytoplankton concentration can reach 104-105 cell dm-3 
during certain periods of time. Nevertheless, even low microalgae concentrations may 
result in toxic events, e.g. 102–104 Dinophysis cell dm-3 concentration on the Galician 
coast was associated with shellfish poisoning episode (Reguera, et al., 1993). 

Table 1. Main marine toxins and their known producers

Marine toxins Producers Occurrence in Europe

Saxitoxin (STX) and 
analogues

Alexandrium spp.

Gymnodinium sp.

The Black Sea (BAS-IO, 2017) 
Mediterranean Sea  (Fertouna-
Bellakhal, et al., 2015; Laabir, et 
al., 2013; )
Baltic Sea (Salgado, et al., 2015)

Domoic acid (DA) Pseudo-nitzschia spp.

Nitzschia spp.

The Black Sea (BAS-IO, 2017)
Mediterranean Sea (Pugliese, et 
al., 2017
Marmara Sea (Balkis, et al., 
2016)

Okadaic acid (OA) Prorocentrum lima 
(Ehrenberg) Stein 1878 

Dinophysis spp.

The Black Sea (BAS-IO, 2017)
Mediterranean Sea (Ben-Gharbia, 
et al., 2016)
Baltic Sea (Hällfors, et al., 2011)

Pectenotoxins (PTXs) Dinophysis spp. The Black Sea (BAS-IO, 2017)
Baltic Sea (Hällfors, et al., 2011)

Yessotoxins (YTXs) Prorocentrum reticulatum 
Faust 1997
Lingulodinium polyedrum 
(Stein) Dodge 1989
Gonyaulax spinifera 
(Claparède & Lachmann) 
Diesing 1866

The Black Sea (BAS-IO, 2017)
Mediterranean Sea (Rubino, et 
al., 2010)
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Marine toxins can be transferred via several trophic pathways. First orders 
consumers that accumulate toxins are bivalves (Reizopoulou, et al., 2008; Vale & 
Sampayo, 2002), polychaetas (Abbott, et al., 2003) and ascidians (Reizopoulou, et 
al., 2008), planktivorous fishes (Vale & Sampayo, 2001), crabs (Vale & Sampayo, 
2002) etc. Contamination of higher-order consumers include octopuses (Lopes, et 
al., 2018), seals (Jansen, et al., 2015), dolphins (Schwacke, et al., 2010), whales 
(Doucette, et al., 2006) and even cases of endangered species mortalities, e.g. 
shortnose sturgeon (Acipenser brevirostrum Lesueur, 1818) (Fire, et al., 2012). 
Marine toxins are known to have long-term effects on health of aquatic animals, 
involving increased susceptibility to diseases, immunosuppression, abnormal 
developments, development of tumors (Vasconcelos, et al., 2010; Landsberg, 
2002) etc. 

Consumption of toxin-contaminated seafood results in poisoning syndrome 
in human. Among these are amnesic, diarrheic and paralytic shellfish poisoning, 
caused respectively by domoic acid, okadaic acid, saxitoxins and their analogues. 

Therefore, the fate of the marine toxins in marine food webs is essential for 
the evaluation of their associated risks. The mussel Mytilus galloprovincialis 
was proven to be an appropriate indicator for a safe warning of marine toxins 
contamination (Reizopoulou, et al., 2008). 

The aim of this study was to summarize and review the marine toxin content 
along the Black Sea food chain levels (phytoplankton and mussels), to discuss the 
metabolic changes they may undergo as they move to higher trophic level and the 
potential impact to the apex consumer – the human. 

MATERIALS AND METHODS

Collection sites and samples
Sampling was conducted along the south Bulgarian Black Sea coast 

(Nessebar – Tsarevo) in autumn 2016 (self-funding) and in spring, summer and 
autumn of 2017 and in spring of 2018 within the framework (work package 2) 
of Project № М09/1, 48/05.12.2016, funded by National Science Fund, Bulgaria. 
Phytoplankton was sampled with 20 μm mesh size plankton net in depths 1 to 3 
m. Wild mussels Mytilus galloprovincialis were harvested from rocks. Farmed 
mussels were sampled from cultivation ropes.  

Analytical methods for phycotoxins determination
Paralytic toxins were extracted from plankton samples with 0.03 M acetic acid, 

domoic acid and lipophilic toxins with methanol. Mussel sample homogenate 
was processed with 0.2 M acetic acid for paralytic toxins and with methanol 
and subsequently with hexane for domoic acid and lipophilic toxins.  Detailed 
extraction procedures are provided by Peteva, et al., 2018c. 

Paralytic toxins were determined via liquid chromatography with fluorescence 
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detection and domoic acid and lipophilic toxins via liquid chromatography 
tandem mass spectrometry according respectively Krock, et al., 2007 and Krock, 
et al., 2008. 

RESULTS AND DISCUSSION

In total 16 plankton and 24 mussel samples were investigated for the presence 
of paralytic toxins (Table 2) and 26 plankton and 58 mussel samples for domoic 
acid, okadaic acid, dinophysis toxins, yessotoxins, and pectenotoxins (Table 3). 

Among plankton samples studied only PTX2 and DA were detected. Seven 
were the positives for both toxins out of 26 samples investigated (Figure 1). 
No paralytic toxins, YTXs, OA and DTXs were detected (Table 2 and Table 3), 
although phytoplankton potentially responsible for these toxins production was 
registered in 2017 in the investigated area by the Institute of Oceanology (BAS-
IO, 2017) and e.g. YTXs were detected in the mussel samples (Peteva, et al., 
2018b, 2018e). 

GTX2, DA, PTX2 and YTX were detected in the studied mussel samples. DA 
and YTX were the most prevalent toxins, but both were present in less than 50% 
of the samples (Figure 1).  The presence of the paralytic toxin, gonyautoxin - 2 
(GTX2) in mussel samples was scarce, with only 3 positives in 2017 (Peteva, 
et al., 2018d) (Table 2) and of PTX2 in mussel samples being available only in 
spring 2017 (Peteva, et al., 2018a) (Table 3) (Figure 1).

Fig. 1. Number of positive samples among all samples investigated (YTX- Yessotoxin; 
PTX2- Pectenotxin-2; DA-domoic acid; GTX2- Gonyautoxin-2) .
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Table 2  Samples investigated and level ranges of detected GTX2 via LC-FD phycotoxins 
(M- mussels, PT-plankton, NH- net haul) 

Table 3  Samples investigated and level ranges of detected DA, PTX2 and YTX via LC-
MS/MS phycotoxins (M- mussels, PT-plankton, NH- net haul) 

In plankton samples DA level reached a peak of 962963.0 pg/NH in spring 
2017 whereas the detected DA level in spring 2018 was significantly lower 
(Table 3). For a similar period of investigation in 2011-2012 (Dursun, et al., 
2017) also registered DA variation in the Sea of Marmara, but to a lower extend. 
Respectively, DA was detected in mussel samples only during spring 2017, which 
event was already described by Peteva (Peteva, et al., 2018b)

Interestingly, PTX2 was registered in plankton samples in all investigated 
seasons but detected in few mussel samples only in spring 2017 (Table 3, Figure 
1). Similar results were reported by MacKenzie (MacKenzie, et al., 2002). It 
the latter study a predominance of PTX-SA (seco acid) within the mussel tissue 
was registered. The authors suggested a rapid hydrolysis of the lactone bridge of 
PTX2 within the shellfish tissue. The transformation of PTX2 to PTX-SA might 
be an explanation for the absence of PTX2 in hereby studied mussel samples. 
Therefore, further investigations on PTX-SA in collected mussel samples is 
planned. 
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YTX level varied widely in mussel samples from 2017 but reached its 
maximum level (24558.8 pg/g) in May 2017, remained almost constant in summer 
and was not detected in spring 2018 (not published) (Table 3). The YTX presence 
in the mussels in spring and summer 2017, but not plankton was probably a 
residue from a previous YTX contamination event. 

The dominance of DA and YTX in the mussel samples (Figure 1) could 
be explained by the ubiquitous distribution of potentially toxin producing 
phytoplankton species, resp. Pseudo-nitzschia sp. and Protoceratium sp., 
Lingulodinium sp. and Gonyaulax sp. These data indicated that the proliferation of 
several toxin-producing species is favored by the same environmental conditions 
and suggest a possible direct mutualistic/eco-physiological interaction between 
these species (MacKenzie, et al., 2002). The involvement of the planktonic 
dinoflagellate L. polyedra was also suspected to be a source of YTX and homo-
YTX in contaminated shellfish from the Adriatic Sea though this species was not 
present in the detected bloom (Draisci, et al., 1999). 

Marine toxins determination in the samples investigated concluded in 
different toxin profiles of the producer microalgae and the filter-feeding bivalves 
(Figure 2). 

Fig. 2. Possible marine toxins trophic transfer

Chemical properties of the toxins, like epimerization and acid hydrolysis 
during extraction can explain some of these differences (Shimizu, 2000). Even 
more, plankton sampling reflects the instant situation, whereas mussel accumulate 
toxins for longer periods (Cembella, et al., 2001). 

If toxin contaminated mussels are ingested by human, severe illness can 
occur. Threshold levels of phycotoxins are legislated in the European Union. 
Concentrations in mussels above them are considered not safe for consumption. 
Table 4 provides information on the highest detected levels in mussel samples. 
DA, PTX2 and GTX2 highest detected level were beneath the legislative limit, 
hence, no intoxication by consumption of investigated shellfish might be expected.  
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Table 4  Comparison of highest level of detected phycotoxins and EU reference limits

CONCLUSION

This study reviewed the marine toxin analysis of plankton and wild and 
farmed mussel samples, harvested along south Black Sea coast. DA and PTX2 
were detected in plankton and DA, PTX2, YTXs and GTX2 – in mussel samples. 
Toxin levels differed significantly in the investigated period. Different toxin 
profile of producers and first order consumers might be explained by metabolic 
interactions, timespan of analysis etc. DA, PTX2 and GTX2 highest detected 
levels were much lower than the EU legislative limit. No potential risk of shellfish 
intoxication for second order consumers (human) was concluded. 
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