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Introduction
Copulas appear as a modern tool in creating flexible probability models
with more than one random variable. Any multivariate model could be
constructed by means of copulas. They are widely used in areas as insur-
ance, finance, banking or more general where there are interacting processes
(risks) and the need to establish their dependence.

The history of copulas begins in 1959 with Sklar’s article [62], where the
main result for copulas - the Sklar theorem is conjectured for the first time.
It states that copulas allow explicit construction of multivariate distribution
functions by one-dimensional distributions playing the role of marginals.
Indeed, let X and Y be two random variables with distribution functions
F (x) = P (X ≤ x) and G(y) = P (Y ≤ y) respectively and H(x, y) =
P (X ≤ x, Y ≤ y) is the join distribution function of X and Y , such as
F (x) = H(x,+∞), G(y) = H(+∞, y) are the margins of H. Then there
exists a copula C such that for all (x, y) ∈ R2

H(x, y) = C
(
F (x), G(y)

)
.

If F and G are continuous, then C is unique. The opposite statement is
also true.

The proof of Sklar’s theorem was not given in the first article [62], but
a sketch of it was provided by Sklar in 1973 and, finally, showed in detail
by Schweizer and Sklar in 1974 [59].

Comprehensive theory of copulas is developed in [50], [11] и [32].
The advent of copulas in finance, which is well documented in [26] orig-

inated a wealth of different investigations: see, for example [7] where copu-
las are introduced from the viewpoint of mathematical finance applications.
There copulas are used in order to describe major topics such as asset pric-
ing, risk management and credit risk analysis, [43] contains an introduction
to the realm of copulas aimed at the quantitative risk manager, [51] reviews
the use of copulas in econometric modelling, etc.

While the most common models impose copulas on given data and ex-
amine whether the copula (e.g. Gaussian copula, Clayton copula, t-copula,
etc.) describes correctly the stochastic dependence (usually copula statisti-
cal tests are done), the present dissertation proposes a method for obtaining
a specific copula as a solution of a differential equation that corresponds to
real data.

Let us recall the definition of a copula. Let I = [0, 1] and I2 = I × I. A
function C : I2 → I is called two-dimensional copula, if
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1. For all (u, v) ∈ I2

(0.1)
C(u, 0) = 0 = C(0, v),

C(u, 1) = u, C(1, v) = v;

2. C is a 2-increasing, i.e. for every u1, u2, v1, v2 in I, such that u1 ≤ u2
and v1 ≤ v2,

(0.2) VC(B) ≡ C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0,

where B is a rectangle [u1, u2]×[v1, v2] and the expression (0.2) defines
the C-volume of B.

The main two problems related to copulas are

1. How to check if a given function is 2-increasing (usually the boundary
conditions are trivial)?

2. How to define a new copula?

In the case n ≥ 3 the complexity of the issue above is significant and
the number of known n-dimensional copulas is very limited.

In the presented dissertation the author gives an answer of the problems
posed above considering copulas as functions in the appropriate Sobolev
spaces.

Unlike the most papers related to copulas (e.g. [50]), where considera-
tions are restricted to functions which are well defined in each point and it
is proven that copulas are Lipschitz functions on their domain ([50], theo-
rem 2.2.4), we consider copulas under more general assumptions and prove
a number of nice properties, such as generalized definitions of 2-increasing
and n-increasing properties.

Further, the main result is the resolution of the boundary value problem

∂uvC(u, v) = f(u, v) в I2 (in weak sense);
C(u, 0) = 0 = C(0, v);

C(u, 1) = u, C(1, v) = v, for all u, v ∈ I,

under certain conditions on f : First we consider the case when f is smooth
function and later generalize it to f ∈ W−1,p(I2), p > 2. This problem
can be thought of as a Dirichlet problem for the wave equation due to the
considered conditions over the boundary I2. However, it is important to
note here that this is an ill-posed boundary value problem. Nevertheless,
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we prove existence and uniqueness of the solution by imposing some as-
sumptions over the boundary regarding the right hand side of the equation
.

Similarly, we solve the boundary value problem in Rn when n ≥ 3.
The outline of the dissertation is as follows. Chapter 1 considers the

case n = 2. Section 1.1 contains the generating technique for 2-increasing
functions and a number of examples where we demonstrate the applicability
of our method. Section 1.2 provides the required knowledge on Sobolev
spaces and a priori estimates, from which the uniqueness of the solution
follows. Section 1.3 discuses the smooth case and in Section 1.4 the general
solution is considered. The applicability of our approach is shown in Section
1.5 through an example providing a new proof of Sklar’ theorem in the
considered space.

Chapter 2 considers the case n ≥ 3. In Section 2.1 we give two gen-
eralisations of the notion of an n-increasing function and demonstrate the
applicability of our method to several examples. In Section 2.2 we provide
a new proof of the necessary and sufficient condition a function to be an
Archimedean copula, first considering the case n = 2, and then for every
n ≥ 3. In Section 2.3 we prove a theorem for uniqueness and existence
of the solution of a boundary value problem in the case of n-dimensional
copulas.

In Chapter 3 we consider a real-life problem for insurance risk assessment
and solve it with numerical methods. Section 3.1 provides the required
knowledge about the numerical methods used to solve the equation. In
Section 3.2 we build the desired copula and analyze the solution.
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Presentation of the dissertation paper
In this section we will present the main result with accompanying comments
and explanations.

The following notations are used frequently.
For n > 0, let us denote Rn

= R× · · · × R. If (a1, a2, . . . , an) ∈ Rn and
(b1, b2, . . . , bn) ∈ Rn, ak ≤ bk, for k = 1, . . . , n, we denote with B the n-box

B = [a1, b1]× [a2, b2]× · · · × [an, bn].

The vertices of the n-box B are the points (c1, c2, . . . , cn), where each ck
is equal to either ak or bk, for k = 1, . . . , n.

With In = [−1, 1]× [−1, 1]× · · · × [−1, 1] we denote the n-dimensional
unit cube.

Let G be a domain in Rn and let D be the space of tests functions on
G and let D ′ be the space of distributions on G.

If ε > 0, let Jε be a mollifier and fε – the regularization of f .

In Chapter 1 we consider the case of bivariate copulas.

In section 1.1 we study the 2-increasing functions. We prove lemma
1.1.2, where we demonstrate,that if a function H : R2 → R has continuous
gradient and continuous mixed derivative Hxy, then H is 2-increasing if and
only if

Hxy ≥ 0 в R2.

Based on this result we give a new generalized definition of the notion 2-
increasing function, when derivatives exist only in a weak sense, precisely

Definition 1.1.3 A distribution H ∈ D ′ is weakly 2-increasing if for
any test function ϕ ≥ 0 in D(R2):

(0.3)
(
Hxy, ϕ

)
≥ 0.

Certainly, we would like both definitions to be equivalent when H is a
smooth function. That is why we prove lemma 1.1.4, which states that if
H ∈ D ′(R2) ∩ C0(R2) is weakly 2-increasing then H is 2-increasing in the
sense of the former definition.

By calculating weak derivatives we demonstrate in a new way using
our definition that the following functions W (u, v) = max(u + v − 1, 0),
M(u, v) = min(u, v) and C(u, v) =

[
min(u, v)

]−θ
(uv)1−θ are 2-increasing

while the function max(u, v) is not.

7



In Section 1.2 we define the boundary value problem and show unique-
ness of the solution proving a priori estimate. At the begining of the section
we provide the required knowledge on Sobolev spaces needed for the proof.

Theorem 1.2.6 Let C ∈ W 1,p(I2), p > 2 be a solution of the following
problem

∂uvC = f(u, v), (u, v) ∈ I2,
where f ∈ Lp(I2) and the above equality holds only in a weak sense, i.e.(

Cuv, ϕ
)

= (f, ϕ),

for all ϕ ∈ W̃ 1,p(I2) =
{
w ∈ W 1,p(I2)

∣∣ w|u=0 = w|v=0 = 0
}
. Also, let{

C(0, v) = 0 = C(u, 0)
C(u, 1) = u, C(1, v) = v,

where u, v ∈ I.
Then there exists a constant M , which does not depend on f , such that

‖C‖W 1,p(I2) ≤M ‖f‖Lp(I2).

From the above a priori estimate directly follows the uniqueness of the
solution.

Corollary 1.2.7 The solution of the problem is unique.
Let’s note that when the solution C ∈ W 1,p(I2) and Cuv ∈ W−1,p(I2), the

uniqueness theorem still holds, since the right side of the equation becomes
f = 0 ∈ Lp(I2).

And last but not least theorem 1.2.6 actually gives us continuity of
the solution C in regards to f . This result we use in Chapter 3 when we
construct the copula from the considered real data.

In Section 1.3 we prove the existence of the solution to the considered
boundary value problem, where the function f(u, v) in the right hand side
of the equation ∂uvC = f(u, v) satisfies the following conditions:

f ∈ Lp(I2), p ∈ (1,+∞);

f(u, v) ≥ 0, for all (u, v) ∈ I2;∫
Bu,1

f(ξ, η)dξ dη = u, for all u ∈ [0, 1], where Bu,1 = [0, u]× [0, 1];

∫
B1,v

f(ξ, η)dξ dη = v, for all v ∈ [0, 1], where B1,v = [0, 1]× [0, v].
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The proof is based on [66], §15, where the Goursat problem for the
hyperbolic equation ∂uvW+a∂uW+b∂uW+cW = f(u, v) is solved, with the
initial data being prescribed differentiable functions on the characteristics{

(u, v) ∈ R2
∣∣u = 0

}
and

{
(u, v) ∈ R2

∣∣ v = 0
}
and continuous right hand

side f(u, v). The existence and uniqueness of the C1-solution is proved
for any rectangle with two sides being the mentioned characteristics with
smooth initial data on them.

In Section 1.4 we extend the notion of solution of the boundary value
problem by using the concept of a weak derivative. We prove in that case
the existence ofW 1,p(I2)-solution, which is unique due to the estimate from
theorem 1.2.6, when the right hand side f ∈ W−1,p(I2) and satisfies (re-
spectively modified) conditions (by analogy of the smooth case) together
with additional condition for its Fourier transform f̂ ≡ F (f).

Theorem 1.4.1 Let f ∈ W−1,p(I2), p > 2 and f ≥ 0 in a weak sense.
Suppose the conditions

lim
ε→0+

(
f̃ , χBu,1 ∗ Jε

)
= u, for all u ∈ I,

lim
ε→0+

(
f̃ , χB1,v ∗ Jε

)
= v, for all v ∈ I,

are satisfied, where f̃ ∈
(
W 1,p(R2)

)′ is an extension of f .
Then there exists a unique solution C ∈ W 1,p(I2) of the problem:

Cuv(u, v) = f(u, v) в I2 (in a weak sense) ;

C(u, 0) = 0 = C(0, v);

C(u, 1) = u, C(1, v) = v, for all u, v ∈ I,

under the conditions∥∥∥∥∥F−1
{
χ1(ξ, η)|η|

ξ
· f̂(ξ, η)

(1 + ξ2 + η2)
1
2

}∥∥∥∥∥
Lp

< +∞,∥∥∥∥∥F−1
{
χ1(ξ, η)|ξ|

η
· f̂(ξ, η)

(1 + ξ2 + η2)
1
2

}∥∥∥∥∥
Lp

< +∞,

where χ1 и χ1 are smooth regularization functions with the following prop-
erties:

a) supp χ1 ⊂ {cone neighbourhood of (0,±1)}\{ neighbourhood of (0, 0)};
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b) supp χ1 ⊂ {cone neighbourhood of (±1, 0)}\{ neighbourhood of (0, 0)}.

The proof is based on the following reasoning. As two of the boundary
conditions are obtained from the right hand side of the equation we will
focus on the following Goursat problem in a weak sense

 Find a solution h ∈ W 1,p
0 (K1), such that huv = f ∈ W−1,p(R2),

in a weak sense, i.e. (huv, ϕ) = (f, ϕ), for all ϕ ∈ D(K1),
where supp f is bounded and K1 =

{
(u, v) ∈ R2 | u > 0, v > 0

}
.

Next step in our considerations is to give analogous formulation of the
problem on R2, not only on K1. Thus Fourier transforms and corresponding
Sobolev spaces are applicable.

We demonstrate that the above problem is not the equivalent but follows
from {

Find a solution H ∈ W 1,p(R2), p > 2, suppH ⊂ K1,
such that (H,ϕuv) = (f, ϕ), for all ϕ ∈ C∞0 (R2).

The advantage of the new formulation is obvious: if we find such an H, then
his traces vanish on ∂K1, ant hence this will be the wanted solution h.

To show the existence of a weak solution H of the last problem, i.e.

(H,ϕuv) = (f, ϕ), for all ϕ ∈ C∞0 (R2),

we follow the procedure based on Hahn-Banach theorem (see [47], §4.2).
Note that such a solution is not unique but we prove uniqueness thanks to
the additional conditions imposed.

In Section 1.5 we use a simple example to show how our approach
works. We prove in a new way the Sklar’s theorem in the case when the
corresponding probability density functions are continuous and do not van-
ish.

Even in this simple case, choosing different probability density functions
(suitable for our considerations) allows us to generate a variety of copulas
not observed in ([50]).

In Chapter 2 we study n-dimensional copulas.
In Section 2.1 we generalize the definition of n-increasing function,

when n ≥ 3. Again based on the fact that a function H : Rn → R having
continuous derivatives is n-increasing if and only if

Hx1...xn ≥ 0 в Rn,
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we give a new generalized definition of the notion n-increasing function when
the derivatives are weak, i.e.

Definition 2.1.7 Let G ⊂ Rn be a domain. A distribution H ∈ D ′(G)
is called a weakly n-increasing distribution in G, if for any non-negative test
function ϕ ∈ D , (

Hx1,...,xn , ϕ
)
≥ 0.

Similarly to the 2-dimensional case we prove equivalence of the definition
with the former one when H ∈ D ′(Rn) ∩ C0(Rn).

Then we noticed that we can give a second generalized definition, which
in some cases is more convenient. In fact, a disadvantage of definition
2.1.7 relates to the search of weak derivatives of non-smooth functions (i.e.
derivatives in the sense of Distribution theory). Such examples are already
given in Chapter 1. Apart from that this definition does not take into
account the fact that H belongs to a suitable Sobolev space in the cases
under consideration.

Definition 2.1.10 Let G ⊂ Rn be a domain, such that its boundary ∂G
satisfies the segment condition (see [1]). Then we say that H ∈ W 1,p(G) is
a weakly n-increasing function in G, if

(−1)n(H, fx1···xn) ≥ 0,

for all non-negative f ∈ W n−1,p(G).
If we assume that (−1)n(H, fx1···xn) ≥ 0 holds only for smooth functions

f , then by theorem 3.22 in [1] we obtain again definition 2.1.10.
Again we prove that if H is continuous, then definition 2.1.10 is

equivalent to the common definition.
We demonstrate in remark 2.1.14, that definition 2.1.7 and def-

inition 2.1.10 are equivalent, as starting from an arbitrary function f ∈
C∞0 (Rn), f ≥ 0 we obtain a function g which vanishes together with its
derivatives up to order m on the sides of the cube In, passing through the
vertex (1, . . . , 1).

Finally, using our approach we prove in a new way that the function
Fréechet-Hoeffding lower bound

W n(x1, · · · , xn) = max[x1 + x2 + · · ·+ xn − n+ 1, 0]

is not n-increasing in In and hence is not a copula when n ≥ 3.

In Section 2.2 we consider an important class of copulas – Archimedean
copulas, which is studied in details in many works (see chapter 4 in [50], as
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well as [33], [11], [44], [24]). These copulas find a wide range of applications
as they are easy to construct and assess many nice properties.

We provide a new proof of the necessary and sufficient condition a given
function to be an Archimedean copula. Since boundary conditions are easily
verified a key point is whether the obtained function is n-increasing.

In the case of bivariate copulas we prove:
Theorem 2.2.9 Let ϕ be a continuous and strictly decreasing function

from [0, 1] to [0,+∞], such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse

of ϕ, given by ϕ[−1](t) =

{
ϕ−1(t), if 0 ≤ t ≤ ϕ(0),

0, if ϕ(0) ≤ t ≤ +∞.
Then the function C2, given by

C2(u, v) = ϕ[−1](ϕ(u) + ϕ(v)
)
,

is a bivariate copula if and only if ϕ is convex.
In the case n ≥ 3, we prove:
Theorem 2.2.12 Let ϕ a continuous and strictly decreasing function

from [0, 1] to [0,∞], where ϕ(0) = ∞ and ϕ(1) = 0. Let ϕ−1 denote the
inverse of ϕ. Then the function Cn : In −→ I, given by

Cn(x1, . . . , xn) = ϕ[−1](ϕ(x1) + . . .+ ϕ(xn)
)
,

is an n-copula for all n > 2, if and only if ϕ−1 is completely monotonic on
[0,+∞], i.e. when the expression (−1)k d

k

dtk
g(t) ≥ 0 holds in [0,+∞].

At the of the section we present an counterexample of the necessity of
the convexity condition for the function ϕ in the 2-dimensional case.

Section 2.3 generalizes our approach of the 2-dimensional case de-
scribed in chapter 1, sections §1.2, §1.3 and §1.4, as we obtain a copula
as a solution of a boundary value problem in n-dimensional unit cube In.

Key result is the paper [5] to the Goursat problem over the unit cube.
The main statement we prove in this section is the next theorem.

Theorem 2.3.1 Let the function f ∈ W 1−n,p(In), p > n, be such that:

а) f satisfies the conditions

lim
ε→0

∫
Rn

f̃ε(ξ1, . . . , ξn)χBk
dξ1 . . . dξn = xk,

for all k = 1, . . . , n and for each n-box
Bk = [0, 1]× . . .× [0, xk]× . . .× [0, 1] ⊂ In;

12



б) f is non-negative in the sense of the theory of distributions, i.e.

(f, ϕ) ≥ 0, for allϕ ∈ W n−1,q
0 (In);

в) f satisfies the regularity condition (R) (which we will formulate be-
low).

Then there exists a unique solution C ∈ W 1,p(In) of the problem:

1) on In holds
(−1)n

(
C,ϕx1...xn

)
= (f, ϕ),

for all ϕ ∈ W n−1,q
0 (In), where q is the exponent conjugate to p;

2) with boundary conditions

C(x1, . . . , xn) = 0, if xk = 0 for at least one index k = 1, . . . , n.

Each function f ∈ W 1−n,p(In) has the representation(
f, u
)

=
∑

0≤|α|≤n−1

(
∂αu, fα

)
,

where fα ∈ Lp(In), |α| ≤ n− 1, for each u ∈ W n−1,q(In).
We formulate the regularity condition (R) as follows.

(R) : Let us assume that the functions fα, representing f , satisfy

∂xiD
α′
fα ∈ Lp(In), i = 1, . . . , n, |α| ≤ n− 1,

where

∂iD
α′
ϕ =

{
ϕ , ifα′i = −1

∂xiD
α′
iϕ , ifα′i ≥ 0.

For each multi-index α ∈ Nn, N = {0, 1, 2, . . .} we set{
α′ = (α′1, . . . , α

′
n) = (α1 − 1, . . . , αn − 1)

Dα′
= Dα′

1 . . .Dα′

n ,

where for each i = 1, . . . , n,

D
α′
i

i ϕ =



xi∫
0

ϕ(x1, . . . , xn)dxi , whenα′i = −1,

ϕ(x1, . . . , xn) , whenα′i = 0,

∂
α′
i

i ϕ , whenα′i > 0.
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At the end of the section we comment that the local conditions enforced
in the 2-dimensional case in theorem 1.4.1 are equivalent of the regularity
condition (R).

In Chapter 3 we build a copula using our approach, i.e. we obtain
a copula as a solution of a boundary value problem using real data com-
ing from a Bulgarian insurance company. We apply a spectral numerical
method, based on the Chebyshev polynomials, to numerically solve the dif-
ferential equation.

There exist many models describing the dependence between claim
amount and severity of the claim occurrence. In the dissertation we propose
a method which allows to study the dependence between claim amount and
moment of claim occurrence (towards the date of subscribing policy).

We consider CASCO motor insurance policies for a company operating
on the Bulgarian market. Data represents company’s portfolio for 5 years
period with 87 917 number of claims.

Section 3.1 provides the required information about the numerical
methods used to solve the equation.

In Section 3.2 we build the desired copula and analyze the solution.
We determine that the accuracy of the numerical method is 10−4 due to the
data we have.

Finally, we conclude that the observed copula is very close to Π(u, v) =
uv, i.e. the difference between both copulas is 10−4. Distribution functions:
claim amount and moment of claim occurrence, could be considered as
independent for the observed portfolio.
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Main contributions
These are the main accomplishments in the thesis due to the author:

In Chapter 1 – Bivariate copulas on Sobolev Spaces – we consider the
case n = 2, and give a new generalized definition of the property 2-increasing
function. We demonstrate equivalence of the definition with the former one
in the case of smooth functions. We consider a number of examples.

Next we formulate the boundary value problem. We prove the existence
and uniqueness of the solution under additional conditions on the right hand
side of the equation.

In Chapter 2 – n-dimensional copulas – we consider the general case
when n ≥ 3. We give two new definitions equivalent to the former definition
of an n-increasing function.

As a corollary we prove in a new way the necessary and sufficient con-
dition a given function to be an Archimedean copula.

An the end of the chapter we formulate the boundary value problem
and prove the existence and uniqueness of the solution under additional
conditions on the right hand side of the equation.

In Chapter 3 – Practical application in an example from the insurance
industry – we study how our method can practically be used by an insurance
company to assess the insurance risks and exposure. We construct a copula
using our approach, i.e. we obtain a bivariate copula as a solution of a
boundary value problem using real data coming from an insurance company
present on the Bulgarian market. Distribution functions: claim amount
and moment of claim occurrence, could be considered as independent for
the observed portfolio.

16



Publications related to the thesis

1. Iordanov I., N. Chervenov. Copulas on Sobolev spaces, Comptes ren-
dus de l’Académie bulgare des Sciences, Vol 68, No1, pp.11-18, 2015.

2. Iordanov I., N. Chervenov. Copulas on Sobolev spaces, Serdica Math.
J. 42, 335 - 360, 2016.

3. Chervenov N., I. Iordanov, B. Kostadinov. Goursat problem over unit
cube in first quadrant of Rn (with applications to existence of copulas), AIP
Conference Proceedings 2048, 040022 (2018); doi: 10.1063/1.5082094.

4. Chervenov N., B. Kostadinov. Generalisation of the Notion of an n-
increasing function. Archimedean Copulas. Comptes rendus de l’Académie
bulgare des Sciences, Vol 72, No3, pp.292-300, 2019.

5. Chervenov N., I. Iordanov, B. Kostadinov. n-dimensional copulas
and week derivatives, Serdica Math. J. 44, 2018.

6. (pre-press) Stoilov N., N. Chervenov, Spectral approach to applica-
tion of copulas in actuarial science.

Dissemination of the results, connected to the dissertation

Some of the results in the dissertation have been presented on several
conferences:

1. "On the Sklar’s theorem", Spring Scientific Session of FMI, 16.03.2013.

2. "Generalized 2-increasing functions", Spring Scientific Session of FMI,
29.03.2014, https://www.fmi.uni-sofia.bg/bg/proletna-nauchna-sesiya-na -
fmi-2014.

3. "Goursat problem over unit cube in first quadrant of Rn (with
applications to existence of copulas)", AMEE 2018, Sozopol, https://tu-
sofia.bg/conferences/139.

4. "Constructing copulas as solution of a boundary value problem",
Spring Scientific Session of FMI, 16.03.2019, https://www.fmi.uni-sofia.bg/
bg/proletna-nauchna-sesiya-na-fmi-2019

17



Declaration of originality

The author declares that the dissertation contains original results ob-
tained by him or in joint work with his scientific advisor and/or other co-
authors of common papers of the considered in the dissertation topics. Re-
sults of other scientists were properly cited.

18



Bibliography

[1] Adams R.A., J.J.F. Fournier, Sobolev Spaces, Oxford, Elsevier LTD,
Academic Press, 2003.
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[20] Fréchet M., Sur les tableaux de corrélation dont les marges sont
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