СОФИЙСКИ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО ХИМИЯ И ФАРМАЦИЯ КАТЕДРА "ФИЗИКОХИМИЯ"

Кавитационен модел на квадруполни течности и електрични свойства на повърхности с диполен момент

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертация, представена за присъждане на образователна и научна степен "доктор"

Иглика Максимова Димитрова

Научен ръководител: доц. д-р Цанко И. Иванов Научен консултант: гл. ас. д-р Радомир И. Славчов

София, 2017 г.

Съдържание

1	. Увой	д	3			
2	?. Мултиполни развития					
	2.1.	Извод на квадруполното уравнение на Кулон	8			
	2.2. 2.2.1 2.2.2	Уравнения на състоянието за <i>Р, Q и ф</i> _{Bethe} за идеален газ	10 			
	2.3.	Гранични условия върху плоска повърхност	14			
	2.4.	Тензор на Максуел	15			
3	. Теор	рия на квадруполните течности	16			
3.1. Йон в квадруполна течност. Борнова енергия						
	3.2. реакци 3.2.1. 3.2.2. 3.2.3. квад 3.2.4. 3.2.5. диел 3.2. 3.2.5. диел 3.2.5. 3.5. 3	Дипол и квадрупол в кавитация в квадруполна течност. Онзагерово юнно поле и уравнения на състоянието за P и Q на течностРеакционно и кавитационно поле в квадруполяризуема среда.Реакционен и кавитационен градиент на полето.Среден диполен и квадруполен момент. Обобщение на модела на Онзагер н руполни течности.Точка на Кюри и радиус на кухината.Сравнение с експеримент: определяне на α _Q и R _{cav} течности от измервания н ектричната константа2.5.1.α _p , α _q -течности (молекули без диполен и квадруполен момент)2.5.2.α _p , q, α _q -течности (молекули с нулев диполен но ненулев квадруполен зз2.5.3.р, α _q -течности (молекули с диполен и квадруполен момент)	20 20 24 (ъм 25 27 ła 27 ła 31 момент) 37			
4	Своі	йства на междуфазовата граница между квадруполни течносп	nu41			
	4.1. 4.1.1 4.1.2 4.1.3 4.2. 4.2.1 4.2.2 4.2.3 4.2.4	Електрични свойства на повърхности в хомогенна квадруполяризуема Заредена повърхност	среда 41 			
5.	. Закл	тючение и приноси	55			
6	. Лит	тература				

1. Увод

Уравненията на Максуел за електростатиката на непрекъснати среди се използват в колоидната наука най-вече под формата на уравнението на Поасон-Болцман. Всъщност само уравнението на Поасон е следствие от уравненията на Максуел (вж. например [1]):

(1)
$$\nabla^2 \phi = -\rho / \varepsilon$$
,

като тук ϕ е електростатичният потенциал, ρ е плътността на свободните заряди, а ε е диелектричната константа на средата. Вече при допускане, че свободните заряди в непрекъснатата среда са Болцманово разпределени според електростатичната им енергия, получаваме (заедно с ур. (1)) добре познатото уравнение на Поасон-Болцман.

Като примери за приложението на уравнението на Поасон-Болцман в колоидната химия и физикохимията можем да посочим извода на Борнова енергия за разтваряне на йон в непрекъсната среда [2, 3]; теорията на Онзагер за реакционното поле и разтворимостта на полярни молекули [4]. Дебай и Хюкел го използват в техния модел на дифузен електричен слой около йон [5]. Гуи и Чапман прилагат уравнението на Поасон-Болцман към заредени повърхности, като описват по този начин прилежащия им дифузен слой от точкови заряди [6, 7]. Дейвис описва с помощта на това уравнение адсорбцията на йонни повърхностно активни вещества [8, 9]. Онзагер и Самарас използват Поасон-Болцман в модела им за адсорбция на електролити [10]. Друго добре известно приложение на уравнението на Поасон-Болцман е в теорията на Дерягин, Ландау, Фервей и Овербеек (DLVO) [11, 12], която го използва при извода на електростатичното разклинящо налягане в тънък филм. Последното важно приложение, което ще посочим, е формулата на Смолуховски за електрофореза [13].

Уравнението на Поасон-Болцман съдържа множество приближения и многократно са правени опити с цел то да се коригира или допълни. По-често се правят корекции към Болцмановата част, като освен електростатичната потенциална енергия в степента на експонентата се добавя и друг тип взаимодействие, например стерично отблъскване – отчитане на собствения обем на заредените частици [14], добавяне на ван дер Ваалсовите сили между частиците [15-17], на хидрофобните взаимодействия [18] или силите на изображение [10].

Възможни са корекции и в посока към допускането, че средата е непрекъсната и хомогенна (континуален подход). Например могат да се отчетат явно взаимодействията на централния йон с първите съседи молекули [19] или да се отчете дискретността на зарядите на някаква заредена повърхност (вместо да се приеме, че тя има хомогенна плътност на заряда) [20], или дискретността на йоните и диполите в средата [21]. Трети тип корекции са отчитането на корелационните

ефекти [22] (взаимодействието между три и повече молекули) и нелокалните ефекти [23-25] (отчитане на т. нар. градиентни членове).

Освен в разпределението на Болцман, са възможни корекции и в самото уравнение на Поасон (ур. (1)): може да се отчете диелектричното насищане [26, 27] (силната ориентация на диполните молекули при високи електрични полета) или нехомогенността на диелектричната проницаемост [28, 29].

Следователно всяка от посочените корекции на уравнението на Поасон-Болцман ще доведе до корекции и в теориите, които са следствие от това основно уравнение (виж например обзорните статии [30-33]).

Едно сериозно допускане на уравнението на Поасон е, че то пренебрегва напълно наличието на квадруполи в непрекъснатата среда. В някои случаи това приближение е много съществено – един прост пример е взаимодействието на заредени частици с неполярни среди, където взаимодействието йон-квадрупол е водещото електростатично взаимодействие. Неполярна среда наричаме такава, при която молекулите, които я изграждат, са с нулев собствен диполен момент $p_0 = 0$. Полярността на средата се отразява от нейната диелектрична константа є. Всъщност ε може да се възприеме като диполната сила на непрекъснатата среда, тъй като е приблизително $\varepsilon \propto C p_0 p_0$, където C е концентрацията на молекулите в средата (по аналогия с йонната сила, пропорционална на $C_{\rm el}e^2$, където $C_{\rm el}$ е концентрацията на електролита). Отчитането на квадруполите би било важно и за среди, чиито молекули имат голям квадруполен момент. За такива среди може да се очаква квадруполната сила $C \boldsymbol{q}_0: \boldsymbol{q}_0$ да е важна характеристика (тук \boldsymbol{q}_0 е квадруполният момент на молекулата). Но за да се обобщи електростатиката за квадруполни среди, не е достатъчно само да се промени основното уравнение [34]; по-трудната задача е да бъдат получени граничните условия към него. Също толкова важно е да се изведе уравнението на състоянието на квадруполяризацията (тензорът на макроскопската плътност на квадруполния момент, **Q**) на средата и да се намери стойността на квадруполните материални константи. Правени са опити в това направление, като тук може да посочим Джаксън [34], също така Рааб и Ланге [35], Батъйгин и Топтъйгин [36], Джеон и Ким [37], Читанвис [38]. Както ще покажем, тези подходи са непълни и често съдържат необосновани допускания. Това е и основната задача на настоящата дисертация: да бъде направен подобен опит за обобщение на електростатиката на непрекъснатите среди с отчитане на квадруполите в средата.

Квадруполните среди всъщност не се срещат толкова рядко. Всяка една среда може да се приеме за квадруполна (молекулата на водата, например, има сравнително голям квадруполен момент), но ефектът от квадруполите е слабо забележим в по-полярните среди. От практическа гледна точка, темата представлява интерес във връзка с т.нар. квадруполярни разтворители – течен или надкритичен СО₂, въглеводороди и особено нефт и горива. Като всяка квадруполна

среда би следвало да се охарактеризира по свойства и да се отличи от останалите. Като пример можем да посочим бензена и циклохексана. И двете са неполярни течности при стайна температура и молекулите им нямат собствен диполен момент, $p_0 = 0$. Молекулната им поляризуемост, α_{p0} , е много близка по стойност: $\alpha_{n0}/4\pi\varepsilon_0 = 10.4$ Å³ за бензен и $\alpha_{n0}/4\pi\varepsilon_0 = 10.5$ Å³ за циклохексан [39]. Това дава като резултат близка диелектрична константа, която е единствената електростатична макроскопска характеристика на средата в рамките на уравнението на Поасон ($\varepsilon =$ $2.27 \times \varepsilon_0$ при бензен, а $\varepsilon = 2.02 \times \varepsilon_0$ при циклохексан). Освен това двете молекули имат почти еднаква форма и ван дер Ваалсов радиус. Това означава, че класически те би следвало да имат твърде сходни свойства и трудно може да се обяснят различията им както в разтворимостта, така и като разтворители. Например за разлика от циклохексана, който не се разтваря във вода при стайна температура (T= 25 °C), бензенът (при същите условия) има разтворимост 1.74 g/kg [40]. Ако разглеждаме циклохексана и бензена като разтворители – разтворимостта на вода в циклохексан при стайна температура е 3.01 mmol/L, а на вода в бензен при същите условия е десетократно по-висока: 35.18 mmol/L [41]. Тези техни отличаващи се свойства могат да намерят обяснение в квадруполния момент на изграждащите ги молекули: бензенът има много по-голям квадруполен момент $|\mathbf{q}_0| \approx 25 \times 10^{-40} \text{ Cm}^2$ [42], докато при циклохексана квадруполният момент е $|\mathbf{q}_0| \approx 3 \times 10^{-40} \text{ Cm}^2$ [43] (тук $|\mathbf{a}_0| = (\mathbf{a}_0; \mathbf{a}_0)^{1/2}).$

В класическата електростатика на непрекъснати среди се използва мултиполно развитие до диполните членове на локалното уравнение на Поасон. С други думи, отчитат се само диполите в средата, като обосновката за това е, че техният електростатичен потенциал затихва най-бавно след потенциала на свободните заряди (потенциалът на заряд на безкрайност затихва като 1/r, а потенциал на дипол като $1/r^2$). Следователно, ако внесем единичен заряд в непрекъснатата среда от диполи, електростатичното взаимодействие заряд-дипол ще е водещо и найдългодействащо. В Таблица 1 се резюмира зависимостта на всички двучастичкови електрични взаимодействия от разстоянието за частици със заряд е, диполен момент p_0 , квадруполен момент q_0 , молекулна поляризуемост α_{p0} и квадруполна поляризуемост (квадруполяризуемост) $\alpha_{\alpha 0}$. За простота численият фактор и зависимостта от сферичните ъгли са пропуснати и големината на диполния момент и квадруполния момент са означени съответно с $|\mathbf{p}_0| = p_0$ и $|\mathbf{q}_0| = \mathbf{q}_0$. Енергията на взаимодействие между заряда е и един от диполите в средата, разположен на разстояние r, е пропорционална на $1/r^2$ (вж. Таблица 1). В случай на неполярна среда обаче, $p_0 = 0$, диполният момент на молекулите в средата може да бъде индуциран, т. е. ще се дължи само на тяхната поляризуемост, α_{p0} . Тогава енергията на взаимодействие между заряд и диполна молекула е $\propto e^2 \alpha_{n0}/r^4$. Това означава, че тази енергия затихва на по-къси разстояния за сравнение с енергията на взаимодействие заряд-квадрупол, $\propto e q_0/r^3$. Всъщност взаимодействието заряд-

квадрупол затихва със същата степен на r, както взаимодействието между два дипола (Таблица 1), но само второто взаимодействие е отчетено в класическата електростатика през диелектричната проницаемост є. Аналогично, ако разтворим дипол в непрекъсната среда, енергията на взаимодействие между дипола и квадрупол от средата ($\propto p_0 q_0 / r^4$) е даже на два порядъка на *r* по-слабо затихваща от взаимодействието дипол-поляризиран дипол ($\propto p_0^2 \alpha_{n0}/r^6$). Това означава, че уравнението на Поасон пренебрегва водещия член в енергията на взаимодействие йон-среда и дипол-среда, когато средата е изградена от молекули без диполен момент. От Таблица 1 се вижда, че степента на затихване на електростатичните взаимодействия между единични молекули (без осредняване по ориентацията им) намалява в реда: заряд-заряд > заряд-дипол > дипол-дипол = заряд-квадрупол > заряд-поляризиран дипол = дипол-квадрупол и т. н. Всичко това е за да покажем, че в някои случаи (на неполярни и слабо полярни среди) взаимодействието с квадруполите може да е също толкова важно, колкото това с диполи, и дори да е водещо по порядък. За такива среди включването на следващия член в мултиполното разложение на уравнението на Поасон е желателно и, бихме могли да кажем, необходимо.

Редица изследвания показват, че молекулите на всяка междуфазова граница се ориентират така, че средният нормален на повърхността диполен момент е различен от нула. При описанието на такива повърхности също е необходимо в обемните фази да се отчете следващият квадруполен член в мултиполното разложение [34, 36, 44], защото повърхностният дипол е спрегнат с обемната квадруполяризация (подобно на Гаусовото уравнение, свързващо обемната поляризация и повърхностния заряд). Класическото уравнение на Поасон предполага, че диполният момент на хомогенна повърхност не създава електрично поле и предвижда отсъствие на взаимодействие на повърхностните диполи с молекулите или зарядите в обема. Отчитането на квадруполите позволява описанието на взаимодействието дипол-молекула/заряд в обема.

Интересът към квадруполите е разбираем поради посочените по-горе причини. Джаксън въвежда квадруполни членове в израза за вектора на електричната индукция, D [34]. Читанвис постулира уравнение на състоянието квадруполяризацията и въвежда понятието квадруполна дължина [38]. Рааб и Ланге извеждат основните уравнения на електростатиката на квадруполни среди и общ вид на уравнението на състоянието на квадруполяризацията (без да ползват статистическо механичен подход) [35]. Те предлагат и инварианти за някои измеряеми величини, свързани с квадруполите [35]. Граничните условия към квадруполните уравнения на електростатиката са изяснени едва наскоро; това са обобщението на граничното условие на Гаус и условието за скока на квадруполяризацията **Q** на повърхността [45]. Връзката между скока на **Q** и повърхностния диполен момент е изведена също от Батъйгин и Топтъйгин [36] (вж.

също Шен и Ху, [46]). Нашата група също има принос към уточняването на граничните условия [47-49]. Докато Читанвис [38] и Джеон и Ким [37] използват в известна степен произволни гранични условия.

Таблица 1. Дългодействие на взаимодействието между заряди *e*, диполи p_0 , квадруполи q_0 , и частици с поляризуемост α_{p0} и квадруполяризуемост α_{q0} . Големината на диполния момент е означена с $|p_0| = (p_0 \cdot p_0)^{1/2} = p_0$, а големината на квадруполния момент $|q_0| = (q_0 \cdot q_0)^{1/2} = q_0$, като не са представени числените коефициенти и зависимостта от сферичните ъгли.

	е	p 0	$lpha_{p0}$	$oldsymbol{q}_0$	$lpha_{q0}$
е	$\propto \frac{e^2}{\mathcal{E}_0 r}$	$\propto rac{ep_0}{arepsilon_0 r^2}$	$\propto \frac{e^2 \alpha_{p0}}{\varepsilon_0^2 r^4}$	$\propto rac{e {m q}_0}{{m arepsilon_0} r^3}$	$\propto rac{e^2 lpha_{q0}}{arepsilon_0^2 r^6}$
p 0		$\propto rac{p_0^2}{arepsilon_0 r^3}$	$\propto rac{p_0^2 lpha_{p0}}{arepsilon_0^2 r^6}$	$\propto rac{p_0 oldsymbol{q}_0}{oldsymbol{arepsilon}_0 r^4}$	$\propto rac{p_0^2 lpha_{q0}}{arepsilon_0^2 r^8}$
$lpha_{p0}$			$\propto \frac{{}^*\alpha_{p0}^2}{\varepsilon_0^3 r^6}$	$\propto rac{oldsymbol{q}_0^2 oldsymbol{lpha}_{p0}}{oldsymbol{arepsilon}_0^2 oldsymbol{r}^8}$	$\propto rac{st lpha_{p0} lpha_{q0}}{arepsilon_0^3 r^8}$
$oldsymbol{q}_0$				$\propto rac{oldsymbol{q}_0^2}{arepsilon_0 r^5}$	$\propto rac{oldsymbol{q}_0^2 lpha_{oldsymbol{q}_0}}{oldsymbol{arepsilon}_0^2 oldsymbol{r}^{10}}$
$lpha_{q0}$					$\propto rac{st lpha_{q0}^2}{arepsilon_0^3 r^{10}}$

Според класическата електростатика взаимодействието между две поляризуеми частици е нула; две поляризуеми частици обаче си взаимодействат с дисперсионно квантово-електродинамично взаимодействие (като α_{p0}^2 е сума от честотнозависимите стойности на поляризуемостите). Същото важи и за α_{p0} - α_{a0} и α_{a0} - α_{a0} взаимодействията.

Уравнението на състоянието на квадруполяризацията за идеален газ е извеждано нееднократно в различна степен на прецизност [37, 50, 51]. Широка дискусия предизвиква въпросът за следата на тензора Q [37, 51, 52] и дали тя присъства в уравнението на състоянието. Като следата на Q е свързана с т. нар. Бетев потенциал [53] и в тази връзка предизвиква дискусия и относно диполния потенциал на повърхностите [54, 55]. Проблемът за следата на квадруполяризацията ще бъде разгледан и в настоящата дисертация. Уравнението на състоянието на квадруполяризацията е обобщено за течност от Джеон и Ким [37] и от Читанвис [38]. Особено полезна за нашата работа е строгата пертурбационна теория на квадруполяризуемостта на молекулите; работата на тези изследователи ще използваме като тест за валидност в някои гранични случаи на нашия континуален подход.

В литературата за квадруполни среди са изследвани и повърхности с нормален диполен момент [35, 36], но в тези разглеждания често не се прави разлика между пълния повърхностен диполен момент (излишък на диполния момент на повърхността, чиято промяна е измеряема величина с широко приложение при изучаване на монослоеве [9]) и собствения диполен момент на повърхността ("специфично адсорбираните" диполи). Този въпрос също ще бъде изяснен тук.

Задачи на дисертацията:

- 1. Да се формулира обща постановка на макроскопската електростатика на квадруполните среди (т. е. да се формулира квадруполното уравнение на Кулон-Ампер и граничните условия към него).
- 2. Да се формулира уравнение на състоянието за макроскопската квадруполяризация в течност. Да се определи стойността на материалната характеристика в това уравнение на състоянието макроскопската квадруполяризуемост (или квадруполната дължина).
- Демонстрация на резултатите от квадруполната макроскопска електростатика върху няколко интересни задачи от областта на колоидната химия и физикохимията (реакционно поле, кавитационно поле, диполна повърхност и др.).

Предвид, че проблемът е с голяма приложимост, части от него са решавани от различни автори. В частност, квадруполното уравнение на Кулон-Ампер е добре известно – ние, обаче, ще го формулираме по един по-естествен за областта на колоидната химия и физикохимията начин – секция 2.1. Някои от граничните условия за това уравнение са извеждани в литературата – ние формулираме пълния набор в секция 2.3. Уравнението на състоянието за идеален газ е извеждано няколкократно – ние го извеждаме за Онзагерова *течност* в глава 3. Дисертацията ще завърши с един пример, в който квадруполната електростатика дава не само количествено, но и качествено различен резултат за сравнение с уравнението на Поасон – ще посочим пример за междуфазова граница с диполен момент, глава 4.

2. Мултиполни развития

2.1. Извод на квадруполното уравнение на Кулон

В тази секция е представено обобщението на закона на Кулон-Ампер:

(2)
$$\nabla \cdot \boldsymbol{D} = \rho$$

в случай че непрекъснатата среда е изградена от молекули, които притежават квадруполен момент. Тук D е електричното отместване, а ρ е плътността на свободните заряди. Класически се отчитат само диполните моменти на молекулите [34] и тогава:

$$(3) \quad \boldsymbol{D} = \boldsymbol{\varepsilon}_0 \boldsymbol{E} + \boldsymbol{P} \,,$$

където E е електричното поле, ε_0 е диелектричната константа на вакуума, а P е т. нар. електрична поляризация (макроскопска плътност на диполния момент). Обикновено квадруполните моменти на молекулите се пренебрегват, тъй като се счита, че те дават твърде малък принос към D. Това не е така обаче, когато средата е неполярна или слабополярна или когато молекулите на средата имат значителен квадруполен момент.

По дефиниция квадруполният момент на частицата, q_{j0} , е симетричен тензор без следа и бихме могли да го представим и по следния начин:

(4)
$$\boldsymbol{q}_{j0} = \boldsymbol{q}_{j00} - \boldsymbol{U} \frac{\mathrm{Tr} \boldsymbol{q}_{j00}}{3},$$

Като тук \mathbf{q}_{j00} е квадруполният момент на частица със следа (т. нар. *примитивен квадруполен момент* [35]), а Tr \mathbf{q}_{j00} е съответно следата на този квадруполен момент.

Аналогично на поляризацията, P, тензорът на квадруполяризацията, Q, е макроскопската плътност на квадруполния момент. А макроскопската плътност на следата на квадруполния момент означаваме с Tr Q_0 . Така наречения *потенциал на Бете*, ϕ_{Bethe} [53] е свързан с Tr Q_0 по следния начин:

(5)
$$\phi_{\text{Bethe}} = -\frac{1}{6\varepsilon_0} \operatorname{Tr} \boldsymbol{Q}_0(\boldsymbol{r}).$$

Основният принос към $\text{Tr}\mathbf{Q}_0$ и съответно към Бетевия потенциал идва от потенциала на ядрата и потенциала на сферично симетричните електронни облаци около тях. Самият ϕ_{Bethe} е голям като стойност само на разстояния по-малки от радиуса на електронния облак. Следователно Бетевият потенциал е свързан с късодействащите стерични взаимодействия, които също са резултат от електронните облаци около ядрата. За малки частици, които могат да се доближат много до ядрото (като електрони например), ϕ_{Bethe} би оказвал голямо влияние, но това не важи за големите частици [54].

Бетевият потенциал има принос към пълния среден електростатичен потенциал, ϕ_{tot} . За среда с хомогенна плътност и състав ϕ_{Bethe} е константа и не оказва влияние в електричното поле [35]. По тези причини е удобно да работим с разликата:

(6)
$$\phi = \phi_{\text{tot}} - \phi_{\text{Bethe}}$$
.

Понеже Бетевият потенциал е свързан единствено с *квадруполите*, то когато се използва мултиполното разложение до *диполни* членове, ϕ_{Bethe} изобщо не присъства. Тоест в класическата електростатика се спазва уравнението на Поасон (ур. (1)), в което електростатичният потенциал е равен на пълния осреднен потенциал, $\phi = \phi_{tot}$. Тук въвеждаме разликата по ур. (6), за да доближим максимално електростатичния потенциал в квадруполни среди (който съдържа принос от ϕ_{Bethe}) до потенциала, използван до сега в колоидната химия. Допълнително объркване идва от факта, че молекулно динамичните симулации, които включват квадруполи, дават като резултат пълния електростатичен потенциал, съдържащ ϕ_{Bethe} (изт. [61]).

В секция 2.2.1 ще уточним влиянието на Бетевия потенциал и дали той може да се пренебрегне.

При осредняване на локалния електростатичен потенциал, развит в ред с точност до квадруполни членове, получаваме:

(7)
$$\varepsilon_0 \nabla^2 \phi = -\rho(\mathbf{r}) + \nabla \cdot \mathbf{P}(\mathbf{r}) - \frac{1}{2} \nabla \nabla : \mathbf{Q}(\mathbf{r}).$$

Това е основното уравнение на електростатиката на квадруполни среди. То се различава от Поасоновото по два елемента – първо, потенциалът $\phi = \phi_{tot} - \phi_{Bethe}$ (ур. (6)) съдржа явно Бетевия потенциал, и второ, плътността на квадруполния момент **Q** допринася (чрез члена $-1/2\nabla\nabla$:**Q**) към свързаните заряди редом с $\nabla \cdot P$. Като използваме връзката между електричното поле и електростатичния потенциал ($E = -\nabla \phi$), то тогава ур. (7) може да се запише във вид на закона на Кулон-Ампер, $\nabla \cdot \mathbf{D} = \rho$ (ур. (2)), където:

(8)
$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P} - \frac{1}{2} \nabla \cdot \boldsymbol{Q}$$

е векторът на електричното отместване за диполно-квадруполни среди. Нека още веднъж подчертаем, че в тази формулировка полето E не е средното поле E_{tot} , защото изключва приносът от $-\nabla \phi_{Bethe}$.

Изразите (7) и (8) са резултатът от мултиполното развитие до квадруполни членове, представено в дисертацията. В тях няма други допускания, освен това, че макроскопската среда може да се опише с точност до отчитане на квадруполите в нея. Квадруполното разложение надгражда уравнението на Поасон и като цяло е по-добро приближение от мултиполното разложение до диполни членове.

2.2. Уравнения на състоянието за P, Q и ϕ_{Bethe} за идеален газ

За да разполагаме с пълна система уравнения, са ни необходими уравнения на състоянието (как Бетевият потенциал, ϕ_{Bethe} , поляризацията, **P**, И квадруполяризацитята, **Q**, ca свързани с електричното поле и други термодинамични променливи), [34, 60]. В първата подсекция изследваме влиянието на Бетевия потенциал, ϕ_{Bethe} , върху средната плътност на диполните моменти, P. А във втората част получаваме уравнението на състоянието за $\boldsymbol{Q} \propto \nabla E$ (допускайки независимост на \boldsymbol{Q} от ϕ_{Bethe}).

2.2.1. Роля на Бетевия потенциал в уравненията на състоянието

За разлика от уравнението на Поасон (ур. (1)) квадруполното уравнение на електростатиката (ур. (7)) съдържа потенциала на Бете (ур. (5)) през ур. (6).

Бетевият потенциал, ϕ_{Bethe} , (ур. (5)) се дължи преди всичко на структурата на електронния облак около ядрата на атомите [53, 62] – сферично симетричният електронен облак създава разпределение на потенциала, което допринася към

средния макроскопски потенциал ϕ_{tot} . Електронният облак няма никакъв принос към дългодействащите електростатични взаимодействия, но все пак е свързан с така нареченото ван дер Ваалсово стерично отблъскване – не позволява на два атома да се доближат под определено разстояние. Така че ϕ_{Bethe} носи информация за тази структура на електронния облак и за стеричното отблъскване.

Както отбелязват Селнър и Катман [62], една малка част от този Бетев потенциал излиза извън ван дер Ваалсовия диаметър на атома. Поради това проникване на ϕ_{Bethe} извън атома, ние нямаме право напълно да го изключваме от уравнението на състоянието на **P** и **Q**. Действителният потенциал, "достъпен" за частиците в непрекъснатата среда, може да се представи полуемпирично по следния начин:

(9)
$$\phi_{\rm a} = \phi + \xi \phi_{\rm Bethe}$$
,

където ξ е малка величина и отчита частта от Бетевия потенциал ($0 < \xi < 1$), която прониква навън от ван дер Ваалсовата сфера около атома. За газ от водородни атоми, в дисертацията оценяваме, че $\xi \approx 0.004$, следваща от формулата за електронна плътност около протона [63]. Тъй като водородният атом е най-малък по размер, то разстоянието между всеки две други частици ще е по-голямо и по тази причина е вероятно ξ за тези честици да е по-малко.

Полето, съответстващо на потенциала ϕ_a , получаваме с директно диференциране на ур. (9):

(10) $\boldsymbol{E}_{a} = \boldsymbol{E} + \boldsymbol{\xi} \boldsymbol{E}_{Bethe}$.

За достатъчно разреден газ поляризацията в непрекъсната среда може да се изрази като:

(11)
$$\boldsymbol{P} = C \boldsymbol{\overline{p}}$$
.

или в конкретния случай:

(12) $\boldsymbol{P} = C \boldsymbol{\overline{p}} = C \alpha_p (\boldsymbol{E} + \boldsymbol{\xi} \boldsymbol{E}_{\text{Bethe}}).$

Бетевият потенциал съдържа в себе си макроскопската плътност на следата на квадруполния момент, $Tr Q_0$ (ур. (5)):

$$\phi_{\text{Bethe}} = -\frac{1}{6\varepsilon_0} \text{Tr} \boldsymbol{Q}_0(\boldsymbol{r}).$$

Понеже атомите имат една и съща следа, която означаваме с Tr**q**₀₀, то тогава:

(13)
$$\operatorname{Tr} \boldsymbol{Q}_0 = C \operatorname{Tr} \boldsymbol{q}_{00}$$
,

От тук следва, че в разгледания случай ще има Бетево поле само ако средата е нехомогенна:

(14)
$$\boldsymbol{E}_{\text{Bethe}} = -\nabla \phi_{\text{Bethe}} = \frac{\text{Tr} \boldsymbol{q}_{00}}{6\varepsilon_0} \nabla C$$

Като заместим E_{Bethe} в израза за поляризацията ур. (12), се получава:

(15)
$$\boldsymbol{P} = C\alpha_p \boldsymbol{E} + \boldsymbol{\xi} C\alpha_p \frac{\mathrm{Ir} \boldsymbol{q}_{00}}{6\varepsilon_0} \nabla C.$$

Следователно, ако в средата има градиент на концентрацията, то поляризацията, P, ще зависи от следата на квадруполния момент на молекулите. Или с други думи, Бетевият потенциал води до концентрационна поляризация на средата (виж например изт. [61], където е показано, че скокът на потенциала през повърхност се дължи на ϕ_{Bethe}).

В разглежданията по-долу във всички случаи ще допускаме, че ξ е пренебрежимо малко и съответно поляризацията, P, и квадруполяризацията, Q, зависят единствено от полето $E = E_{tot} - E_{Bethe}$.

2.2.2. Газ с произволен диполен и квадруполен момент

Тази секция от дисертацията е посветена на обобщение на уравненията на състоянието за линейна хомогенна среда (*идеален газ*), в която молекулите притежават освен диполен и квадруполен момент [37, 64].

Аналогично на уравнението за поляризацията, $P = C\bar{p}$, плътността на квадруполния момент е *C* пъти средния квадруполен момент на молекулите, \bar{q} :

(16)
$$\mathbf{Q} = C \overline{\mathbf{q}}$$
.

Следователно търсим средния диполен и квадруполен момент на молекулите в газовата фаза, поставена във външно поле и градиент на полето, т.е. търсим \bar{p} и \bar{q} . За \bar{p} , следвайки извода на Дебай [65], получаваме:

(17)
$$\bar{\boldsymbol{p}} = \alpha_p \boldsymbol{E}$$
,

където α_p е общата поляризуемост на една молекула, която е равна на:

(18)
$$\alpha_p = \alpha_{p0} + \frac{\boldsymbol{p}_0 \cdot \boldsymbol{p}_0}{3k_{\rm B}T}.$$

Заместваме ур. (17) в ур. (11) и получаваме уравнението на състоянието на поляризацията за газова фаза:

(19)
$$\boldsymbol{P} = C \alpha_p \boldsymbol{E} = \alpha_p \boldsymbol{E}$$
.

Тук $\alpha_p = C \alpha_p$ е макроскопската поляризуемост на газа.

Аналогично извеждаме средния квадруполен момент във външни E и ∇E :

(20)
$$\bar{\boldsymbol{q}} = \frac{\boldsymbol{q}_0 : \boldsymbol{q}_0}{10k_{\rm B}T} \bigg(\nabla \boldsymbol{E} - \frac{\nabla \cdot \boldsymbol{E}}{3} \mathbf{U} \bigg),$$

като $q_0: q_0$ е двойно скаларно произведение на тензорите на собствения квадруполен момент (*без следа*). Този резултат е изведен от Джеон и Ким [37]. От ур. (20) следва, че полето, E, не индуцира квадруполен момент (въпреки че E присъства в електричната енергия, u_{el}). Ако отчетем и индуцирания квадруполен момент на молекула под действие на градиента на полето, то:

(21)
$$\bar{\boldsymbol{q}} = \alpha_q \left(\nabla \boldsymbol{E} - \frac{\nabla \cdot \boldsymbol{E}}{3} \boldsymbol{\mathsf{U}} \right),$$

където α_q е общата квадруполяризуемост на молекула, чиято собствена квадруполяризуемост е α_{q0} и двете са свързани по следния начин:

(22)
$$\alpha_q = \alpha_{q0} + \frac{\boldsymbol{q}_0 : \boldsymbol{q}_0}{10k_{\rm B}T}$$

Първият член в този израз идва от приноса на индуцирания квадруполен момент, а вторият член е в резултат на средната ориентация на квадруполите. Като заместим ур. (21) в ур. (16) получаваме, че плътността на квадруполния момент на непрекъснатата среда, \boldsymbol{Q} , е пропорционална на градиента на полето, $\nabla \boldsymbol{E}$, с коефициент на пропорционалност макроскопската квадруполяризуемост на средата, $\alpha_{Q} = C \alpha_{q}$:

(23)
$$\mathbf{Q} = C\overline{\mathbf{q}} = C\alpha_q \left(\nabla E - \frac{\nabla \cdot E}{3}\mathbf{U}\right) = \alpha_Q \left(\nabla E - \frac{\nabla \cdot E}{3}\mathbf{U}\right).$$

Уравненията на състоянието за поляризацията и квадруполяризацията (ур. (19) и ур. (23)), които свързват P и Q с вектора на електричното поле, заедно с уравненията на Максуел (ур. (2) и $\nabla \times E = 0$) образуват затворена система уравнения. За да получим зависимостта на вектора на електричната индукция от полето, E, заместваме ур. (19) и ур. (23) в ур. (8):

(24)
$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \alpha_P \boldsymbol{E} - \frac{\alpha_Q}{3} \nabla (\nabla \cdot \boldsymbol{E}) = \varepsilon \boldsymbol{E} - \varepsilon L_Q^2 \nabla (\nabla \cdot \boldsymbol{E});$$

Тук сме използвали, че $\nabla \cdot \mathbf{Q} = 2/3 \alpha_Q \nabla (\nabla \cdot \mathbf{E})$, което е директно следствие от $\nabla \times \mathbf{E} = 0$. Въвели сме също така два параметъра, които приемаме за константи: диелекричната проницаемост на средата

(25)
$$\varepsilon = \varepsilon_0 + \alpha_p \qquad \Rightarrow \alpha_p = C\alpha_p = \varepsilon - \varepsilon_0$$

и новия параметър, който отчита присъствието на квадруполи в средата и който ще наричаме *квадруполна дължина*:

(26)
$$L_Q^2 = \frac{\alpha_Q}{3\varepsilon} \implies \alpha_Q = C\alpha_q = 3\varepsilon L_Q^2.$$

Квадруполната дължина е много аналогична на Дебаевата дължина, която е например $L_D^2 = \varepsilon k_B T/2 C_{el} e^2$ (примерът е за 1:1 електролит с концентрация C_{el}). Дължината на Дебай е корен от "диполната сила" ε , разделена на корен от йонната сила. Както йонната сила е пропорционална на концентрация на йоните по заряда на квадрат ($\propto C_{el}e^2$), така и диполната сила е приблизително пропорционална на концентрацията на диполите, умножена по диполения момент на молекулите, повдигнат "на квадрат" ($\propto Cp_0 \cdot p_0$), което дава диелектричната константа (виж ур. (18),(19) и (25)). По аналогичен начин, както се вижда от ур. (26), квадратът на квадруполната дължина е пропорционален на квадруполната сила ($\alpha_Q \propto Cq_0: q_0$, виж ур. (22) и (23)), разделена на диполната сила ($\varepsilon \propto Cp_0 \cdot p_0$). Аналогията между Дебаева и квадруполна дължина ще бъде доразвита в секция 4.2.1 (вж. Таблица 3). За да получим обобщението на уравнението на Поасон за квадруполна среда, заместваме вектора D от ур. (24) в уравнението на Максуел (ур. (2)):

(27)
$$\nabla^2 \phi - L_Q^2 \nabla^4 \phi = -\rho / \varepsilon$$
.

Това уравнение лежи в основата на по-нататъшните ни разглеждания. Прилагаме го към някои базови електростатични задачи и го използваме при извода на уравненията на състоянието за **P** и **Q** за течност (в секция 3.2). Както се вижда от ур. (26), колкото по-полярна е средата (колкото по-голяма е нейната диелектрична константа), толкова по-малък ще е вторият член в ур. (27), отчитащ квадруполите. Ако положим в ур. (27) $L_Q = 0$, то се свежда до класическото уравнение на Поасон (ур. (1)), $\nabla^2 \phi = -\rho/\varepsilon$. Уравнение (27) е от четвърти ред и за него са необходими четири гранични условия, които ще бъдат представени в следващата секция 2.3.

2.3. Гранични условия върху плоска повърхност

В автореферата се ограничаваме до случая на плоска повърхност със собствен повърхностен заряд ρ^{S} и диполен момент P^{S} . Подробният извод на граничните условия е представен в дисертацията.

Разглеждаме две фази, разделени от плоска гранична повърхност при z = 0. Горната фаза, при z > 0, отбелязваме с горен десен индекс "+", а долната фаза, при z < 0, с индекс "–". Векторите на електричното отместване в горната и долната фаза съответно са:

(28)
$$\boldsymbol{D}^{+} = \varepsilon_0 \boldsymbol{E}^{+} + \boldsymbol{P}^{+} - \frac{1}{2} \nabla \cdot \boldsymbol{Q}^{+}; \qquad \boldsymbol{D}^{-} = \varepsilon_0 \boldsymbol{E}^{-} + \boldsymbol{P}^{-} - \frac{1}{2} \nabla \cdot \boldsymbol{Q}^{-},$$

а електричното отместване на повърхността е:

(29)
$$\boldsymbol{D}^{\mathrm{S}} = \boldsymbol{P}^{\mathrm{S}} - \frac{1}{2} \left(\boldsymbol{Q}^{\mathrm{+}} \cdot \boldsymbol{e}_{z} - \boldsymbol{Q}^{\mathrm{-}} \cdot \boldsymbol{e}_{z} \right).$$

Тук с E^{\pm} , P^{\pm} и Q^{\pm} са означени съответно полето, поляризацията и квадруполяризацията в горната и долната фаза.

Първите две от граничните условия на повърхността са [48]:

$$(30) \quad D_z^+ - D_z^- + \nabla^{\mathrm{S}} \cdot \boldsymbol{D}^{\mathrm{S}} = \rho^{\mathrm{S}}.$$

(31)
$$D_z^s = 0$$
.

Като използваме уравнение (29) за повърхностното диелектрично отместване, за второто гранично условие се получава [48]:

(32)
$$\mathbf{Q}_{_{77}}^+ - \mathbf{Q}_{_{77}}^- = 2P_{_{7}}^{\mathrm{S}}$$
.

Тоест скокът на нормалната на повърхността компонента на квадруполяризацията е свързан с нормалната компонента повърхностната плътност на диполния момент. Това условие е изведено за първи път от Батъйгин и Топтъйгин [36] и Греъм и Рааб [45]. Уравнение (30) в комбинация с ур. (28) и (29) обобщава това на Иванов и

Радоев [68] към квадруполни среди (Иванов и Радоев отчитат само повърхностната поляризация, P^{S} , в израза за D^{S}).

Частното диференциално уравнение (27) е от четвърти ред, следователно са ни необходими още две гранични условия. Класическото условие за непрекъснатост на потенциала върху граничната повърхност се запазва и тук:

(33) $\phi^+ = \phi^- = \phi^{\rm S}$.

Квадруполното уравнение на Кулон-Ампер е от четвърти ред и от общи съображения можем да напишем условие за непрекъснатост на електричното поле (тоест освен тангенциалните компоненти, както е в диполна среда, в квадруполна среда нормалната компонента на полето също е непрекъсната):

(34)
$$E^+ = E^- = E^{S}$$
.

В уравнения (33) и (34) с ϕ^{S} и E^{S} сме означили съответно стойността на потенциала и на електричното поле на повърхността. Валидността на ур. (34) е показана в изт. [47] от съображения за симетрия за частните случаи на заредена повърхност и безкрайно тънък кондензатор в хомогенна среда. Като условието за непрекъснатост на електричното поле важи само за граница между две квадруполни среди. За граница между квадруполна среда и вакуум четвъртото гранично условие не е необходимо и полето е прекъснато на повърхността [48].

2.4. Тензор на Максуел

Този раздел от дисертацията обобщава класическата формула на Хелмхолц за тензора на Максуел, T_{el} , за среда с квадруполи в нея [48]. При извода, приведен в дисертацията, стриктно се ръководим от подхода на Там [69].

Крайният резултат за плътността на електричните сили е [48]:

(35)
$$f_{\rm el} = \rho \boldsymbol{E} - \frac{1}{2} \boldsymbol{E}^2 \nabla \boldsymbol{\varepsilon} - \frac{1}{4} \left(\nabla \boldsymbol{E} : \nabla \boldsymbol{E} - \frac{\left(\nabla \cdot \boldsymbol{E} \right)^2}{3} \right) \nabla \boldsymbol{\alpha}_{\rm Q} + \frac{1}{2} \nabla \left(\boldsymbol{E}^2 \boldsymbol{C} \frac{\partial \boldsymbol{\varepsilon}}{\partial \boldsymbol{C}} \right) + \frac{1}{4} \nabla \left[\left(\nabla \boldsymbol{E} : \nabla \boldsymbol{E} - \frac{\left(\nabla \cdot \boldsymbol{E} \right)^2}{3} \right) \boldsymbol{C} \frac{\partial \boldsymbol{\alpha}_{\rm Q}}{\partial \boldsymbol{C}} \right].$$

Първият член ρE в този израз е т. нар. Кулонова сила, която присъства и във вакуум. Вторият и третият член в ур. (35) (пропорционални на $-\nabla \varepsilon$ и $-\nabla \alpha_Q$) са съответно силата на изображение в диполна и квадруполна среда. Тези сили се проявяват в близост до нехомогенности в средата. Пример за това са междуфазовите граници, да кажем диелектрик|газ, където диелектричната константа се изменя от ε в диелектрика до приблизително ε_0 в газовата фаза, а квадруполната дължина от L_Q до близо 0 (съответно и α_Q се променя). Следователно от ур. (35) можем да си направим извода, че на заряд, поставен до такава граница, ще му действа не само сила на изображение насочена към по-

голямата обемна ε , но и допълнителна сила, идваща от квадруполите в средата в посока на по-голямата квадруполяризуемост α_Q (може да се покаже, че коефициентът пред $-\nabla \alpha_Q$ е положителен). Последните два члена в ур. (35) са диполната и квадруполната електрострикция, които се проявяват при разширение/свиване на средата или съответно при промяна на външното електрично поле и градиент на полето. Квадруполният член (който съдържа $C\partial \alpha_Q/\partial C$) би бил от значение при флексоелектрични явления в наноразмерни диелектрици [46] и мемрани [71]. В случай че α_Q и ∇E са пренебрежими, то изразът за пондеромоторната сила се свежда до класическата формула на Хелмхолц [60, 69].

Електричната сила $f_{\rm el}$, която действа на даден обем, може да се представи като тензор на напреженията, $T_{\rm el}$, действащ на повърхността на този обем. От условието за запазване на равнодействащата сила следва, че връзката между $f_{\rm el}$ и $T_{\rm el}$ е [69]: (36) $f_{\rm el} = \nabla \cdot T_{\rm el}$.

Тензорът на Максуел, T_{el} , в това уравнение е [48]:

(37)
$$\mathbf{T}_{el} = \varepsilon \mathbf{E} \mathbf{D} + \frac{1}{2} \mathbf{Q} \cdot \nabla \mathbf{E}$$

$$- \left[\frac{1}{2} \left(\varepsilon - C \frac{\partial \varepsilon}{\partial C} \right) \mathbf{E}^2 + \frac{1}{4} \left(\alpha_Q - C \frac{\partial \alpha_Q}{\partial C} \right) \left(\nabla \mathbf{E} : \nabla \mathbf{E} - \frac{\left(\nabla \cdot \mathbf{E} \right)^2}{3} \right) \right] \mathbf{U}.$$

Ако положим тук $\alpha_Q = 0$, то T_{el} се свежда до класическия резултат за поляризуеми диелектрици без квадруполи [69]. Полученият тензор е симетричен, понеже Q е също симетричен тензор. Квадруполните членове в T_{el} съответстват на тензора $\tau_{ijm,m}^{M}$ на Шен и Ху [46] (вижте също [72]). Ние ще използваме този резултат, за да пресметнем механичното междуфазово напрежение в секция 4.2.3.

3. Теория на квадруполните течности

3.1. Йон в квадруполна течност. Борнова енергия

Първият кавитационен модел, който разглеждаме, е взаимодействие на йон със среда. Ако средата е изградена от поляризуеми молекули с диполен момент (отчетени през ε), тогава това е класическата задача за Борнова енергия, w_{Born} – енергия за образуване на йон в тази непрекъсната среда [60, 1]. Целта е да обобщим задачата за Борновата енергия за квадруполни среди, т. е. да отчетем и квадруполите в средата и тяхната квадруполяризуемост [64] (свързани с L_Q). Тази задача е решавана от Джеон и Ким [37] и от Читанвис [38]. Нашият резултат [64] се различава от техния, защото ползваме различно уравнение на състоянието за квадруполяризацията (ур. (23)) и различни гранични условия (ур. (30), (32)-(34)).

Нека имаме точков заряд $e_i = eZ_i$ (*e* е елементарният електричен заряд, Z_i е неговият заряд), поставен в центъра на празна сфера с радиус R_{cav} . Извън сферата, $r > R_{cav}$, е непрекъснатата среда, която се характеризира с диелектрична константа ε и квадруполна дължина L_Q , а плътността на заряда е $\rho = 0$. Вътре в сферата, $r < R_{cav}$, е вакуум, $\varepsilon = \varepsilon_0$, и има само един точков заряд $\rho = e_i \delta(\mathbf{r})$ (отбелязваме величините с горен индекс "+" и "–" съответно извън и вътре в сферата). Тъй като задачата е сферичносиметрична, потенциалът зависи само от разстоянието r и, като решим квадруполното уравнение на електростатиката (ур. (27)), получаваме за потенциала, ϕ^- , вътре в кухината, $r > R_{cav}$:

(38)
$$\phi^{-} = \frac{e_i}{4\pi\varepsilon_0} \frac{1}{r} - \frac{e_i}{4\pi R_{cav}} \times \left(\frac{1}{\varepsilon_0} - \frac{f_e}{\varepsilon}\right),$$

а потенциалът, ϕ^+ , извън кухината, $r > R_{cav}$, е:

(39)
$$\phi^{+} = \frac{e_{i}}{4\pi\varepsilon} \frac{1}{r} \times \left[1 - \frac{3L_{Q}^{2} e^{-(r-R_{cav})/L_{Q}}}{R_{cav}^{2} \left(1 + 3L_{Q}/R_{cav} + 3L_{Q}^{2}/R_{cav}^{2}\right)} \right]$$

В ур. (38) символът *f*_e стои за израза:

(40)
$$f_e = \frac{1+3x}{1+3x+3x^2}$$

където *х* е отношението:

$$(41) \quad x = \frac{L_{\rm Q}}{R_{\rm cav}} \,.$$

Графиката на тази функция $f_e(L_Q/R_{cav})$ е представена на **Фиг. 1**.

От получените изрази за потенциала може да се изведе енергията на пренос на йон от вакуум в непрекъснатата среда (Борновата енергия):

(42)
$$\Delta \mu_{\text{Born}} = w_{\text{Born}} - w_0 = -\frac{e_i^2}{8\pi R_{\text{cav}}} \times \left(\frac{1}{\varepsilon_0} - \frac{f_e}{\varepsilon}\right),$$

като тази енергия винаги е отрицателна, тъй като йонът е в по-ниско енергетично състояние в непрекъснатата среда. Ако положим $L_Q = 0$ в израза за f_e (ур. (40)) получаваме класическата енергия за пренос.

При отчитане на квадруполите енергията за пренос се повишава. Това се дължи на по-ниската енергия на йон в диполно-квадруполна среда, поради допълнителното взаимодействие между йона и квадруполите от средата. Ефектът е по-забележим при по-слабо полярните течности (такива с по-ниско ε), които са изградени от молекули без диполен момент и могат да придобият такъв само ако се поляризират. Можем да сравним ур. (42) с решението на Джеон и Ким [37], според които потенциалът не бива да осцилира; или с резултата на Читанвис [38, *ур. 3.1*], който налага различно от нашето гранично условие (производната на полето dE_r/dr на границата $r = R_{cav}$ да е непрекъсната). Една основателна критика към решението на Читанвис, посочена от Матюшов и Вот [56], е, че при наличие на квадруполи в средата енергията на заряда трябва да стане по-отрицателна поради допълнителната възможност за ориентация на квадруполите от средата в полето на йона – което не е изпълнено при резултата на Читанвис. Нашият резултат е в съгласие с това изискване. Освен това ур. (42), изведено от континуалния ни модел, както е показано в изт. [49], в граничния случай на чисто квадруполен разреден газ съвпада с резултата от пертурбационната молекулно-статистическа теория на Милищук и Матюшов [57] за взаимодействието йон-квадруполна среда (в граничния случай на среда-континуум).

Фиг. 1 Функцията $f_e(L_Q/R_{cav})$ (ур. (40)), която присъства в ур. (38) и в Борновата енергия (ур. (42)). При малки квадруполни дължини $f_e \rightarrow 1$, докато при големи L_Q или еквивалентно при малки йони $(R_{cav} \ll L_Q) f_e$ е сравнително по-ниско от единица (квадруполите оказват по-голям ефект).

Бихме могли да намерим и потенциал на *точков заряд* в квадруполна среда, като вземем границата на израза (39) при $R_{cav} \rightarrow 0$:

(43)
$$\phi = \frac{e_i}{4\pi\varepsilon} \frac{1 - \mathrm{e}^{-r/L_{\mathrm{Q}}}}{r} \,.$$

Този потенциал има крайна стойност дори в точката r = 0 и стойността му в тази точка е $\phi_0 = e_i/4\pi \varepsilon L_Q$ (този израз клони към безкрайност при $L_Q \rightarrow 0$). Следователно, отчитането на квадруполите в средата премахва нефизическата разходимост на потенциала на точков заряд и това всъщност довежда и до крайна стойност на собствената енергия на заряда:

(44)
$$u_{e0} = \frac{1}{2} e_i \phi_0 = \frac{e_i^2}{8\pi \varepsilon L_Q}$$

Потенциалът ϕ (ур. (43)) е представен на **Фиг. 2а**, като е сравнен с класическия потенциал на точков заряд. Стойността на потенциала при $r \to 0$ за вода при T = 298 K, $e_i = +e$, $\varepsilon = 78 \times \varepsilon_0$ и $L_Q = 2$ Å [64, 73] е $\phi_0 = 92$ mV, а собствената енергия е $u_{e0} = 3.6 \times k_{\rm B}T$. Уравнение (43) е много подобно на *ур. 2.8* на Читанвис [38] (но при него връзката между L_Q и α_Q е различна). Джеон и Ким [37, *ур. 2.48*] получават разходим потенциал при $r \to 0$, но те по начало използват различно уравнение на състоянието за **Q**, а също така налагат различни гранични условия.

Фиг. 2 Електростатичен потенциал на а) точков заряд (ур. (43)); б) точков дипол, $|\mathbf{p}| = 2.8 \text{ D} = 9.34 \times 10^{-30} \text{ Cm}$ (ур. (45)); и в) точков квадрупол, $|\mathbf{q}| = (\mathbf{q}_0; \mathbf{q}_0)^{1/2} = 9.06 \times 10^{-40} \text{ Cm}^2$ изт. [74] (ур. (46)) в квадруполна среда (вода, $\varepsilon = 78 \times \varepsilon_0$, $L_Q = 2$ Å) като функция на разстоянието, r [Å], от точковия заряд/дипол/квадрупол. Синята крива е квадуполното решение, $L_Q = 2$ Å, а червената пунктирана крива е класическото решение ($L_Q = 0$).

Като използваме ур. (43) като Грийнова функция можем да намерим *потенциал на точков дипол*:

(45)
$$\phi_p = -\frac{\boldsymbol{p} \cdot \nabla \phi}{e_i} = \frac{\boldsymbol{p} \cdot \boldsymbol{r}}{4\pi\varepsilon r^3} \left[1 - \left(1 + \frac{r}{L_Q}\right) e^{-r/L_Q} \right]$$

и потенциал на точков квадрупол в квадруполна среда:

(46)
$$\phi_q = \frac{\boldsymbol{q}: \nabla \nabla \phi}{e_i} = \frac{3\boldsymbol{r} \cdot \boldsymbol{q} \cdot \boldsymbol{r}}{8\pi\varepsilon r^5} \left[1 - \left(1 + \frac{r}{L_Q} + \frac{1}{3} \frac{r^2}{L_Q^2} \right) e^{-r/L_Q} \right].$$

Тези два потенциала, ур. (45) и ур. (46) (за вода) са представени на **Фиг. 26** и **Фиг. 2в** съответно, сравнени с класическите потенциали на точков дипол и точков квадрупол в диполна среда. Използван е диполният момент на молекула вода в течна фаза, $|\boldsymbol{p}| = 2.8 \text{ D} = 9.34 \times 10^{-30} \text{ Cm}$, и осреднен квадруполен момент, $|\boldsymbol{q}| = (\boldsymbol{q}_0:\boldsymbol{q}_0)^{1/2} = 9.06 \times 10^{-40} \text{ Cm}^2$, за течна вода (данни, взети от изт. [74]).

Накрая нека сумираме изводите за точкови източници в квадруполен диелектрик. Потенциалът на точков заряд в диполна среда има разходимост 1/r при $r \rightarrow 0$, докато в квадруполна среда тази разходимост изчезва (ур. (43)), което довежда до крайна собствена енергия на точков заряд (ур. (44)). Не само потенциалът на заряда е краен, но и електричното поле приема крайна стойност при r = 0. Потенциал на точков дипол има $1/r^2$ разходимост при $r \rightarrow 0$ в диполна среда, докато в квадруполна среда потенциалът ϕ_p има крайна стойност (ур. (45)) в позицията на дипола (но електричното поле на дипол в квадруполна среда е разходимо). Потенциалът на точков квадрупол затихва като $1/r^3$ в диполна среда и като 1/r в квадруполна среда при $r \rightarrow 0$ (ур. (46)).

3.2. Дипол и квадрупол в кавитация в квадруполна течност. Онзагерово реакционно поле и уравнения на състоянието за *P* и *Q* на течност

В линейни хомогенни течности уравнението на състоянието за поляризацията се запазва формално в същия вид като за газ – поляризацията е пропорционална на полето [34, 59, 60, 65, 70]:

(47)
$$\boldsymbol{P} = \boldsymbol{\alpha}_{P} \boldsymbol{E}$$
.

Но за разлика от газ, локалното електрично поле, E_{loc} , което действа на една молекула, е резултат както от външното електрично поле, така и от полето, създавано от останалите молекули в средата. Резултатът от това е, че макроскопската поляризуемост, α_P , не е така просто свързана с характеристиките на молекулите, изграждащи непрекъснатата среда, както е в газова фаза (ур. (18)).

Най-простият модел за течности е този на Клаузиус-Мосоти [75, 76, 65], според който молекула (със собствена поляризуемост, α_{p0} , и диполен момент, p_0) е поставена в сфера с диелектрична проницаемост ε_0 , а полето, което създават молекулите извън сферата, е с *равномерна константна поляризация*. По модела на Клаузиус-Мосоти диелектричната константа на средата (респективно α_P , ур. (25)) и молекулните характеристики са свързани по следния начин [75, 76, 65]:

(48)
$$\frac{\varepsilon - \varepsilon_0}{\varepsilon + 2\varepsilon_0} = \frac{C}{3\varepsilon_0} \left(\alpha_{p0} + \frac{\boldsymbol{p}_0 \cdot \boldsymbol{p}_0}{3k_{\rm B}T} \right).$$

Като пример ще посочим бензен, който е течност с плътност $\rho = 873.7 \text{ kg/m}^3$ при температура 25 °C и налягане 10⁵ Ра [77]. Диполният момент на бензеновата молекула е нула, $p_0 = 0$, а нейната поляризуемост е $\alpha_{p0}/4\pi\varepsilon_0 = 10.25$ Å³ (взета е средно аритметичната стойност от изт. [78] и [1]). Като заместим тези стойности в ур. (48) за диелектричната константа получаваме $\varepsilon = 2.221 \times \varepsilon_0$ ($C = \rho/m$, където m е масата на молекула бензен). За сравнение експериментално измерената стойност при тези условия е $\varepsilon = 2.274 \times \varepsilon_0$ [79]. А ако се опитаме да изчислим диелектричната константа на бензена от формулата за газ (ур. (18) и (25), но с плътност като за течност 873.7 kg/m³), получаваме доста по-занижена стойност $\varepsilon = 1.868 \times \varepsilon_0$. Логично е да предположим, че подобно отклонение ще се наблюдава и за квадруполяризуемостта, α_Q , и съответно и за квадруполната дължина, L_Q . Модел от типа на Клаузиус-Мосоти обаче не позволява да ce пресметне квадруполяризуемостта на течност. От модел с молекула в кавитация в равномерно квадруполяризуема среда, както е показано в дисертацията, се получава квадруполяризуемост на средата, α_Q , точно равна на тази на идеален газ. Това е парадоксален резултат, който бива разрешен в по-реалистичния модел на Онзагер.

3.2.1. Реакционно и кавитационно поле в квадруполяризуема среда

Онзагер [4] посочва, че допускането за постоянна поляризация на средата около кавитацията в модела на Клаузиус-Мосоти не отразява правилно корелацията

между ориентацията на близките съседи в течността. Онзагер отчита въздействието на централната молукула върху заобикалящата я среда, като решава електростатичната задача и намира локалната поляризация на средата (която е различна от средната) и полето, което действа на централната молекула, отчитащо този корелационен, по същество, ефект. Моделът на Онзагер е следният: поставя непрекъснатата среда във външно електрично поле, E, като самата среда се характеризира с нейната диелектрична константа ε ; избира една молекула от средата със собствен диполен момент p_0 (и поляризуемост α_{p0}), която се намира в центъра на кухина (кавитация) с радиус R_{cav} и диелектричната константа в кухината е равна на тази на вакуума, ε_0 . Локалното електрично поле индуцира допълнителен диполен момент у молекулата, така че пълният ѝ диполен момент е:

 $(49) \quad \boldsymbol{p} = \boldsymbol{p}_0 + \boldsymbol{\alpha}_{p0} \boldsymbol{E}_{\text{loc}}.$

По модела на Онзагер E_{loc} е сума от т. нар. *реакционно*, E_{react} , и *кавитационно поле*, E_{cav} :

(50)
$$\boldsymbol{E}_{\text{loc}} = \boldsymbol{E}_{\text{react}} + \boldsymbol{E}_{\text{cav}}$$
.

Реакционното поле показва как средата реагира на дипол с диполен момент p. Виж **Фиг. За**, като тук средата се приема за изградена само от поляризуеми диполи, които присъстват чрез диелектричната константа. Диполът създава поле, което ориентира по определен начин диполите в средата (поляризира средата, но, за разлика от модела на Клаузиус-Мосоти, тук поляризацията не е константа). Така поляризираната среда създава реакционно поле в позицията на дипола:

(51)
$$\boldsymbol{E}_{\text{react},0} = \boldsymbol{X}_{p,0} \boldsymbol{p}; \qquad \boldsymbol{X}_{p,0} = \frac{1}{2\pi\varepsilon_0 R_{\text{cav}}^3} \frac{\varepsilon - \varepsilon_0}{2\varepsilon + \varepsilon_0}.$$

Вижда се, че реакционното поле е пропорционално на диполния момент, който го създава (индексът "O" е съкращение от "Oнзагер"). Външното електрично поле, E, също поляризира непрекъснатата среда и то нехомогенно, поради наличието на кавитация (**Фиг. 36**, като тук е отчетено само ε). Кавитационното поле показва какво поле създава поляризираната от E среда в центъра на кухината и съответно E_{cav} е пропорционално на E:

(52)
$$\boldsymbol{E}_{\text{cav},0} = \boldsymbol{Y}_{E,0}\boldsymbol{E}; \qquad \boldsymbol{Y}_{E,0} = \frac{3\varepsilon}{2\varepsilon + \varepsilon_0}$$

Аналогично на ур. (47) за линейни среди по отношение на градиента на полето допускаме, че уравнението на състоянието за квадруполяризацията формално се запазва:

(53)
$$\mathbf{Q} = \alpha_{Q} \left(\nabla E - \frac{\nabla \cdot E}{3} \mathbf{U} \right).$$

Но зависимостта тук между макроскопската квадруполяризуемост *на течност*, α_Q , и молекулните характеристики (собствена квадруполяризуемост, α_{q0} , и квадруполен момент, \boldsymbol{q}_0) е друга.

Целта е да обобщим модела на Онзагер за среди, в които се отчита и квадруполния момент и квадруполяризуемостта на молекулите [49]. Тоест непрекъснатата среда се характеризира не само с нейната диелектрична константа, ε , но и с квадруполната ѝ дължина, L_Q . За целта поставяме молекула с диполен момент p и квадруполен момент q в кухина с радиус R_{cav} и на цялата система действаме с външно поле и градиент на полето. Следваме подхода на Онзагер [4], като в случая решаваме квадруполния аналог на уравнението на Поасон (ур. (27)).

Фиг. 3 а) Дипол в кухина ($\varepsilon = \varepsilon_0$) с радиус R_{cav} ; **б)** Кухина, поставена във външно електрично поле, *E*. В непрекъснатата среда е отчетено присъствието на диполите през диелектричната константа, ε , а присъствието на квадруполяризуеми молекули се отчита през квадруполната дължина, L_Q .

Тъй като цялата постановка на задачата е за линейни среди и съответно важи принципът за адитивността на потенциалите, то можем да я разделим на четири подзадачи: **a**) дипол в кухина (кавитация) в диполно-квадруполна среда; **б**) кухина поставена във външно електрично поле; **в**) квадрупол в кухина и г) кухина във външен градиент на полето. Всеки от резултатите **a**)-г) има, сам по себе си, приложение значително надхвърлящо конкретно разгледаната в дисертацията теория на квадруполните течности.

а) Започваме с подзадачата за реакционното поле на дипол в квадруполна среда, т. е. дипол в празна сфера с радиус R_{cav} , поставена в среда с ε и L_Q (Фиг. 3а).

Реакционното поле на Онзагер е обобщено на за квадруполни среди, E_{react} , и, както и в класическия случай (ур. (51)), E_{react} е пропорционално на диполния момент на молекулата, p:

(54)
$$\boldsymbol{E}_{\text{react}} = X_p \boldsymbol{p};$$
 $X_p = \frac{1}{2\pi\varepsilon_0 R_{\text{cav}}^3} \frac{\varepsilon - f_p \varepsilon_0}{2\varepsilon + f_p \varepsilon_0}.$

Пълният диполен момент на дипола и поляризираната от него среда е обозначен с:

(55)
$$\boldsymbol{p}_{\text{ext}} = \frac{3f_{p,\text{ext}}\varepsilon}{2\varepsilon + f_p\varepsilon_0} \boldsymbol{p}$$

Коефициентите f_p и $f_{p,ext}$ в ур. (54)&(55) са функции на отношението *х* между квадруполната дължина и радиуса на кухината (ур. (41)), като самите функции са:

(56)
$$f_p = \frac{2(1+4x)}{2+8x+27x^2+27x^3};$$
 $f_{p,\text{ext}} = \frac{2(1+4x+9x^2+9x^3)}{2+8x+27x^2+27x^3}.$

Графиката на $f_p(L_Q/R_{cav})$ и $f_{p,ext}(L_Q/R_{cav})$ е представена на **Фиг. 4**. Вижда се, че при $L_Q \rightarrow 0$ и двете функции клонят към единица: $f_p \rightarrow 1$ и $f_{p,ext} \rightarrow 1$. Разликата между реакционното поле в диполно-квадруполна среда, E_{react} (ур. (54)), и класическото реакционно поле по Онзагер, $E_{react,O}$ (ур. (51)), формално се състои в коефициента f_p и следователно при $L_Q \rightarrow 0$ реакционното поле в квадруполна среда, E_{react} , се свежда до Онзагеровото реакционно поле, $E_{react,O}$. Най-голям ефект от отчитането на квадруполите в средата има при квадруполни дължини от порядъка на (и поголеми от) радиуса на кухината $L_Q \sim R_{cav}$, тъй като тогава функцията f_p най-много се отличава от единица (**Фиг. 4**). Качествено, резултатът от присъствието на квадруполите в средата се изразява в нарастване на реакционното поле, поради допълнителното взаимодействие централен дипол-квадрупол от средата (отново в съгласие с коментара на Матюшов и Вот [56]).

Теорията на Онзагер за реакционното поле стои в основата на теорията на разтворите – описанието на разтварянето на полярни молекули в полярна течност. Това е всъщност и най-честото ѝ приложение (от класическата теория за Стоксово отместване в различни разтворители [80] до модерни молекулно динамични модели на молекули в разтворители [81]). На базата на Онзагер се пресмята аналога на Борновата енергия, но за взаимодествие на дипол с диполна среда (или енергията за пренос на диполна молекула в среда изградена от диполи). С помощта на ур. (54)&(55) [49] ние можем да обобщим теорията на разтваряне на молекули с диполен момент в среда, в която се отчитат и квадруполните моменти и квадруполяризуемостите на молекулите в средата. В тяхната микроскопска пертурбационна теория Милищук и Матюшов в изт. [57] стигат до сходен израз, като отчитат квадруполния момент на молекулите в средата, но не и тяхната квадруполяризуемост. Както е показано в изт. [49], нашият резултат и този на Милищук и Матюшов съвпадат в граничните случаи на двата модела (взимаме границата на нашия модел в случай на чисто квадруполна разредена среда без квадруполяризуемост на молекулите и границата на техния модел в случай на континуална среда).

Фиг. 4 Функциите $f_p(L_Q/R_{cav})$ и $f_{p,ext}(L_Q/R_{cav})$. При малки L_Q и двете функции стават равни на единица, и изразите (54) и (57) за реакционното и кавитационно поле в квадруполни среди се свеждат съответно до ур. (51) и (52) в класическата теория на Онзагер.

б) Втората подзадача е за кавитационно поле на празна сфера в непрекъсната диполно-квадруполна среда. Кухината ($\varepsilon = \varepsilon_0$, $L_Q = 0$) е в непрекъсната среда с характеристики ε и L_Q , поставена във външно електрично поле *E* (**Фиг. 36**).

Кавитационното поле E_{cav} е (както и в класическата задача на Онзагер) пропорционално на външното електрично поле:

(57)
$$\boldsymbol{E}_{cav} = Y_E \boldsymbol{E};$$
 $Y_E = \frac{3f_{p,ext}\boldsymbol{\varepsilon}}{2\boldsymbol{\varepsilon} + f_p \boldsymbol{\varepsilon}_0}.$

Полето E_{cav} в квадруполна среда е занижено в сравнение с кавитационното поле на Онзагер в диполна среда, $E_{cav,O}$. Това би могло да се обясни с образуването на *дифузна атмосфера от диполи* в близост до нехомогенността в средата. Полето на асоциираните в дифузния слой диполи понижава електричното поле вътре в центъра на кухината (за по-подробно обяснение виж секция 4.2.1).

3.2.2. Реакционен и кавитационен градиент на полето

в) Следващата подзадача е за реакционен градиент на полето на молекула с квадруполен момент **q** в сферична кухина.

Полученият резултат за реакционния градиент на полето, $(\nabla E)_{\text{react}}$, е:

(58)
$$(\nabla E)_{\text{react}} = X_q \boldsymbol{q}; \qquad X_q = \frac{9}{4\pi\varepsilon_0 R_{\text{cav}}^5} \frac{\varepsilon - f_q \varepsilon_0}{3\varepsilon + 2f_q \varepsilon_0}$$

Централната молекула, **q**, създава градиент на полето, който ориентира квадруполите и допълнително индуцира квадруполен момент у молекулите в средата. Така квадруполяризираната среда връща в позицията на ценралната молекула градиент на полето $(\nabla E)_{\text{react}}$, който е пропорционален на **q**. А квадруполният момент **q**_{ext} на молекулата в центъра заедно с квадруполяризираната от нея среда е:

(59)
$$\boldsymbol{q}_{\text{ext}} = \frac{5f_{q,\text{ext}}\varepsilon}{3\varepsilon + 2f_q\varepsilon_0} \boldsymbol{q}$$

Реално това е квадруполният момент, който остава на голямо разстояние от молекулата. Квадруполните коефициенти f_q и $f_{q,ext}$ в ур. (58)&(59) се дават от следните изрази:

(60)
$$f_q = \frac{1+6x+6x^2}{1+6x+36x^2+72x^3+72x^4}; \qquad f_{q,ext} = \frac{1+6x+24x^2+54x^3+54x^4}{1+6x+36x^2+72x^3+72x^4},$$

където $x = L_Q/R_{cav}$ (ур. (41)), като посочените изрази клонят към единица при $L_Q \rightarrow 0$. Нашият резултат за реакционният градиент на полето ур. (58) при $L_Q = 0$ съвпада с решението за $(\nabla E)_{react}$ на Бъкингам [66], получено за непрекъсната среда, изградена от поляризуеми диполи. Тоест, може да допуснем, че нашето решение успешно обобщава задачата на Бъкингам към квадруполни среди.

г) Последната подзадача е за кавитационен градиент на полето, $(\nabla E)_{cav}$. Имаме празна сфера ($\varepsilon = \varepsilon_0$), поставена във външен градиент на полето, ∇E , което в резултат на нехомогенността на средата в центъра на сферата се изменя до $(\nabla E)_{cav}$.

Резултатът за (∇E)_{саv} е пропорционалност на външния градиент на полето:

(61)
$$(\nabla E)_{cav} = Y_{\nabla E} \nabla E; \qquad Y_{\nabla E} = \frac{5f_{q,ext}\varepsilon}{3\varepsilon + 2f_q\varepsilon_0}.$$

Нека отбележим, че в квадруполна течност реципрочното съотношение, отбелязано от Онзагер [4, *ур.* 11], остава валидно, т. е. $E_{cav}/E = p_{ext}/p = Y_E$ (ур. (55) и (57)). Валидно е също така аналогичното реципрочно съотношение за кавитационния градиент на полето и външния квадруполен момент (ур. (59) и (61)):

$$\frac{\left(\nabla E\right)_{\text{cav}}}{\nabla E} = \frac{\boldsymbol{q}_{\text{ext}}}{\boldsymbol{q}} = Y_{\nabla E} \,.$$

Изразите за кавитационното поле и кавитационния градиент на полето стоят в основата на теорията на взаимодействие на молекули през квадруполна среда. Така получените резултати имат по-широка приложимост от конкретната задача, за която ги използваме – определяне на диелектричната проницаемост и квадруполяризуемостта на квадруполна Онзагерова течност.

3.2.3. Среден диполен и квадруполен момент. Обобщение на модела на Онзагер към квадруполни течности

Следваме подхода на Онзагер, според който всяка молекула се намира в локално електрично поле, E_{loc} (ур. (50)), което е сума от реакционното E_{react} (ур. (54)) и кавитационното поле E_{cav} (ур. (57)):

$$(62) \quad \boldsymbol{E}_{\rm loc} = \boldsymbol{X}_p \boldsymbol{p} + \boldsymbol{Y}_E \boldsymbol{E} \,,$$

като E_{loc} индуцира допълнителен диполен момент у поляризуемата молекула по ур. (49). Тъй като и локалното поле зависи от p (ур. (62)), то решаваме системата от

тези две векторни уравнения (49) и (62) за неизвестните p и E_{loc} и получаваме, че диполният момент на молекулата в течна фаза е:

(63)
$$\boldsymbol{p} = \frac{\boldsymbol{p}_0 + \boldsymbol{\alpha}_{p0} Y_E \boldsymbol{E}}{1 - \boldsymbol{\alpha}_{p0} X_p},$$

а на нея ѝ действа локално поле:

(64)
$$\boldsymbol{E}_{\text{loc}} = \frac{\boldsymbol{X}_{p}\boldsymbol{p}_{0} + \boldsymbol{Y}_{E}\boldsymbol{E}}{1 - \boldsymbol{\alpha}_{p0}\boldsymbol{X}_{p}}.$$

Вижда се, че p и E_{loc} зависят както от собствения диполен момент на молекулата, p_0 , така и от външното електрично поле, E. Тези изрази са напълно аналогични на получените от Онзагер [4], с тази разлика, че тук коефициентите X_p и Y_E (ур. (54) и (57)) съдържат квадруполната дължина L_Q през коефициентите f_p и $f_{p,ext}$ (ур. (56), виж също ур. (41)).

Следвайки Онзагер, осредняваме диполния момент на молекулата в течна фаза от ур. (63), за да получим крайния резултат:

(65)
$$\overline{\boldsymbol{p}} = \frac{Y_E}{1 - \alpha_{p0} X_p} \left(\alpha_{p0} + \frac{1}{1 - \alpha_{p0} X_p} \frac{\boldsymbol{p}_0 \cdot \boldsymbol{p}_0}{3k_{\rm B} T} \right) \boldsymbol{E}$$

Следователно новата връзка между поляризуемостта на течна фаза и характеристиките на молекулите, изгращи средата (виж ур. (11)) е следният:

(66)
$$\alpha_p \equiv \varepsilon - \varepsilon_0 = \frac{Y_E}{1 - \alpha_{p0} X_p} \left(\alpha_{p0} + \frac{1}{1 - \alpha_{p0} X_p} \frac{\boldsymbol{p}_0 \cdot \boldsymbol{p}_0}{3k_{\rm B} T} \right) C$$

Като положим в получения резултат $L_Q = 0$ получаваме класическата формула на Онзагер [4]:

(67)
$$\alpha_{p} \equiv \varepsilon - \varepsilon_{0} = \frac{Y_{E,O}}{1 - \alpha_{p0} X_{p,O}} \left(\alpha_{p0} + \frac{1}{1 - \alpha_{p0} X_{p,O}} \frac{\boldsymbol{p}_{0} \cdot \boldsymbol{p}_{0}}{3k_{B}T} \right) C$$

За да получим квадруполяризуемостта на непрекъснатата среда, действаме по абсолютно аналогичен начин. Локалният градиент на електричното поле $(\nabla E)_{loc}$ е сума от реакционния, $(\nabla E)_{react}$ (ур. (58)), и кавитационния, $(\nabla E)_{cav}$ (ур. (61)) градиент на полето:

(68)
$$(\nabla \boldsymbol{E})_{\text{loc}} = (\nabla \boldsymbol{E})_{\text{react}} + (\nabla \boldsymbol{E})_{\text{cav}} = X_q \boldsymbol{q} + Y_{\nabla \boldsymbol{E}} \nabla \boldsymbol{E}$$

Аналогично на ур. (49) към собствения квадруполен момент на молекулата, q_0 , се добавя индуцирания от $(\nabla E)_{loc}$ квадруполен момент, който е пропорционален на молекулната квадруполяризуемост, α_{q_0} :

(69)
$$\boldsymbol{q} = \boldsymbol{q}_0 + \alpha_{q0} \left[\left(\nabla E \right)_{\text{loc}} - \frac{\left(\nabla \cdot \boldsymbol{E} \right)_{\text{loc}}}{3} \boldsymbol{U} \right],$$

Като тук сме добавили члена пропорционален на $(\nabla \cdot E)_{loc}$ само за по-голяма яснота. Всъщност $(\nabla \cdot E)_{loc} = 0$, понеже $\text{Tr} \boldsymbol{q} = 0$, а също и $\nabla \cdot \boldsymbol{E} = 0$ (вж. ур. (68)). Следователно по-надолу можем да изпуснем ($\nabla \cdot E$)_{loc} в разглежданията. Решаваме системата от две тензорни уравнения (68)&(69), за да получим квадруполния момент на молекулата в течна фаза:

(70)
$$\boldsymbol{q} = \frac{\boldsymbol{q}_0 + \alpha_{q_0} Y_{\nabla E} \nabla \boldsymbol{E}}{1 - \alpha_{q_0} X_q}$$

и израза за локалния градиент на полето:

(71)
$$\left(\nabla \boldsymbol{E}\right)_{\text{loc}} = \frac{X_q \boldsymbol{q}_0 + Y_{\nabla \boldsymbol{E}} \nabla \boldsymbol{E}}{1 - \alpha_{q0} X_q}$$

Осредняването на квадруполния момент по всички ориентации води до (изводът е представен в дисертацията):

(72)
$$\bar{\boldsymbol{q}} = \frac{Y_{\nabla E}}{1 - \alpha_{q0} X_q} \left(\alpha_{q0} + \frac{1}{1 - \alpha_{q0} X_q} \frac{\boldsymbol{q}_0 : \boldsymbol{q}_0}{10 k_{\rm B} T} \right) \left(\nabla \boldsymbol{E} - \frac{\nabla \cdot \boldsymbol{E}}{3} \mathbf{U} \right).$$

Следователно крайният резултат за квадруполяризуемостта α_Q на течна среда (вж. ур. (23)) е:

(73)
$$\alpha_{\mathsf{Q}} \equiv 3\varepsilon L_{\mathsf{Q}}^2 = \frac{Y_{\nabla E}}{1 - \alpha_{q0}X_q} \left(\alpha_{q0} + \frac{1}{1 - \alpha_{q0}X_q} \frac{\mathbf{q}_0 : \mathbf{q}_0}{10k_{\mathsf{B}}T} \right) C.$$

С този израз за α_Q се доказва, че ур. (53) е вярно и за течност (ур. (53) беше изведено строго в секция 2.2.2, но само за газова фаза). Освен това лесно можем да забележим приликата между ур. (66) за поляризуемостта α_P и ур. (73) за квадруполяризуемостта α_Q на средата. Двете уравнения са свързани помежду си – ур. (66) за ε съдържа в себе си квадруполната дължина, L_Q (през коефициентите X_p и Y_E), също както ур. (73) за L_Q съдържа и диелектричната константа, ε (в X_q и $Y_{\nabla E}$). Това всъщност означава, че квадруполният момент и квадруполяризуемостта на молекулите в течността ще повлияят на ε и обратно – диполният им момент и поляризуемост влияят на L_Q . При известни молекулни характеристики (p_0 , α_{p0} , q_0 и α_{q0}) и радиус на кавитацията R_{cav} , уравненията (66) и (73) позволяват да бъдат изчислени диелектричната проницаемост и квадруполната дължина на Онзагерова течност като функция на термодинамичните променливи T и C.

3.2.4. Точка на Кюри и радиус на кухината

Моделът на Клаузиус-Мосоти предвижда точка на Кюри, концентрация, $C_{cr,CM}$, или температура, $T_{cr,CM}$ (виж напр. [65]). Това е едно хипотетично състояние при достатъчно висока конценрация ($C > C_{cr,CM}$) или достатъчно ниска температура ($T < T_{cr,CM}$), при което молекулите са много близко разположени една до друга и са подредени така, че диполният им момент е насочен предимно в една и съща посока. Като следствие от тази подредба на молекулите е това, че при точката на Кюри средата има безкрайна диелектрична проницаемост и ненулева поляризация дори в отсъствие на електрично поле, т. е. диелектрикът се автополяризира. Такова

състояние не се наблюдава на практика в течности. Тоест около и над концентрацията на Кюри или близо и под температурата на Кюри моделът на Клаузиус-Мосоти за течности е нефизически и неприложим.

Температурата $T_{cr,CM}$ е свързана със собствения диполен момент на молекулите, тъй като при $p_0 = 0$ температурата на Кюри става равна на нула $T_{cr,CM} = 0$. Съответно говорим за ориентационна точка на Кюри, понеже е свързана главно с ориентацията на постоянния дипол.

Моделът на Онзагер [4] не предвижда ориентационна точка на Кюри. Но въпреки това според този модел е възможна поляризационна точка на Кюри (свързана с поляризуемостта на молекулата, α_{p0}), която също налага горна граница за концентрацията. При модела на Онзагер присъства един допълнителен параметър – радиусът на кухината, R_{cav} , който не е добре дефиниран. Предложението на Онзагер е, че обемът на кухината е равен на обема, който се пада на една молекула:

(74)
$$\frac{4}{3}\pi R_{\rm cav}^3 = \frac{1}{C}$$
.

Както самият Онзагер изтъква [4], това предположение не е много коректно, тъй като е невъзможно молекулите да изпълват целия обем. Радиусът на кухината присъства в коефициента $X_{p,O}$ (ур. (51)) в крайната формула за диелектричната константа по Онзагер (ур. (67)). Съответно, когато знаменателят в ур. (67), 1 – $\alpha_{p0}X_{p,O}$, при $\varepsilon \to \infty$ стане равен на нула, т. е. $1 - \alpha_{p0}C/3\varepsilon_0 = 0$ (заместили сме ур. (74) в ур. (51)), получаваме концентрацията на Кюри по Онзагер:

(75)
$$C_{\rm cr,O} = \frac{3\varepsilon_0}{\alpha_{p0}}$$
.

Но, както вече споменахме, допускането (74) не е особено обосновано. Въпреки че ур. (74) би дало правилния порядък на радуса на кухината, при по-високи концентрации, ако променим R_{cav} дори само с около 0.1 Å, то това би довело до огромна промяна в стойността на диелектричната константа, ε . Освен това ур. (74) директно задава зависимостта на R_{cav} от температурата и налягането. Експериментите [67] за свиваемостта на радиуса на кухината на водни разтвори на соли показват обаче, че кухината на йона има много по-ниска механична свиваемост от тази на чиста вода, т. е.: $1/R_{cav}^{-3} \times \partial R_{cav}^{-3} / \partial p \ll 1/C \times \partial C / \partial p$, и това е добре известно и често прилагано като приближение в различни кавитационни модели [83, 84].

Радиусът на кухината има смисъл на ефективен параметър, отчитащ разстоянието между две молекули в средата и това го прави важен параметър не само в настоящия, но и в много други теоретични модели. Затова в литературата са правени редица опити да се опише зависимостта на радиуса на кухината от частичковата концентрация на средата (виж например обзора в изт. [85, 86]), но всички тези модели са базирани на силни допускания. Ние се опитваме да решим обратната задача, както е предложил Ботчер [87]. Вместо да търси модел за $R_{cav}(C)$, Ботчер използва експериментални данни за диелектричната константа и плътността на средата, които директно замества в класическото ур. (67) на Онзагер и решава това уравнение за неизвестната величина R_{cav} (при известни α_{p0} и $|\mathbf{p}_0|$ от независими експерименти в газова фаза). В [49] обобщаваме подхода на Ботчер, като отчитаме квадруполите в средата, т. е. решаваме ур. (66) и ур. (73) за двете неизвестни величини R_{cav} и L_Q , използвайки експериментални данни за ε . Следователно моделът ни позволява изчисляването на L_Q от експерименталното ε без никакви допускания относно R_{cav} , стига молекулните характеристики ($\mathbf{p}_0, \alpha_{p0}, \mathbf{q}_0$ и α_{q0}) да са известни.

Тъй като ур. (66)&(73) са обобщение на модела на Онзагер, то е естествено и те да имат точка на Кюри – частичкова концентрация, над която нашият модел е неприложим. Понеже ще работим главно с R_{cav} , това означава, че имаме долна граница за радиуса на кухината, под която ε и L_Q стават безкрайност. Като вземем знаменателя на ур. (66), $1 - \alpha_{p0}X_p$, заместим в него X_p по ур. (54) и намерим границата му при $\varepsilon \to \infty$ и $L_Q \to \infty$, получаваме, че изразът се занулява при радиус на кухината:

(76)
$$R_{\rm cav}^3 = \frac{\alpha_{p0}}{4\pi\varepsilon_0}$$
.

При това R_{cav} диелектрикът се автополяризира. По аналогичен начин намираме и R_{cav} , при което настъпва автоквадруполяризация на средата:

(77)
$$R_{\rm cav}^5 = \frac{3\alpha_{q0}}{4\pi\varepsilon_0}$$

По-голямата от двете възможни стойности на радиуса на кухината – по ур. (76) или ур. (77), задава долната граница приложимост на нашия модел за квадруполни течности. Използваме я при оптимизиране на числената процедура за намиране на R_{cav} и L_Q от експерименталните данни за ε и плътността, ρ , на средата. Долната граница на R_{cav} ни позволява лесно да изключим нефизическите решения на ур. (66) и (73), за които R_{cav} е под това, което следва от ур. (76) или (77).

3.2.5. Сравнение с експеримент: определяне на $\alpha_Q u R_{cav}$ течности от измервания на диелектричната константа

В дисертацията, прилагаме нашия обобщен теоретичен модел на Онзагер към 10 различни течностти с цел да определим квадруполната им дължина, L_Q , и радиуса на кухината, R_{cav} , като функция на температурата и плътността на течността. Нужно е да разполагаме както с теоретични стойности на молекулните характеристики α_{p0} , p_0 , α_{q0} и q_0 на избраните 10 течности (вж. Таблица 2), така и с измерени с висока точност диелектрична константа и плътност на средата.

	диполен момент p ₀ [Cm]×10 ³⁰	поля- ризуемост $lpha_{p0}/4\pi arepsilon_{0}$ [Å 3]	квадруполен момент $(\boldsymbol{q}_0; \boldsymbol{q}_0)^{1/2}$ $[Cm^2] \times 10^{40}$	квадруполя- ризуемост $lpha_{q0}/4\pi arepsilon_0$ [Å ⁵]	<i>k</i> ₀ [kg/m ³] yp. (79)	<i>k_ρ</i> ур. (79)	dev _e /&
^a Ar	0	1.590 ⁶ 1.639	0	0.454	655.5	0.3134	0.0009
^a Kr	0	2.488	0	0.913	_	_	_
^a Xe	0	4.105	0	1.936	-	-	-
^a CH ₄	0	2.433 ⁶ 2.597	0	1.681	122.84	0.7019	0.0004
$^{a}N_{2}$	0	1.737 ⁶ 1.739	4.08	1.12	342.2	0.5445	0.0005
^a CO ₂	0	2.63 ⁶ 2.98	11.43	2.21	235.64	0.9102	0.0009
^a CS ₂	0	8.215	8.88	11.40	721.2	0.5513	0.0017
$^{a}C_{6}H_{6}$	0	₿10.25	24.87	18.42	695.2	0.3300	0.0019
^a H ₂ O	6.204	1.470	8.074 ^r 8.073	0.496	ур. (80)	yp. (80)	_
^a CH ₃ OH	6.062 ^д 5.638	3.364 ^д 3.32	16.436	3.121	1991.3	0.3524	0.7

Таблица 2. Стойности на собствените мултиполни моменти и поляризуемости на молекулите, както и коефициентите в зависимостта (79) на R_{cav} от ρ .

^аТеоретично пресметнати стойности за Ar взети от изт. [88]; за Kr и Xe от изт. [89]; CH₄ от изт. [90]; N₂ – изт. [91]; CO₂ – изт. [92]; CS₂ – изт. [93]; C₆H₆ – изт. [42]; H₂O – изт. [67]; CH₃OH – изт. [94]. ⁶Експериментални стойности, получени при напасването на данни за ε за газовете Ar, CH₄, N₂ и CO₂ по ур. (78) (вж. основния текст).

^вСредно аритметично на стойностите, цитирани в изт. [78] и [1].

Коригирано за центъра на масите (вж. основния текст).

^дТова са експериментални стойности, взети от изт. [94].

Най-простият случай е, когато средата е изградена от молекули, които нямат собствен диполен и квадруполен момент – такива са течният Ar, Kr, Xe и CH₄. Следващата група течности се отнася до среди, чиито молекули нямат собствен диполен, но имат квадруполен момент – това са N₂, CO₂, CS₂ и C₆H₆. И накрая ще опитаме да приложим обобщения модел към течности, които са изградени от молекули както със собствен диполен, p_0 , така и с квадруполен момент, $q_0 - H_2O$ и CH₃OH (**Таблица 2**). Течностите Ar, Kr, Xe и N₂ са интересни, защото са достатъчно прости и добре изследвани при различни условия. Течните CO₂ и CS₂ са класически квадруполни течности и се използват често в практиката като разтворители. Джеон и Ким дават оценка на квадруполната дължина на въглероден диоксид и бензен като анализират данни за Стоксовото отместване в кумарин 153 [42], което ни дава възможност за сравнение на теоретично изчисленото от нас L_Q с

тяхното. А получените резултати за H₂O и CH₃OH могат да бъдат сравнени с предишни наши оценки [64, 73], където сме правили сравнение на експериментални данни с теоретичния модел за Борновата енергия на йоните в квадруполни среди (секция 3.1) и активитетния коефициент на електролити в метанол. В автореферата представяме по-детайлно само 3 примера, по един от всеки тип течности.

3.2.5.1. *α*_p, *α*_q-течности (молекули без диполен и квадруполен момент)

Първият тип течности, които разглеждаме в дисертацията, са изградени от неполярни молекули (без диполен и квадруполен момент), които обаче могат да се поляризират и квадруполяризират (имат α_{p0} и α_{q0}).

Аг. Такава течност е аргона. Разполагаме с експериментални данни за диелектричната проницаемост на течен аргон при различни температури и високи налягания [95-97]. От тези данни, решавайки ур. (66) и (73), можем да получим радиуса на кухината, R_{cav} , и квадруполната дължина, L_Q . Необходими са ни също поляризуемостите на молекула аргон, за които бихме могли да вземем изчислените стойности на Марулис и Бишоп [88]. Но тъй като диелектричната константа се влияе слабо (но все пак измеримо) от квадруполяризуемостта на молекулата α_{q0} , то дори малка грешка в стойността на поляризуемостта за които би довела до замаскиране на ефекта от α_{q0} и до неверни стойности за R_{cav} и L_Q . Затова първо опитваме да намерим колкото е възможно по-точно α_{p0} от данни за ε за газообразен Ar.

Ar (газ). В газова фаза молекулите са достатъчно раздалечени една от друга така, че квадруполните ефекти са пренебрежими (отчитането на L_Q би довело до разлика в диелектричната константа с по-малко от $10^{-10} \times \varepsilon_0$, което е извън експерименталната точност). Освен това коефициентът X_p е малък, понеже $\varepsilon \approx \varepsilon_0$ (вж. ур. (54)) и $\alpha_{p0}X_p \ll 1$ също може да се пренебрегне. Тогава от квадруполното уравнение (66) (а също и от класическото уравнение на Онзагер, (67)) остава само: (78) $(\varepsilon - \varepsilon_0)(2\varepsilon + \varepsilon_0) = 3\varepsilon\alpha_{n0}C$.

Използваме този опростен израз, за да определим възможно най-точно α_{p0} от експериментални данни за ε и *C* на аргон в газова фаза. Експерименталните точки са за ниска плътност в интервала $\rho = 0.73 \text{ kg/m}^3$, температура T = 278-399 K и налягане $p = 4 \times 10^5 \cdot 6 \times 10^6$ Ра, а диелектричната константа е $\varepsilon < 1.023 \times \varepsilon_0$ (общо 29 точки). При минимизирането на стандартното отклонение dev_{ε} на ур. (78) от експерименталните данни, като оставим като свободен параметър α_{p0} , получаваме $\alpha_{p0}/4\pi\varepsilon_0 = 1.639\pm0.015 \text{ Å}^3$ [49] (стандартното отклонение в минимума е $dev_{\varepsilon} = 0.0001 \times \varepsilon_0$). За сравнение стойността на α_{p0} , която предлага Хил [98] е $\alpha_{p0}/4\pi\varepsilon_0 = 1.64 \text{ Å}^3$ и е доста близка до получената от нас стойност. Докато теоретично изчислената стойност на Марулис и Бишоп е занижена $\alpha_{p0}/4\pi\varepsilon_0 = 1.59 \text{ Å}^3$ [88]. В понататъшните разглеждания за течна фаза ще използваме получената собствена

поляризуемост от сравнение с експеримент в газова фаза и стойността на Марулис и Бишоп за собствената квадруполяризуемост $\alpha_{q0}/4\pi\epsilon_0 = 0.454$ Å⁵ (вж. **Таблица 2**). Макар да е за очакване теоретичната стойност на α_{q0} също да е занижена, това не би повлияло много на диелектричната константа, защото зависимостта от α_{q0} е слаба.

Ar (*mечност*). Продължаваме с анализа на течен аргон. За всяка експериментална точка ε и ρ за течен аргон (при известни вече $\alpha_{p0}/4\pi\varepsilon_0 = 1.639$ Å³ и $\alpha_{q0}/4\pi\varepsilon_0 = 0.454$ Å⁵, вж. **Таблица 2**) решаваме двете уравнения (66)&(73) за неизвестните R_{cav} и L_Q (като налагаме условието R_{cav} да е по-голямо от радиуса на кухината в точката на Кюри, по ур. (76) или (77)). Резулатът е представен на **Фиг.** 5.

Фиг. 5 а) Радиус на кухината R_{cav} и **б**) квадруполна дължина L_Q на течен аргон, изразени като функция на моларната концентрация, c[M]. Експерименталните данни за диелектричната проницаемост и плътността на течността са взети от изт. [95-97]. Радиусът на кухината и квадруполната дължина са получени като решение на системата уравнения (66) и (73). Сивата крива в а) е зависимостта на R_{cav} по допускането на Онзагер (ур. (74)) Черната крива е резултата от фита по ур. (79) ($k_0 = 655.5 \text{ kg/m}^3$, $k_\rho = 0.3134$). Сивите точки в **б**) илюстрират квадруполната дължина, пресметната по формулата за идеален газ (ур. (22)). Добавени са за сравнение точки за Kr и Xe (данни от изт. [97]).

Полученият радиус на кухината R_{cav} варира от 2.6 Å при ниските плътности до около 2.4 Å при високите, **Фиг. 5a**, като този интервал е по-тесен от предложената от Онзагер зависимост (ур. (74)). За сравнение ван дер Ваалсовият радиус на аргона е 1.7 Å. При по-ниските плътности ефективното разстояние между две съседни молекули е по-голямо и влияе по-слабо на диелектричната проницаемост (вж. ур. (66) и (54)). По тази причина като решаваме обратната задача (от дадено ε да намерим R_{cav}), при $\rho < 750 \text{ kg/m}^3$ (c < 19 M) получаваме по-разпръстнати стойности за R_{cav} . Затова ще анализираме само точките за R_{cav} в интервала $\rho = 750-1750 \text{ kg/m}^3$, T = 84-399 K, $p = 10^5-9 \times 10^8 \text{ Pa}$, $\varepsilon = 1.26-1.65 \times \varepsilon_0$. За този интервал допускаме (вместо предложената от Онзагер, ур. (74)) следната полуемпирична зависимост между радиуса на кухината, R_{cav} , и плътостта на средата, ρ :

(79)
$$\frac{m}{\frac{4}{3}\pi R_{\rm cav}^3} = k_{\rho}\rho + k_0$$
,

като тук k_0 [kg/m³] и k_ρ [/] са свободни параметри.

В ур. (79) R_{cav} зависи само от плътността, но не и от температурата – причината за този избор е, че изчислените R_{cav} на **Фиг. 5а** с висока точност попадат върху една единствена крива $R_{cav}(\rho)$, независимо че температурата, за която са изчислени, варира от 84 до 399 К. Можем да пресметнем теоретичната стойност на ε , като решим ур. (66), (73) и емпиричното (79) за R_{cav} , L_Q и ε . Стандартното отклонение между експерименталното и така намереното теоретично ε отбелязваме с $dev_{\varepsilon}(k_0, k_{\rho})$, което е функция на двата неизвестни параметъра k_0 и k_{ρ} в ур. (79). Намираме минимума на $dev_{\varepsilon}(k_0, k_{\rho})$ при $k_0 = 655.5$ kg/m³ и $k_{\rho} = 0.3134$, при което минималната стойност на $dev_{\varepsilon}(k_0, k_{\rho}) = 0.0009 \times \varepsilon_0$ (резултатите за всички изследвани течности са сумирани в **Таблица 2**). Така с намерените коефициенти получаваме как радиусът на кухината зависи от плътността на средата по ур. (79), $R_{cav}(\rho)$ – това е черната непрекъсната крива на **Фиг. 5а** (а през плътността R_{cav} неявно зависи и от температурата и налягането). Освен това, както от ур. (79), така и от **Фиг. 5а** се вижда също, че свиваемостта на R_{cav} е по-малка в сравнение със свиваемостта на непрекъснатата среда (както следва от допускането на Онзагер, ур. (74)).

Квадруполната дължина на течен Ar е илюстрирана на Фиг. 56. Вижда се, че дори при високите плътности тя не надвишава 0.2 Å. Следователно би могло L_Q да се пренебрегне, при което ур. (66) се свежда до класическото ур. (67) на Онзагер. Ботчер [87] е използвал това ур. (67), за да изчисли от данни за ε и ρ радиусът на кухината (резултатът, получен по подхода на Ботчер за R_{cav} , почти съвпада с точките на Фиг. 5а). На Фиг. 56 е представена също квадруполната дължина в газова фаза, изчислена по ур. (22), като използваме $L_Q^2 = \alpha_Q/3\varepsilon$ и експерименталното ε . Квадруполната дължина на течността не се отличава много от L_Q на газ, като забележима разлика има само при по-високите концентрации. Тази разлика се дължи главно на коефициента в кавитационния градиент на полето $Y_{\nabla E}$, ур. (61) (поне докато сме далеч от точката на Кюри, т. е. $\alpha_{q0}X_q << 1$).

На **Фиг. 5** са представени за сравнение и резултатите за Кг и Хе (данни за ε и ρ , взети от изт. [97]). Както се вижда от **Фиг. 56** стойността на L_Q на благородните газове при една и съща концентрация, *c*, расте с увеличаване на поредния номер на елемента.

В дисертацията подробно са разгледани и експериментални данни за є и ρ за метан, взети от изт. [99, 100]. Резултатите са качествено сходни.

3.2.5.2. α_p, **q**, α_q-течности (молекули с нулев диполен но ненулев квадруполен момент)

Следващата група течности са чисто квадруполни – молекулите им нямат диполен момент, но имат квадруполен момент, \boldsymbol{q}_0 ; наред с това могат да се поляризират, α_{p0} , и квадруполяризират, α_{q0} .

N₂. Използваме данни за ε и ρ на газообразен и течен азот, взети от изт. [99, 101]. Необходими са ни също α_{p0} , α_{q0} и q_0 на азотна молекула, за които ползваме теоретичните квантовохимични изчисления на Марулис и Такар [91], **Таблица 2**.

 N_2 (газ). Проверяваме надежността на теоретичната стойност за поляризуемостта на молекулата, α_{p0} , като минимизираме отклонението dev_{ε} между ε , което следва от ур. (78) и експерименталното ε за газ азот (при достатъчно ниски плътности: $\rho = 0$ -100 kg/m³, T = 77-1500 K, $p = 10^5$ - 10^7 Ра и $\varepsilon < 1.047 \times \varepsilon_0$; общо 38 експериментални точки). Получената стойност е $\alpha_{p0}/4\pi\varepsilon_0 = 1.739\pm0.005$ Å³ (с $dev_{\varepsilon} = 0.00005 \times \varepsilon_0$), която е достатъчно близка до теоретично пресметнатата от Марулис и Такар, $\alpha_{p0}/4\pi\varepsilon_0 = 1.737$ Å³, [91]. В книгата на Хил, изт. [98], също е приведена близка стойност за поляризуемостта: $\alpha_{p0}/4\pi\varepsilon_0 = 1.74$ Å³. Така че при сравнението с експерименталното ε за течен азот ще се доверим на стойностите на Марулис и Такар за α_{p0} , α_{q0} и q_0 [91], Таблица 2.

Фиг. 6 а) Радиус на кухината, R_{cav} , и **б)** квадруполна дължина, L_Q , на течен азот, изчислени по ур. (66) и (73) и данни за диелектричната константа, ε , и плътността, ρ , от изт. [99, 101]. Цветът е индикация за температурата. Сивите точки в **а)** илюстрират радиуса на кухината, изчислен стриктно по подхода на Ботчер, като е използвано класическото уравнение на Онзагер (ур. (67)). Сивата крива е R_{cav} по допускането на Онзагер (ур. (74)); черната крива е ур. (79) с $k_0 = 342.2 \text{ kg/m}^3$ и $k_\rho = 0.5445$.

 N_2 (*течност*). При сравнението на квадруполния модел на Онзагер с експериментални данни за течен азот [99, 101] използваме плътности в интервала ρ < 870 kg/m³, T = 63-300 K, $p = 10^5 \cdot 3.5 \times 10^7$ Pa, $\varepsilon < 1.5 \times \varepsilon_0$. Теоретично пресметнатите стойности на молекулните характеристики α_{p0} , α_{q0} и q_0 са съответно: $\alpha_{p0}/4\pi\varepsilon_0 =$ 1.737 Å³, $\alpha_{q0}/4\pi\varepsilon_0 = 1.12$ Å⁵, $(q_0:q_0)^{1/2} = 4.08 \times 10^{-40}$ Cm² [91] (вж. Таблица 2). Заместваме тези параметри в ур. (66) и (73) и за всяка измерена плътност, ρ , и диелектрична константа, ε , решаваме двете уравнения за неизвестните радиус на кухина, R_{cav} , и квадруполна дължина, L_Q . Резултатите са илюстрирани на Фиг. 6.

Нека разгледаме ефекта от отчитането на квадруполите (представени чрез квадруполната дължина, $L_{\rm Q}$) върху диелектричната константа, $\varepsilon_{\rm q}$ за квадруполна течност като течен азот. Този ефект е по-забележим при по-големите плътности, където L_Q е голямо, докато R_{cav} е малко (така че коефициентите f се отличават повече от единица, ур. (41), (56) и (60) и Фиг. 4а). Като вземем точката за найплътната азотна течност, по-конкретно $\rho = 871.778 \text{ kg/m}^3$, $\varepsilon = 1.47067 \times \varepsilon_0$, T = 65.32К и $p = 10^7$ Ра, решаваме ур. (66) и (73) и получаваме $L_Q = 1.08$ Å и $R_{cav} = 2.39$ Å при тази температура и налягане. Ако използваме същия кавитационен радиус и пренебрегнем L_Q, т. е. ползваме класическата формула на Онзагер, ур. (67), и решим това уравнение спрямо диелектричната константа, получаваме ε = 1.47252× E0. Следователно ефектът на квадруполите върху диелектричната константа на течен азот е насочен към понижение на є. При най-плътната изследвана течност понижението на ε , идващо от квадруполите, е $1.47252 \times \varepsilon_0$ – $1.47067 \times \varepsilon_0 = 0.002 \times \varepsilon_0$. Това е около 100 пъти по-малко отколкото основния принос от поляризуемостта на молекулата, α_{p0} , но също така около 100 пъти по-голямо от експерименталната точност. Последното означава, че използването на точни данни за ε при определянето на L_Q е наложително.

Интересно е също да сравним квадруполния момент **q** на N₂ в течна фаза с **q**₀ в газова фаза (в отсъствие на външен градиент на полето, ∇E). От ур. (70) следва, че **q**₀ нараства с няколко процента (като това се дължи на реакционния градиент на полето през коефициента X_q , ур. (58)). За посочените по-горе стойности на ρ , ε , R_{cav} и L_Q при T = 65.32 К и $p = 10^7$ Ра можем да изчислим, че повишението на квадруполния момент в течна фаза е $|\mathbf{q}|/|\mathbf{q}_0|=1/(1-\alpha_{q0}X_q)=1.034$.

Нека сега обсъдим квадруполната дължина на N₂. За молекули с ненулев собствен квадруполен момент q_0 , от ур. (73) следва, че L_Q е функция на температурата, както се вижда и на Фиг. 66. Това се отразява и на диелектричната константа - ε зависи съвсем слабо от T при фиксирана плътност. Ако пренебрегнем квадруполите, $L_Q = 0$, като ползваме класическия резултат на Онзагер и решим ур. (67) за радиуса на кухината (това е подходът на Ботчер, [87]), получаваме ясно изразена температурна зависимост на $R_{cav}(T)$. Това е представено на Фиг. 6а, сивите точки. Всъщност силната зависимост $R_{cav}(T)$ е изкуствена и привнесена от пренебрегването в класическата теория на зависимостта $L_Q(T)$. С други думи, зависимостта на диелектричната константа от температурата, $\varepsilon(T)$, и на радиусна на кухината по Ботчер, $R_{cav}(T)$, е следствие от пренебрегването на квадруполната сила на течността.

Получените точки за R_{cav} , **Фиг. 6а**, отново могат да се напаснат с линейната зависимост (79) на $1/R_{cav}^3$ от ρ за плътности над 450 kg/m³ (под тази плътност ε зависи слабо от R_{cav} и изчислените радиуси са неточни). При минимизиране на дисперсията $dev_{\varepsilon}(k_0, k_{\rho})$ между експерименталното ε спрямо проницаемостта, която

следва от ур. (66), (73) и (79) (решаваме трите уравнения за неизвестни R_{cav} , L_Q и ε) получаваме за свободните параметри $k_0 = 342.2 \text{ kg/m}^3$ и $k_\rho = 0.5445$ (вж. **Таблица 2**). От тези коефициенти (k_0 и k_ρ) следва, че свиваемостта на радиуса на кухината $R_{cav}^3 \partial R_{cav}^{-3} / \partial p$ на азотна молекула е около два пъти по-малка от свиваемостта на течен азот при $\rho > 450 \text{ kg/m}^3$. Минималното стандартно отклонение е $dev_{\varepsilon}(k_0, k_\rho) = 0.0005 \times \varepsilon_0$.

Аналогично определяме квадруполяризуемостта на течен CO₂. Джеон и Ким [42] определят макроскопската квадруполяризуемост, α_Q , на CO₂ от Стоксовото отместване на кумарин 153 в течен въглероден диоксид; според тях $\alpha_Q = 0.42 \times 10^{-30}$ Fm при $\rho = 800$ kg/m³ и стайна температура, T = 298 K. Нашите стойности на ε , L_Q и α_Q при дадените условия са $\varepsilon = 1.48 \times \varepsilon_0$, $L_Q = 1.1$ Å и $\alpha_Q = 3\varepsilon L_Q^2 = 0.46 \times 10^{-30}$ Fm (с $R_{cav} = 2.63$ Å, изчислено по ур. (79) и параметри, както са посочени в **Таблица 2**). Разликата е от около 10%, но при определянето на квадруполяризуемостта на средата Джеон и Ким изпозват кавитационен модел на квадруполни течности с различни гранични условия от нашите, т. е. пълно съвпадение би било случайно.

Разглеждаме още CS₂. Експерименталните стойности на ε и ρ за течен CS₂ са взети от Мопсик [102]. Молекулата на CS₂ е интересна с голяма си собствена квадруполяризуемост, α_{q0} . На практика в литературата α_{q0} винаги се пренебрегва, макар това да не е обосновано. Въглеродният дисулфид е чудесен пример за това – ако пренебрегнем α_{q0} , ще получим с около 30% по-ниска стойност на квадруполната дължина.

Анализираме също експерименталните стойности на ε и ρ за течен C₆H₆ от изт. [82, 103, 104]. Квадруполната дължина на бензена е много по-висока като стойност в сравнение с всички изследвани до тук течности (вж. **Фиг. 76**). При стайна температура, T = 298 K, и нормално атмосферно налягане, p = 1 atm, когато $\rho = 874$ kg/m³ и $\varepsilon = 2.276 \times \varepsilon_0$ [82], при решението на ур. (66) и (73) получаваме $R_{cav} = 3.15$ Å и $L_Q = 1.8$ Å. Съответната макроскопска квадруполяризуемост е $\alpha_Q = 3\varepsilon L_Q^2 = 1.9 \times 10^{-30}$ Fm. Формулата за идеален газ (ур. (22)) дава по-ниски стойности: $L_Q = 1.4$ Å и α_Q = 1.15×10^{-30} Fm. Джеон и Ким определят α_Q от данни за Стоксово отместване на кумарин в течен C₆H₆ и получават стойността $\alpha_Q = 2.6 \times 10^{-30}$ Fm [42]. Тяхната стойност е равнително близка до нашата, но съвпадението може и да е случайно, тъй като, както вече беше споменато, Джеон и Ким използват различни от нас гранични условия.

При сравнението на радиуса на кухината, който следва от квадруполната теория, с R_{cav} от класическото уравнение на Онзагер при $L_Q = 0$ (ур. (67)) проличава важността на отчитането на квадруполите (**Фиг. 7a**). При пренебрегване на квадруполите (сивите точки на **Фиг. 7a**) се вижда едно нарастване на R_{cav} с увеличаване на плътността, ρ – колкото повече свиваме течността, толкова повече нараства средното разстояние между молекулите, което е един напълно нефизически резултат (съответства на отрицателна свиваемост). Докато при отчитане на квадруполите R_{cav} , нормално, намалява с увеличаване на ρ . Следователно нефизическият резултат при $L_Q = 0$ се дължи на високите стойности на L_Q при бензена и нарастването на $L_Q \subset \rho$ (**Фиг. 76**).

Фиг. 7 а) Радиус на кухината, R_{cav} , и **б)** квадруполна дължина, L_Q , на бензен, C_6H_6 , като функция на плътността му, ρ [kg/m³]. Изчислинията са направени като са използвани ур. (66) и (73) и експериментални данни за ε и ρ от изт. [82, 103, 104]. Червените точки съответстват на налягане p = 1 аtm при различни температури, а черните точки са за температура T = 323 К при различни налягания. Сивите точки в **а)** илюстрират радиуса на кухината, изчислен по Ботчер, като е използвано класическото уравнение на Онзагер (ур. (67)). Черната крива е ур. (79) с $k_0 = 695.2$ kg/m³ и $k_{\rho} = 0.3300$. Сивите точки в **б)** представляват квадруполната дължина, пресметната по формулата за идеален газ (ур. (22)).

3.2.5.3. **р**, α_p , **q**, α_q -течности (молекули с диполен и квадруполен момент)

Накрая разглеждаме течности, чиито молекули имат собствен диполен и квадруполен момент, p_0 и q_0 , и могат да се поляризират, α_{p0} , и квадруполяризират, α_{o0} . Ще се спрем на две такива течности: вода H₂O и метанол CH₃OH.

H₂**O** (*течност*). Водата е едно от най-изследваните вещества и има огромно количество данни както за диелектричната проницаемост [105], така и за плътността [105-107]. Интересно е да опитаме да приложим квадруполния модел на Онзагер към вода, тъй като класическата Онзагерова теория не се справя с описанието на тази така важна течност. Проблемът идва още от газова фаза, понеже водните молекули димеризират и е много трудно да се определи поляризуемостта и собствения диполен момент на молекулата (по тази причина има голямо несъответствие в литературата относно стойностите на α_{p0} и p_0). За α_{p0} , p_0 , α_{q0} и q_0 сме използвали теоретичните стойности, пресметнати от Батиста и сътр. [67], вж. **Таблица 2**. Друг проблем се появява при течната вода, чиято висока проводимост е пречка при измерването на диелектричната ѝ проницаемост (точността при измерването на ε е от порядъка на $0.01 \times \varepsilon_0$). Но най-големият проблем идва от това, че водната молекула е малка като размер и в същото време има голям диполен момент, което създава високо електрично поле на границата с

кухината (до толкова, че да предизвика диелектрично насищане, а това в модела на Онзагер може да доведе до сериозна грешка и неправдоподобни резултати).

Да отбележим, че q_0 на полярна молекула (молекула с диполен момент, p_0) зависи от избора на център на координатната система. Батиста и сътр. [67] поставят центъра на координатната система в центъра на масите на водната молекула, но геометрията на модела на Онзагер предполага центърът да е в кислородния атом. При тази смяна на координатната система квадруполният момент на молекулата се променя както следва: $q_0 = q_{0,Batista} + p_0\Delta r + \Delta r p_0$, където тук Δr е векторът, който свързва центъра на масите с центъра в О-атом. Оказва се, че това не променя съществено $q_0:q_0$ (вж. Таблица 2).

Използваме експериментални стойности [105] за вода в интервала T = 268-373 К (включително преохладена течност), налягане до 3×10^8 Ра, $\rho = 960-1100$ kg/m³, $\varepsilon = 55-90 \times \varepsilon_0$. Резултатите за радиуса на кухината, R_{cav} , и квадруполната дължина, L_Q , като функция на плътността, ρ , са представени на **Фиг. 8**. И двете (R_{cav} и L_Q) са почти константа – в целия интервал от плътности R_{cav} се изменя от 1.38 Å до 1.41 Å (вероятно случайно, тези стойности са близки до ван дер Ваалсовия радиус на водата), а L_Q се променя от 0.266 Å до 0.274 Å.

Фиг. 8 а) Радиус на кухината, R_{cav} , и б) квадруполна дължина, L_Q , на H₂O, като функция на плътността ѝ, ρ [kg/m³], изчислени по ур. (66) и (73) и експериментални данни за ε и ρ от изт. [105-107]. Цветът е индикация за температурата. Кривите в а) са по ур. (80) с коефициенти $k_0 = 2853.7$ kg/m³, $k_\rho = 0.1195$ и $k_T = 1.057$ kg/m³K.

За разлика от разгледаните до сега течности, при водата се забелязва явна температурна зависимост (вж. **Фиг. 8a**). Затова вместо да използваме ур. (79), предлагаме следното уравнение за $R_{cav}(\rho, T)$:

(80)
$$\frac{m}{\frac{4}{3}\pi R_{cav}^3} = k_{\rho}\rho - k_T T + k_0.$$

Сравняваме диелектричните проницаемости, пресметнати от ур. (66), (73) и (80) с 183-те експериментални точки за ε . Минимизираме дисперсията $dev_{\varepsilon}(k_0, k_{\rho}, k_T)$, спрямо свободните параметри от ур. (80), при което получаваме $k_0 = 2853.7 \text{ kg/m}^3$, $k_{\rho} = 0.1195 \text{ и } k_T = 1.057 \text{ kg/m}^3 \text{K}$. Минималното стандартно отклонение е $dev_{\varepsilon}(k_0, k_{\rho}, k_T) = 0.19 \times \varepsilon_0$.

Свиваемостта на кухината $R_{cav}^3 \partial R_{cav}^{-3} / \partial p$ с получените параметри и при стайна температура е около 20 пъти по-ниска [49] отколкото механичната свиваемост на водата $\rho^{-1} \partial \rho / \partial p$. Това е в съответствие със свиваемостта на кухина на йони във воден разтвор [64]. От друга страна термичните разширяемости $-R_{cav}^3 \partial R_{cav}^{-3} / \partial T$ и $-\rho^{-1} \partial \rho / \partial T$ са от един порядък също в съответствие с получения резултат за йони [64].

Квадруполната дължина, която следва от формулата за газ (ур. (22)) при стайна температура, е $L_Q = 0.16$ Å. Тук получаваме близо двукратно по-висока стойност L_Q = 0.27 Å, но тя все пак е с един порядък по-ниска от получената в предишни изследвания $L_Q = 2$ Å, при анализа на експериментални данни за парциалните молни обеми и молни ентропии [64] и активитетни коефициенти [73]. Но основният проблем, който се забелязва тук на **Фиг. 86**, е че L_Q намалява с увеличаване на плътността на средата (получава се, че колкото по-плътна е течността, толкова по-малък е ефектът от квадруполите), което е нефизически резултат. Освен това е нормално при по-високите температури L_Q да е по-ниска, но на **Фиг. 86** се забелязва тъкмо обратният.

За да анализираме следствията от модела на Онзагер, нека първо изчислим диполния момент на молекула вода в течна фаза. Според ур. (63) (с E = 0) стойността на $|\mathbf{p}|$ е 2.17 пъти по-голяма от $|\mathbf{p}_0|$ (1/(1 – $\alpha_{p0}X_p$) = 2.17), което се дължи на високата стойност на реакционното поле ($|\mathbf{E}_{react}| = X_p |\mathbf{p}| = 4.4 \times 10^{10}$ V/m). Толкова високо реакционно поле би предизвикало нелинеен отклик у молекулата. Освен това нарастването 2.17-кратно е значително и нереално завишено в сравнение с експерименталното; по литературни данни диполният момент в течна фаза на водата нараства 1.59 пъти [108], дори при леда нараства 1.67 пъти [67]. Аналогично от ур. (70) (при $\nabla E = 0$) квадруполният момент на молекула вода в течна фаза нараства $|\mathbf{q}|/|\mathbf{q}_0| = 1/(1 - \alpha_{q0}X_q) = 1.39$ пъти, което също е завишена стойност в сравнение с равнение с цитираната в литературта 1.13 [109].

Така, очевидно е, че няколко от приближенията, които правим при извода на модела на Онзагер, не са валидни за водна среда. Едно от тези приближения е пренебрегването на хиперполяризуемостта на водната молекула и нейната диполно-квадруполна поляризуемост (възможността полето, което създава дипола, да индуцира допълнителен квадруполен момент у съседна молекула и обратно) [67]. Друг възможен проблем може да идва от факта, че радиусът на кухината е твърде близко до автополяризационната точка на Кюри, където се очаква моделът на Онзагер да не е валиден. Според ур. (76) Онзагеровият модел има сингулярност при $R_{cav} = 1.14$ Å, което е опасно близко до стойността $R_{cav} = 1.39$ Å на **Фиг. 8а**. Трети възможен проблем вероятно е допускането за линейна непрекъсната среда – линейно уравнение на състоянието за поляризацията: $P = \alpha_P E$ (ур. (47)) на средата

в близост до кухината. Можем да изчислим полето E в течната среда в интервала $r = R_{cav}-3 \times R_{cav}$: получаваме, че E_r се изменя в граници $6.6 \times 10^8 \cdot 5.8 \times 10^7$ V/m. При такива високи полета средата едва ли би могла да се приеме за линейна. Ако интегрираме поляризацията $P = \alpha_P E$ в интервала $r = R_{cav}-3 \times R_{cav}$, получаваме, че диполният момент, който се пада на една молекула, е от порядъка на $0.6 \times |p_0|$. Тази стойност е на половината от пълната възможна поляризация на средата (при която молекулите са напълно ориентирани по посока на полето), т. е. пренебрегнатото в Онзагеровия модел диелектрично насищане ще има значителен ефект. Нека отбележим, че при високи електрични полета (както тук, така и посоченото горе реакционно поле), линейното приближение, което правим при развитието в ред на Болцмановия фактор $\exp[-(u_p + u_q)/k_BT]$, не е обосновано и също така не можем да смятаме електричната енергия на дипол, u_p , и на квадрупол, u_q , за независими.

В заключение можем да кажем, че теорията на Онзагер, която включва линейното уравнение на състоянието $P = \alpha_P E$ (без отчитане на хиперполяризуемостта на средата) не е приложима за вода [49] освен като полуемпиричен модел. Същото важи и за Борновата енергия, ур. (42) и следствията от нея [64, 73]. Следователно и двете предложени стойности 0.27 Å и 2 Å за квадруполната дължина L_Q са в най-добрия случай само по порядък верни.

В дисертацията анализираме и течен метанол. Използваме екпериментални данни за ε и ρ на CH₃OH, взети от изт. [110-114]. Радиусът на кухината е около 1.78±0.01 Å, като е малко по-нисък като стойност от получения от Ботчер с ур. (67). Квадруполната дължина варира в интервала $L_Q = 0.79$ -0.82 Å, но като цяло е 2.4 пъти по-голяма отколкото стойността, която следва от уравнението в газова фаза (ур. (22)). При анализ на средния активитетен коефициент на NaBr в метанол в изт. [73] е получена квадруполната дължина на метанола $L_Q = 1.1\pm0.2$ Å, която е близка до получената тук стойност 0.8 Å.

В заключение можем да кажем, че квадруполният модел на Онзагер работи добре за квадруполни течности, но показва проблеми със силно полярни такива. Той обяснява слабата температурна зависимост на диелектричната проницаемост на N_2 , CO_2 , CS_2 и C_6H_6 със силната зависимост на тяхната квадруполяризуемост от *T*. Някои нефизически резултати от класическата Онзагерова теория (например R_{cav} на бензен, който расте с плътността) се разрешават естествено с отчитането на квадруполите.

4. Свойства на междуфазовата граница между квадруполни течности

4.1. Електрични свойства на повърхности в хомогенна квадруполяризуема среда

В тази секция ще се занимаем с някои основни задачи на електростатиката в квадруполни среди [47], и по-специално задачи с повърхности, които задачи обаче са с малко физическо приложение. Целта е от тези прости физически задачи да извлечем някои основни изводи и да илюстрираме ефекти, които следват от квадруполяризуемостта на непрекъснатата средата. Задачите, които ще разгледаме, са: заредена повърхност, кондензатор и повърхност с нормален диполен момент. Като последната от тези задачи може да бъде решена коректно само при отчитане на квадруполите в средата.

4.1.1. Заредена повърхност

Нека имаме безкрайна заредена повърхност при z = 0 с повърхностна плътност на заряда ρ^{S} , поставена в хомогенна среда. Средата е изцяло диполна и се характеризира с нейната диелектрична проницаемост, ε . При тези условия (диполна среда) електричното поле се изменя със скок на повъхността, а електростатичният потенциал е линейна функция на разстоянието [34, 59, 60, 70].

Искаме да обобщим тази класическа задача за квадруполни среди – тоест непрекъснатата среда, в която е поставена заредената повърхност, се характеризира с ε и с квадруполна дължина L_Q .

За електричното поле на повърхност с повърхностна плътност на заряда ρ^{s} в квадруполна хомогенна среда с характеристики ε и L_{Q} извеждаме [47]:

(81)
$$E_{z} = \operatorname{sg}(z) \frac{\rho^{s}}{2\varepsilon} \left(1 - e^{-|z|/L_{o}} \right).$$

Като интегрираме ур. (81) и наложим условието за непрекъснатост, ур. (33), получаваме електростатичния потенциал на заредена повърхност [47]:

(82)
$$\phi = -\frac{\rho^{\mathrm{S}}}{2\varepsilon} \left(\left| z \right| + L_{\mathrm{Q}} \mathrm{e}^{-|z|/L_{\mathrm{Q}}} \right).$$

Важно е да отбележим, че потенциалът (ур. (82)) и електричното поле (ур. (81)) могат да бъдат получени и без условието за непрекъснатост на полето (ур. (34)), както сме постъпили в [47]. Двата израза за ϕ и E_z са представени на **Фиг. 9а** и **б** съответно, като са сравнени с класическото решение. Вижда се, че потенциалът (фиг **Фиг. 9а**) се изменя по-плавно с по-малки градиенти около повърхността в сравнение с класическия потенциал. А ако вземем границата на полето по ур. (81) при $z \rightarrow 0$, получаваме, че електричното поле в квадруполна среда се изменя линейно в близост до заредената повърхност, а не както е в класическия случай – със скок. Тоест електричното поле прави постепенен преход от едната класическа стойност, $\rho^{S}/2\varepsilon$, до другата, $-\rho^{S}/2\varepsilon$ в слой с дебелина от порядъка на няколко квадруполни дължини, L_Q (вж. **Фиг. 96**). Освен това E_z по ур. (81) има добре дефинирана стойност върху самата повърхност, за разлика от полето в диполна среда.

Фиг. 9 а) Електростатичен потенциал, ϕ , (ур. (82)) и **б)** нормална компонента на електричното поле, E_z (ур. (81)) на заредена повърхност (с повърхностна плътност на заряда ρ^{S}), поставена в хомогенна квадруполна среда (която се характеризира с ε и L_Q). Потенциалът, ϕ , полето, E_z , и разстоянието от повърхността, z, са подходящо обезразмерени. Класическото решение при $L_Q = 0$ е илюстрирано с червена пунктирана линия.

4.1.2. Кондензатор

Кондензаторът се състои от две заредени плочи, разположени на разстояние h една от друга. Първата плоча е с повърхностна плътност на заряда $+\rho^{S}$ в позиция z = + h/2, а втората плоча е с плътност на заряда $-\rho^{S}$ и е разположена при z = - h/2. В десертацията извеждаме електростатичният потенциал и поле в хомогенна квадруполна среда, които тук са представени на **Фиг. 10а** и **б**.

Според класическото решение за потенциала на плосък кондензатор, ϕ приема константна стойност извън кондензатора и се изменя линейно между плочите (виж **Фиг. 10a**, червената пунктирана линия). Ако го сравним с получения резултат за квадруполни среди (**Фиг. 10a**), забелязваме, че при отчитане на квадруполите потенциалът се изменя по-плавно на границите (както беше и при заредената повърхност). Също така, в квадруполната електростатика няма поле извън плочите на кондензатора, а вътре в кондензатора полето приема константна стойност. За сравнение полето в квадруполна среда (вж. **Фиг. 106**) прониква и извън плочите на кондензатора. Това означава, че на *отрицателен* заряд, поставен от външната страна в близост до *положително заредената плоча* на кондензатора (на разстояние по-малко от няколко квадруполни дължини), ще му действа сила, насочена към кондензатора.

Фиг. 10 а) Електростатичен потенциал и б) електрично поле (подходящо обезразмерени) на плосък кондензатор с дебелина $h = 4L_Q$, поставен в хомогенна квадруполна среда, характеризираща се с ε и L_Q . Потенциалът и полето извън кондензатора са със син цвят, а вътре в него – с оранжев. На графиката с червени пунктирани линии е илюстрирано и класическото решение за потенциала и полето.

4.1.3. Повърхност с нормален диполен момент

Последната задача, която ще разгледаме, е повърхност със собствен нормален повърхностен диполен момент P_z^S , като повърхността е поставена в хомогенна квадруполна среда. Като пример за подобна диполна повърхност можем да посочим липиден бислой или липидна люспа в разтвор, както и някои двуизмерни дефекти в кристали. Такава повърхност всъщност може да се разглежда като молекулно тънък кондензатор.

Окончателният резултат за полето на повърхност с диполен момент, който получаваме в дисертацията, е:

(83)
$$E_z = -\frac{P_z^{\rm S}}{2\varepsilon L_{\rm Q}} e^{-|z|/L_{\rm Q}}.$$

Потенциалът, съответстващ на това поле, е:

(84)
$$\phi = \operatorname{sg}(z) \frac{P_z^{\mathrm{S}}}{2\varepsilon} \left(1 - \mathrm{e}^{-|z|/L_{\mathrm{Q}}} \right).$$

Полученият електростатичен потенциал на безкрайно тънък кондензатор и на електричното поле, което той създава, са представени на **Фиг. 11а** и **б**. Резултатът може да се сравни с този за кондензатор с крайна дебелина в секция 4.1.2 (виж **Фиг. 10**).

Класически решението за потенциала на повърхност с P_{7}^{S} е:

(85)
$$\phi_{\rm c} = {\rm sg}(z) \frac{P_z^{\rm s}}{2\varepsilon},$$

т. е. за повърхност с диполен момент условието за непрекъснатост на потенциала се нарушава [69] (индексът "с" обозначава класическото решение). От класическия

потенциал, ϕ_c , като използваме съотношението sg(z) = $-1 + 2\eta(z)$ и $\delta(z) = d\eta(z)/dz$, получаваме електричното поле $E_{z,c} = -d\phi_c/dz$ на молекулно тънък кондензатор:

(86)
$$E_{z,c} = -\frac{P_z^s}{\varepsilon}\delta(z).$$

Така според уравнението на Поасон (ур. (1)) на повърхност с диполен момент едновременно екстензивната (диполният момент) и интензивната (електричното поле) величина са сингулярно разпределени.

Фиг. 11 а) Електростатичен потенциал ϕ (ур. (84)) и **б)** електрично поле E_z (ур. (83)) на повърхност с нормален диполен момент, P_z^S (или аналогично на безкрайно тънък кондензатор) в хомогенна диполно-квадруполна среда, която се характеризира с ε и L_Q . Потенциалът, полето и z са подходящо обезразмерени. Направено е сравнение с класическото решение за потенциала и полето (червените пунктирани линии).

За разлика от диполната среда, където промяната на потенциала се осъществява със скок при z = 0 (ур. (85)), в квадруполна среда (ур. (84)) потенциалът се изменя плавно от едната обемна стойност $-P_z^S/2\varepsilon$ до другата $P_z^S/2\varepsilon$ (вж. Фиг. 11а), като разликата на потенциалите в двете обемни фази се запазва:

(87)
$$\Delta_{-}^{+}\phi = \phi_{\infty}^{+} - \phi_{\infty}^{-} = \frac{P_{z}^{3}}{\varepsilon}.$$

Друго много важно следствие е, че електричното поле E_z (ур. (83)) се разпространява и извън плочите на безкрайно тънкия кондензатор (за разлика от $E_{z,c}$, ур. (86), където е просто една δ-функция, вж. **Фиг. 116**). Освен това полето има добре дефинирана стойност на повърхността $E_z(z=0) = -P_z^S/2\varepsilon L_Q$, което позволява да се изчисли например енергията на дипол, поставен върху самата повърхност. В рамките на класическата електростатика, безкрайното поле на повърхността (ур. (86)) би довело до безкрайна собствена енергия за образуване на повърхност. От друга страна, безкрайното поле ще индуцира безкраен диполен момент у адсорбираните на повърхността молекули, а подобен резултат е най-малкото нефизически. Това прави термодинамичното разглеждане на диполни повърхности извънредно трудно в рамките на уравнението на Поасон (ур. (1)) – проблем, който напълно се разрешава за квадруполното уравнение на Кулон-Ампер (ур. (7)).

Полето, което се разпространява извън плочите на кондензатора, поляризира хомогенната среда:

$$(88) \quad P_z^{\pm} = \left(\varepsilon - \varepsilon_0 \right) E_z.$$

Излишъкът на поляризация от двете страни на диполната повърхност стандартно отбелязваме като адсорбция – "адсорбиран" е диполен момент, възникнал вследствие на повърхностното електрично поле, което от своя страна е резултат от специфично адсорбираните диполи P_z^{S} (вж. Фиг. 116), образувайки *дифузен слой от диполи*.

(89)
$$\Gamma_{P}^{+} = \int_{0}^{\infty} P_{z}^{+} dz; \qquad \Gamma_{P}^{-} = \int_{-\infty}^{0} P_{z}^{-} dz.$$

Като заместим ур. (83) и (88) в ур. (89), получаваме адсорбциите в двата прилежащи към повърхността обемни слоя, които адсорбции се оказват равни помежду си:

(90)
$$\Gamma_p^+ = \Gamma_p^- \equiv \Gamma_p^\pm = -\frac{P_z^{\rm S}}{2\varepsilon} (\varepsilon - \varepsilon_0).$$

Адсорбцията в обемните области е аналогична на адсорбцията на заряди в обема в близост до заредена повърхност при структурата на двойния електричен слой (виж напр. [115]). По аналогия със заредената повърхност пълният диполен момент на повърхността, Γ_P , е сума от собствения диполен момент на повърхността, P_z^S , и адсорбцията в двата дифузни слоя, Γ_P^{\pm} :

(91)
$$\Gamma_{P} = P_{z}^{s} + 2\Gamma_{P}^{\pm}$$
.

Това уравнение всъщност е следствие от Гибсовата дефиниция за излишък. Заместваме ур. (90) в ур. (91) и получаваме, че за разлика от заредената повърхност, където пълният заряд е нула, тук пълният диполен момент е различен от нула:

(92)
$$\Gamma_P = \varepsilon_0 \Delta_-^+ \phi$$

и е свързан с разликата в обемните потециали $\Delta_{-}^{+}\phi$ от ур. (87). Так получихме едно много основно уравнение в електростатиката, което всъщност е пряко следствие от микроскопското уравнение на Максуел [60].

Основният извод, който бихме могли да направим от решените базови задачи, е, че отчитането на квадруполните членове в урвненията на Максуел довежда до пофизически резултати – сингулярностите се премахват и няма скокове на полето (при заредена повърхност) или на потенциала (при диполна повърхност). Електростатичният потенциал при всички решени задачи се изменя по-плавно и непрекъснато. В случай на заредена повърхност полето E_z и неговата производна dE_z/dz са непрекъснати върху повърхността (сравни с поле на точков заряд, секция 3.1). При повърхност с нормален диполен момент P_z^S само полето E_z е непрекъснато, но не и неговата производна dE_z/dz (също както беше при полето на точков дипол, секция 3.1).

4.2. Теория на диполните повърхности между изолатори. Дифузен диполен слой

На практика всички повърхности между диелектрици притежават повърхностен диполен момент. Реално диполният момент на конкретна молекула на повърхността е ориентиран в по-голяма степен тангенциално, отколкото нормално на междуфазовата повърхност. Но осредненият тангенциален диполен момент на хомогенна повърхност е нула (в отсъствие на тангенциално електрично поле). Следователно остава само нормалният на повърхността среден диполен момент. Според Френкел [116] нормалният диполен момент се дължи най-вече на силата на изображение, която действа върху квадруполите (виж също изт. [117]). Силата на изображение, която действа на *дипол*, ориентира с равна вероятност молекулата както с положителния полюс, така и с отрицателния полюс насочен нагоре. Ако обаче отчетем по-детайлно разпределението на зарядите в молекулата, като вземем предвид нейния квадруполен момент, то тогава молекулата се ориентира по определен начин. Например водните молекули на междуфазова граница вода газ или вода масло са насочени предимно с кислородния атом към газовата/маслената фаза [118, 119]. Други възможни ориентиращи сили са ван дер Ваалсовите, стеричните сили и водородните връзки [120].

Ориентираните молекули на повърхността и тяхното взаимодействие с обемните молекули според Крокстън [121] оказват съществено влияние на междуфазовото напрежение (виж също [122], където е отчетено и взаимодействието повърхностен дипол|повърхностен дипол). Тук ще разгледаме количествено този въпрос на основата на квадруполното уравнение на електростатиката. В рамките на класическата електростатика това не е възможно, тъй като диполите са в неопределено (безкрайно голямо) поле на повърхността (ур. (86), секция 4.1.3). Класическото поле съответства на безкрайна енергия, докато този проблем отпада, като се отчетат квадруполите в двете обемни фази.

Повърхностният диполен момент е в основата на сформирането на *дифузен слой от диполи* в двете обемни фази [48], сходен с този, разгледан в секция 4.1.3. Нормалният на повърхността диполен момент може да се дължи и на адсорбирани повърхностно активни молекули и измерването на промяната му е основен експериментален метод за анализ на състоянието на неразтворими монослоеве [9, 123].

4.2.1. Електрично поле на междуфазова повърхност с диполен момент

Разглеждаме повърхност при z = 0 между два диелектрика (няма обемни заряди, $\rho = 0$) [48]. Повърхността е със "собствен" нормален диполен момент P_z^S (без повърхностен заряд, $\rho^S = 0$), както в секция 4.1.3, но тук средата не е хомогенна. Диелектрикът в полупространството z > 0 се характеризира с диелектрична константа ε^+ и квадруполна дължина L_Q^+ , а при z < 0 характеристиките на средата са съответно ε^- и L_Q^- .

В дисертацията правим подробен извод и окончателно получаваме, че електричното поле, което създава повърхност с P_z^S , затихва експоненциално в двете обемни фази с характерна дължина съответната квадруполна дължина на диелектрика [48]:

(93)
$$E_{z}^{+}(z) = E_{z}^{S} e^{-z/L_{Q}^{2}};$$
 $E_{z}^{-}(z) = E_{z}^{S} e^{+z/L_{Q}^{2}}.$
Tyk E_{z}^{S} :

(94)
$$E_z^{\mathbf{S}} = -\frac{1}{\varepsilon^+ L_{\mathbf{Q}}^+ + \varepsilon^- L_{\mathbf{Q}}^-} P_z^{\mathbf{S}}.$$

е стойността на полето точно върху повърхността. Това решение за E_z^{\pm} е илюстрирано на **Фиг. 12а** (сравни с **Фиг. 11б**, където полето затихва с една и съща характерна дължина L_Q в хомогенната среда).

Фиг. 12 а) Електрично поле, E_z (ур. (94)-(93)) и б) електростатичен потенциал, ϕ (ур. (105)) на повърхност с нормален диполен момент P_z^S между два диелектрика. Посоченият пример е за вода при z < 0 (L_Q^W) и масло при z > 0 (L_Q^O), като примерните изчисления са с $L_Q^W = 2$ Å и $L_Q^O = 1$ Å и $P_z^S = -70 \times 10^{-12}$ С/m. Сива пунктирана линия – решението в случай, че при z > 0 имаме газова фаза ($L_Q^G = 0$).

Профилът на електричното поле E_z (ур. (93)), което създава повърхност с *диполен момент* $P_z^{\rm S}$ между две среди, изградени от *диполи* и *квадруполи* е много подобен на профила на електростатичния потенциал, $\phi = \phi^{\rm S} {\rm e}^{-z/L_{\rm D}}$, на заредена повърхност с $\rho^{\rm S}$, в среда в която има *диполи* и *свободни заряди*. Като характерното разстояние, на което затихва потенциалът на заредена повърхност, е Дебаевата дължина, L_D (отношение на диполна сила спрямо йонна сила), докато характерната дължина на затихване на полето на диполна повърхност е квадруполната дължина в непрекъснатата среда (квадруполна спрямо диполна сила, виж в края секция 2.2.2). Както обемните заряди неутрализират повърхностния заряд при заредена повърхност, така и диполите в обема компенсират (но само частично) повърхностен дипол|диполи в обема (виж **Фиг. 13**) и по аналогия с двойния електричен слой можем да наречем тази структура *двоен диполен слой* [48]. Като обемните диполи, ориентирани в обратна посъка на повърхностните, образуват *дифузен диполен слой* (**Фиг. 13**, [48]). Аналогията между заредена повърхност и повърхност с диполен момент е събрана по-пригледно в **Таблица 3**.

4.2.2. Уравнение на състоянието на P^S

Както вече споменахме, в рамките на диполно-квадруполната електростатика има добре дефинирано поле на повърхността, E_z^S , което би могло допълнително да ориентира (или разориентира) молекулите, разположени върху тази повърхност [48, 61, 118]. Това би оказало влияние върху повърхностната плътност на диполния момент, P_z^S . Поне за малки стойности на E_z^S , може да се очаква линейно уравнение на състоянието за P_z^S като на пироелектрик [60, 48]. В текста на дисертацията извеждаме последователно следното съотношение между P_z^S и E_z^S :

$$(95) \quad P_z^{\rm S} = P_{z0}^{\rm S} + \alpha_{zz}^{\rm S} E_z^{\rm S}$$

Тук P_{z0}^{S} е собствената повърхностна плътност на диполен момент в отсъствие на поле E_{z}^{S} , а α_{zz}^{S} е нормалната компонента на тензора на повърхностната поляризуемост [124]. В общия случай съотношение (95) може да се запише така: $P^{S} = P_{0}^{S} + \alpha^{S} \cdot E^{S}$, където α^{S} е тензорът на повърхностната поляризуемост (но тъй като ние ще разглеждаме само плоска симетрия ур. (95) на този етап е достатъчно). Всъщност, тази линейна зависимост не е много коректна, тъй като полето на повърхността E_{z}^{S} , макар и да не е безкрайност (както е в класическия случай, ур. (86)), е твърде високо – от порядъка на ~GV/m (вж. секция 4.2.4). При извода на ур (95) в дисертацията изясняваме физическия смисъл на коефициентите P_{z0}^{S} и α_{zz}^{S} :

(96)
$$P_{z0}^{\rm S} = \frac{\Gamma |\boldsymbol{p}_0| k_{\rm or}}{3k_{\rm B}T}; \qquad \alpha_{zz}^{\rm S} = \frac{\Gamma |\boldsymbol{p}_0|^2}{3k_{\rm B}T}$$

където Γ е броят молекули, асоциирани на повърхността, а k_{or} е коефициентът в потенциала $u_{or} = -k_{or}\cos\theta$, който потенциал ориентира специфично молекулите на повърхността (θ е ъгълът между диполния момент на молекулата на повърхността и *z*-оста). Коефициентът k_{or} може да е както положителен, така и отрицателен. В случай на междуфазова повърхност вода|масло, където водните молекули сочат с

отрицателния си заряд към маслената фаза, потенциалът u_{or} ще е минимален при θ = π и следователно $k_{or} < 0$. Към този ориентиращ потенциал сме добавили и разориентиращата електростатична енергия: $-p_0 \cdot E^S = -|p_0| E_z^S \cos \theta$, (допускали сме, че молекулата има само твърд диполен момент p_0). Електростатичната сила действа разориентиращо, тъй като полето на една молекула ориентира съседните ѝ молекули на повърхността в противоположна посока. Окончателно потенциалната енергия на молекула на повърхността е [48]:

(97) $u_{\rm or} = -\left(k_{\rm or} + \left|\boldsymbol{p}_0\right| E_z^{\rm s}\right) \cos\theta$.

Нека направим оценка на P_{z0}^{S} и α_{zz}^{S} за повърхност вода|газ. Допускаме, че броят молекули на единица площ от повърхността е от порядъка на Г ~ С×1-2×d_{H2O}, където C е обемната частичкова концентрация, C = 0.033 Å⁻³, а $d_{\rm H2O}$ е диаметърът на водна молекула, $d_{\rm H2O} = 2.8$ Å, като сме взели един или два диаметъра. Следователно $\Gamma \sim 0.1-0.2 \text{ Å}^{-2}$, което означава, че на площ от около 5-10 Å² се пада една молекула вода на повърхността. Като заместим тази оценка за Г в ур. (96), получаваме $\alpha_{zz}^{S}/\varepsilon_{0}$ ~ 3-6 nm. От предишни експериментални оценки на тангенциалната повърхностна поляризуемост, α_{xx}^{s} , направени за InP [124], е получено, че α_{xx}^{S} е от порядъка на обемната диелектрична константа ε на InP, умножена по дебелината на преходния слой. Аналогично за вода получаваме, че по порядък $\alpha_{77}^{S}/\varepsilon_{0} \sim 5-50$ nm (където сме използвали $\varepsilon = 78 \times \varepsilon_{0}$). Това е в съответствие със стойността, получена от ур. (96), която се очаква реално да е неколкократно повисока. За да направим оценка на P_{z0}^{S} , допускаме, че водните молекули на повърхността се ориентират в резултат на сформирани водородни връзки и $k_{\rm or} = 5 \times k_{\rm B} T$ (което е от порядъка на енергията на една слаба водородна връзка). Това дава като резултат разумна стойност за P_{z0}^{S} между –100 и –200×10⁻¹² С/m. Тези оценки обаче за k_{or} и P_{z0}^{S} още веднъж подсказват, че линейната връзка (95) не е особено коректна.

Следствие от ур. (95) е, че заедно с ур. (94) образуват линейна система за двете неизвестни E_z^S и P_z^S . Решаваме тази система и получаваме:

(98)
$$E_{z}^{s} = -\frac{1}{\varepsilon^{+}L_{Q}^{+} + \varepsilon^{-}L_{Q}^{-} + \alpha_{zz}^{s}}P_{z0}^{s};$$
 $P_{z}^{s} = \frac{\varepsilon^{+}L_{Q}^{+} + \varepsilon^{-}L_{Q}^{-}}{\varepsilon^{+}L_{Q}^{+} + \varepsilon^{-}L_{Q}^{-} + \alpha_{zz}^{s}}P_{z0}^{s}.$

Според това уравнение собственият диполен момент P_z^S винаги е по-малък от P_{z0}^S , което се дължи на разориентиращото повърхностно поле, E_z^S , насочено в противоположна на P_z^S посока (вж. ур. (94)). В случай че повърхностната поляризуемост е пренебрежима, т. е. $\alpha_{zz}^S << \varepsilon^+ L_Q^+ + \varepsilon L_Q^-$ то $P_z^S = P_{z0}^S$, което съответства на неполяризуема повърхност (ур. (95) при $\alpha_{zz}^S = 0$). Ако пренебрегнем квадруполните дължини в израза за повърхностното поле (в ур. (98) полагаме $L_Q^+ = L_Q^- = 0$), получаваме $E_z^S = -P_{z0}^S/\alpha_{zz}^S$. Този резултат съответства на пълна

деполяризация на повърхността, $P_z^{S} = 0$ (вж. ур. (95)), а подобно състояние е нефизическо. Такъв нефизически резултат показва за пореден път, че правилното описание на диполни повърхности е невъзможно, без отчитането на квадруполите в непрекъснатата среда.

4.2.3. Междуфазово напрежение

От предложения израз за потенциалната енергия на молекула на повърхността, $u_{\rm or}$ (ур. (97)), в дисертацията пресмятаме свободната енергия на една молекула, а от там и общата свободна енергия за единица площ $\sigma_p^{\rm S}$:

(99)
$$\sigma_P^{\rm S} = -\frac{\left(P_{z0}^{\rm S} + \alpha_{zz}^{\rm S} E_z^{\rm S}\right)^2}{2\alpha_{zz}^{\rm S}} = -\frac{\left(P_z^{\rm S}\right)^2}{2\alpha_{zz}^{\rm S}}.$$

Принос към междуфазовото напрежение, *γ*, обаче оказват и адсорбираните в дифузните слоеве диполни молекули:

(100)
$$\gamma = \sigma_P^{\mathrm{S}} + \gamma_P^+ + \gamma_P^-.$$

Тук γ_P^+ и γ_P^- са приносите към γ съответно от горната (z > 0) и долната (z < 0) фаза. Можем да ги пресметнем по формулата на Бакер [125, 126]:

(101)
$$\gamma_P^+ = \int_0^\infty (T_{xx}^+ - T_{zz}^+) dz; \qquad \gamma_P^- = \int_{-\infty}^0 (T_{xx}^- - T_{zz}^-) dz,$$

където T_{ii} са компоненти на тензора на напреженията, T.

В секция 2.4 изведохме тензора на *електричните* напрежения на Максуел за квадруполни среди, T_{el} (ур. (37)). За да получим пълния тензор, T, за среди, в които действат както електрични, така и механични сили обаче, трябва към T_{el} да добавим тензора на *механичните* напрежения. Окончателно в дисертацията получаваме компонентите на тензора на напреженията, T_{zz} и T_{xx} , при плоска симетрия и как те са свързани с електричното поле, E_z [48]:

(102)
$$T_{zz} = -p_0;$$

$$T_{xx} = -p_0 - \left\{ \varepsilon E_z^2 + \varepsilon L_Q^2 \left[\left(\frac{dE_z}{dz} \right)^2 - E_z \frac{d^2 E_z}{dz^2} \right] \right\}$$

като тук p_0 е налягането при електрично поле E = 0. Заместваме получения резултат за T_{zz} и T_{xx} и електричното поле E_z^{\pm} от ур. (93) и (94) във формулата на Бакер (ур. (101)), за да намерим приноса към междуфазовото напрежение, γ_P^+ и γ_P^- , на дифузните слоеве от диполи:

(103)
$$\gamma_P^+ = -\frac{\varepsilon^+ L_Q^+}{\left(\varepsilon^+ L_Q^+ + \varepsilon^- L_Q^-\right)^2} \frac{\left(P_z^{\rm s}\right)^2}{2}; \qquad \gamma_P^- = -\frac{\varepsilon^- L_Q^-}{\left(\varepsilon^+ L_Q^+ + \varepsilon^- L_Q^-\right)^2} \frac{\left(P_z^{\rm s}\right)^2}{2},$$

като γ_{P}^{+} и γ_{P}^{-} всъщност са предизвикани от полето E_{z}^{\pm} , създадено от поляризираната повърхност. Това поле е причината за ориентацията на диполите в двете обемни фази и съответно е и причина за приносите към γ от адсорбираните диполи. Тъй като, в рамките на диполните уравнения на Максуел (в които се отчита само поляризацията на средата), поляризираната повърхност не създава електрично поле, то това явление на принос на диполите към междуфазовото напрежение γ е без аналог в класическата електростатика. Сумираме отделните приноси към γ , като заместваме в ур. (100) отделните изрази за енергията за образуване на единица площ от повърхност с диполи, σ_{P}^{s} (ур. (99)) и изразите за γ_{P}^{+} и γ_{P}^{-} (ур. (103)):

(104)
$$\gamma_{P} = -\frac{\varepsilon^{+}L_{Q}^{+} + \varepsilon^{-}L_{Q}^{-}}{\varepsilon^{+}L_{Q}^{+} + \varepsilon^{-}L_{Q}^{-} + \alpha_{zz}^{s}} \frac{\left(P_{z0}^{s}\right)^{2}}{2\alpha_{zz}^{s}}.$$

Накрая ще направим оценка на повърхностното напрежение на повърхност вода|газ. Използваме получената в изт. [64, 73] оценка на квадруполната дължина на водата $L_Q^W = 2$ Å и оценката за повърхностната плътност на диполния момент, $P_z^S = -70 \times 10^{-12}$ C/m (вж. изт. [48] или секция 4.2.4). Правим изчисленията за две примерни стойности на нормалната компонента на повърхностната поляризуемост $\alpha_{zz}^S \epsilon_0 = 5$ или 50 nm. Заместваме тези стойности в ур. (104) (като отчитаме също ур. (98), за да намерим P_{z0}^S) и получаваме, че повърхностното напрежение на водата, дължащо се на диполите, е $\gamma = -73$ или -23 mN/m. С други думи, ако диполните молекули не се адсорбираха на повърхността, то повърхностното напрежение би било по нашите оценки с около 73 или 23 mN/m по-високо [48]. Тази оценка е близка по стойност с оценките на други автори [121, 122, 127], базирани на методи, различни от нашия.

4.2.4. Електростатичен потенциал и адсорбция

В тази секция от дисертацията показваме отново валидността на едно основно уравнение в електростатиката, $\Gamma_P = \varepsilon_0 \Delta_-^+ \phi$ [60] (Γ_P е пълният диполен момент на повърхността, а $\Delta_-^+ \phi$ е разликата в обемните потенциали). Това съотношение беше изведено в секция 4.1.3 (ур. (92)) за повърхност с диполен момент, поставена в хомогенна среда, но тук го обобщаваме за повърхност с P_z^S между два различни диелектрика [48].

Нека потенциалът дълбоко в обема на долната фаза (z < 0) е равен на нула, т. е. $\phi^{-}(-\infty) \equiv \phi_{\infty} = 0$. От ур. (93)&(94) намираме потенциалите в двете фази:

(105)
$$\phi^+(z) = \Delta^{\rm S}_+ \phi e^{-z/L_{\rm Q}^+} + \Delta^+_- \phi; \qquad \phi^-(z) = \Delta^{\rm S}_- \phi e^{+z/L_{\rm Q}^-}.$$

Разликата между потенциала дълбоко в обема на едната обемна фаза и другата обемна фаза, $\Delta_{-}^{+}\phi \equiv \phi^{+}(+\infty) - \phi^{-}(-\infty)$, е:

(106)
$$\Delta_{-}^{+}\phi = \frac{L_{Q}^{+} + L_{Q}^{-}}{\varepsilon^{+}L_{Q}^{+} + \varepsilon^{-}L_{Q}^{-}}P_{z}^{S};$$

(сравни с ур. (87) за хомогенна среда). Потенциалната разлика $\Delta_{-}^{+}\phi$ се дължи както на собствения нормален повърхностен диполен момент, $P_z^{\rm S}$, така и на адсорбираните диполи в двете обемни фази. Останалите, въведени в ур. (105), потенциални разлики, $\Delta_{+}^{\rm S}\phi$ и $\Delta_{-}^{\rm S}\phi$, са приведени в дисертацията. Потенциалът според ур. (105) е представен на **Фиг. 126**. (сравни с потенциала на **Фиг. 11а**).

Можем да сравним потенциалната разлика $\Delta_{-}^{+}\phi$ от ур. (106) с добре познатата формула на Хелмхолц (вж. напр. [69]):

(107)
$$\Delta_{-}^{+}\phi_{\rm c} = \frac{P_z^{\rm s}}{\varepsilon^{\rm s}}$$

Индексът "с" отразява, че това е класическата трактовка на диполната електростатика. Като тук ε^{S} е една не съвсем ясна от физическа гледна точка величина – дефинира се като диелектричната константа между двете заредени плочи на безкрайно тънкия кондензатор на повърхността или в случая това е ε на преходния слой между двата диелектрика [128, 129]. При сравнението на ур. (107) с (106) получаваме, че $\varepsilon^{S} = (\varepsilon^{+}L_{Q}^{+} + \varepsilon L_{Q}^{-})/(L_{Q}^{+} + L_{Q}^{-})$, следователно ε^{S} е всъщност обемна (а не повърхностна) характеристика, тъй като ε и L_{Q} са чисто обемни величини. Ако долната фаза е вода (отбелязваме с индекс "W"), а горната фаза е газ (индекс "G"), при което квадруполната дължина на газа е приблизително нула, L_{Q}^{G} ≈ 0 , то за разликата в обемните потенциали получаваме:

(108)
$$\Delta_{\rm W}^{\rm G} \phi = \frac{P_z^{\rm S}}{\varepsilon^{\rm W}}.$$

От тук следва, че в посочения случай $\varepsilon^{S} = \varepsilon^{W}$. Като използваме стойността $\Delta_{W}^{G} \phi = -100 \text{ mV}$ [115, 119, 130, 131] и $\varepsilon^{W} = 78 \times \varepsilon_{0}$ можем да пресметнем по ур. (108) диполния момент на чиста водна повърхност, $P_{z}^{S} = -70 \times 10^{-12} \text{ C/m}$. Разпределението на потенциала, отговарящо на тази стойност на P_{z}^{S} е показано на **Фиг. 126**.

Експериментално достъпната величина обаче е не P_z^S , а пълният диполен момент на повърхността Γ_P (това е и величината, която се получава като резултат от молекулнодинамични симулации). В двата прилежащи към повърхността слоя се акумулира диполен момент в следствие на полето на повърхността (вж. **Фиг. 13**), който също допринася към Γ_P (аналогично на ур. (91) в секция 4.1.3): (109) $\Gamma_P = P_z^S + \Gamma_P^+ + \Gamma_P^-$.

Тук Γ_P^+ и Γ_P^- са адсорбциите на диполи съответно в горната и долната фаза (**Фиг.** 13). Пресмятаме ги като излишък на обемната поляризация във всяка от фазите:

(110)
$$\Gamma_P^+ = \int_0^\infty P_z^+ dz = -\frac{\left(\varepsilon^+ - \varepsilon_0\right)L_Q^+}{\varepsilon^+ L_Q^+ + \varepsilon^- L_Q^-} P_z^S = \left(\varepsilon^+ - \varepsilon_0\right)\Delta_+^S \phi;$$
$$\Gamma_P^- = \int_{-\infty}^0 P_z^- dz = -\frac{\left(\varepsilon^- - \varepsilon_0\right)L_Q^-}{\varepsilon^+ L_Q^+ + \varepsilon^- L_Q^-} P_z^S = -\left(\varepsilon^- - \varepsilon_0\right)\Delta_-^S \phi.$$

Заместваме тези адсорбции в ур. (109) и получаваме:

(111)
$$\Gamma_P = \frac{\varepsilon_0 \left(L_Q^+ + L_Q^- \right)}{\varepsilon^+ L_Q^+ + \varepsilon^- L_Q^-} P_z^{\rm S} = \varepsilon_0 \Delta_-^+ \phi,$$

което вече се отнася за повърхност между два различни диелектрика (сравни с ур. (92), секция 4.1.3). За повърхност вода|газ (W|G) стойността $\Delta_W^G \phi = -100 \text{ mV}$ отговаря на пълен диполен момент $\Gamma_P = -0.9 \times 10^{-12} \text{ C/m}.$

Фиг. 13 Повърхностният диполен момент, $P_z^{\rm S}$, създава поле E_z (ур. (93)), което ориентира обемните диполи в противоположна посока на повърхностните, така че да компенсират $P_z^{\rm S}$. Това създава структура, която наричаме двоен диполен слой.

Следователно, в рамките на квадруполната електростатика, диполният момент на междуфазова повърхност е разпределен в три слоя, вж. **Фиг. 13**. Повърхностният слой е с плътност на диполния момент P_z^S (който може да се поменя във външно електрично поле, ур. (95)). И два дифузни слоя от диполи, като диполите в обемните фази са ориентирани в обратна посока на повърхностните диполи, така че да компенсират полето, създадено от P_z^S . Аналогията със заредена повърхност с повърхностна плътност на заряда ρ^S е почти пълна – при нея ρ^S се компенсира от дифузните слоеве заряди в прилежащите фази (вж. **Таблица 3**). За разлика от двойния електричен слой обаче, където повърхностните заряди се компенсират напълно, тук повърхностният диполен момент не се компенсира изцяло от диполите в обема и остатъчният диполен момент на междуфазовата повърхност е именно Γ_P . В действителност предложеното разделение на слоеве на повърхността (адсорбционен и дифузионен слой) е възможно само ако дебелината на повърхностния слой от специфично адсорбирани диполи, h^S , е много по-малка от квадруполната дължина, L_Q , т. е. $h^S << L_Q$. По-вероятно е обаче те да са съизмерими и адсорбционният и дифузният слой от диполи да се припокриват (аналогично на припокриването на адсорбционния и дифузния слой от йони в двойния електричен слой при високи концентрации на електролит [115, 132]). Наблюдаваното биномиално разпределение на диполния момент при молекулно динамични симулации [120] би могло да се обясни точно с такова припокриване на повърхностния и дифузния адсорбционен слой. Два слоя от противоположно ориентирани диполи са наблюдавани на твърда повърхност (виж например *Фиг. 5* в изт. [133]).

Двоен електричен слой	Двоен диполен слой
Специфично адсорбираните повърхностни	Ориентираните молекули на повърхността,
заряди, които създават повърхностна плътност	които създават нормална повърхностна плътност
на заряда ρ^{s} , се компенсират напълно от	на диполния момент P_z^s , се компенсират
зарядите в дифузните слоеве в обемните фази.	частично от алтерниращи дифузни слоеве от
Пълният заряд на повърхността е нула.	диполи в двете обемни фази. Но пълният
	диполен момент $\Gamma_P = \varepsilon_0 \Delta^+ \phi$ е по-малък от
	специфичния P_z^{S} .
В линейно приближение (малки повърхностни	Електричното поле, което създава поляризирана
потенциали ϕ^{s}) електростатичният потенциал	повърхност, затихва експоненциално с
затихва експоненциално с разстоянието, $\phi =$	разстоянието $E_z = E_z^{s} \exp(-z/L_Q)$. Като
$\phi^{ m S}$ ехр($-z/L_{ m D}$). Като характерната дължина на	характерната дължина на затихване е L_Q =
затихване е $L_{\rm D} = (\varepsilon k_{\rm B} T/2e^2 C_{\rm el})^{1/2}$ (Дебаева	$(\alpha_{o}/3\varepsilon)^{1/2}$ (квадруполна дължина).
дъжина), където $C_{\rm el}$ е концентрацията на	
електролита.	
$L_{\rm D}^2$ е приблизително пропорционално на	$L^2_{\sf Q}$ е приблизително пропорционално на
$\boldsymbol{p} \cdot \boldsymbol{p} C / e^2 C_{\text{el}} \left(\varepsilon \sim \boldsymbol{p} \cdot \boldsymbol{p} C / k_{\text{B}} T \right). L_{\text{D}}$ зависи слабо от T .	$q: qC/p: pC$ ($\alpha_{Q} \sim q: qC/k_{B}T$). L_{Q} зависи слабо от T .

Таблица 3. Сравнение и аналогии между двоен електричен слой и двоен диполен слой.

Накрая нека отбележим аналогията между дипол в непрекъсната среда, p, и повърхност с диполен момент, P_z^S . Диполният момент p на молекула в течна фаза може да се променя (да се индуцира дипол) под действие на локалното електрично поле E_{loc} (вж. ур. (49)). Почти същтото важи и за осреднения нормален диполен момент на повърхността по показаното в секция 4.2.2 уравнение на състоянието (95) за P_z^S , като тук диполният момент е индуциран от полето, което действа на повърхността, E_z^S . Пълният диполен момент на молекулата и поляризираната от нея среда, p_{ext} (ур. (55)) е от друга страна аналогичен на пълния диполен момент на повърхността, Γ_P (който е сума от собствения диполен момент на повърхността, P_z^S , и диполния момент на поляризираните от него прилежащи фази, ур. (109) и (111)). С други думи двойният диполен слой на повърхност с повърхността пътност на нормалния диполен момент е аналогичен на "диполната атмосфера" около дипол в непрекъсната среда от диполи (така както двойният електричен слой до заредена повърхност е аналогичен на противойонната атмосфера около йон в електролитен разтвор).

5. Заключение и приноси

Можем да изтъкнем три причини, поради които квадруполното уравнение на електростатиката се използва рядко в литературата: първо, има неяснота относно граничните условия [37, 38]; второ, не са известни стойностите на материалните характеристики на квадруполните среди – тяхната квадруполна дължина; и трето, не е известна формата на тензора на Максуел за квадруполна среда. В дисертацията са разгледани и, до голяма степен, разрешени и трите проблема.

Бихме могли да направим следните заключения от дисертацията:

- Квадруполно уравнение на Кулон-Ампер и Бетев потенциал.
 - Разработен е стриктен подход към електростатиката на квадруполните среди, като е изяснена ролята на Бетевия потенциал в уравнението на състоянието на поляризацията, *P*. Показано е, че потенциалът на Бете оказва някакво съществено влияние върху *P* само в случай че в средата са отчетени градиентите на концентрацията на частиците.
 - Изяснен е въпросът, че в макроскопските уравнения на електростатиката на непрекъснати среди влиза потенциалът *ф*, който е разликата от пълния електростатичен потенциал и Бетевия потенциал (*φ* = *φ*_{tot} - *φ*_{Bethe}). В действителност потенциалът *φ* е експериментално достъпната величина и следователно е логично той да присъства в теоретичните уравнения.
- Гранични условия към квадруполното уравнение на електростатиката.
 - Приведен е пълният набор гранични условия, необходими при решаването на обобщението на уравнението на Поасон за квадруполни среди, $\nabla^2 \phi L_Q^2 \nabla^4 \phi = -\rho/\varepsilon$.
 - Условието за непрекъснатост на електричното поле върху граничната повърхност е използвано тук за пръв път.
 - Граничното условие: $D_z^+ D_z^- + \nabla^S \cdot D^S = \rho^S$ дава отговор на въпроса как да се третират нехомогенно поляризирани повърхности. Показано е, че повърхностното отместване D^S съдържа скока на обемната квадруполяризация.
 - Формулирани са граничните условия за изкривени повърхности (сфера и цилиндър).
- Обобщена е формулата на Хелмхолц за тензор на Максуел за квадруполна среда.
- Уравнение на състоянието на квадруполна течност и модел на Онзагер.
 - Демонстрирана е валидността на уравнението на състоянието на квадруполяризацията, **Q** ∞∇*E*, за Онзагерова квадруполна течност.
 - Обобщен е моделът на Онзагер към квадруполни течности. Полученият обобщен модел отчита диполния момент, *p*₀, поляризуемостта, α_{p0},

квадруполния момент, \boldsymbol{q}_0 , и квадруполяризуемостта, α_{q0} , на молекулите, изграждащи непрекъснатата среда.

- В хода на обобщението на модела на Онзагер са изведени изразите за реакционно и кавитационно поле, E_{react} и E_{cav} , както и за реакционен и кавитационен градиент на полето, $(\nabla E)_{\text{react}}$ и $(\nabla E)_{\text{cav}}$. Тези изрази стоят в основата на теорията на разтворимост в квадруполни разтворители и теорията за взаимодействието на полярни молекули в квадруполна среда.
- Разработен е метод за определяне на макроскопската характеристика на квадруполни среди, т. нар. квадруполна дължина, L_Q, и радиусът на кухината, R_{cav}, като функция на плътността, ρ, на средата. Методът е приложен към някои течности (Ar, Kr, Xe, CH₄, N₂, CO₂, CS₂, C₆H₆, H₂O, CH₃OH).
- Макроскопска теория на диполните повърхности.
 - Показано е, че в рамките на квадруполната електростатика електричното поле на повърхност с нормален диполен момент е добре дефинирано и крайно върху самата повърхност. Това дава възможност да се пресметне енергията на повърхността, както и енергията на частици върху междуфазовата повърхност.
 - Предложена е структура на двоен диполен слой от повърхностно адсорбирани диполи и дифузно разпределени такива в двете обемни фази, които обаче не компенсират напълно повърхностния диполен момент. Изведени са явни връзки между собствения диполен момент, P_z^S , пълния диполен момент, Γ_p , повърхностния потенциал, ϕ^S , повърхностното поле, E^S , скока на потенциала, $\Delta_-^+ \phi$. Изяснен е смисълът на повърхностната диелектрична проницаемост, ε^S , в известната Хелмхолцова формула, $\Delta_-^+ \phi = P_z^S / \varepsilon^S$; показано е, че ε^S е чисто обемна характеристика, свързана с проницаемостите и квадруполните дължини на двете обемни фази.
 - При отчитане на квадруполите в непрекъснатата среда получаваме, че електричното поле, създадено от безкрайно тънкия кондензатор от диполни молекули на повърхността, се разпространява и извън плочите на кондензатора. На това поле отговаря сила, която може например да изтегли даден положителен/отрицателен йон към повърхността в зависимост от ориентацията на повърхностните диполи.

Разработената теория предстои да се приложи към още много широк кръг електростатични задачи на колоидната химия за случаи на квадруполни среди в присъствието на електролит – особено уравнението на Гуи, изотермата на Дейвис и други проблеми на адсорбцията.

Особено интересно е приложението на модела за диполна повърхност – ур. (106) вече бе успешно приложено към едно експериментално изследване на взаимодействието на йон с монослой от повърхностно активни вещества [123]. Получените резултати могат да бъдат използвани при моделирането на биологични мембрани. Моделът е приложен и към анализа на трифазния контакт между три изолатора и контактния потенциал на тази система [134].

Приноси:

- 1. Предложена е самосъгласувана формулировка на квадруполната електростатика на линейни хомогенни изотропни среди (включително пълен набор гранични условия).
- 2. Изведен е тензорът на Максуел за квадруполяризуема среда.
- Кавитационният модел на Онзагер е обобщен към квадруполни диелектрици. Използван е, за да се определи квадруполяризуемостта на 10 квадруполни течности от експериментални данни за диелектрична проницаемост.
- 4. Развита е теорията на междуфазовата граница между квадруполни диелектрици и дифузния диполен слой.

Публикации по темата на дисертацията:

Р. И. Славчов и И. М. Димитрова, Заредена повърхност, кондензатор и Галвани потенциал в квадруполна среда, *Българско списание за химия*, **3** (2014) 51-62.

R. I. Slavchov, I. M. Dimitrova, and T. I. Ivanov, The polarized interface between quadrupolar insulators: Maxwell stress tensor, surface tension, and potential, *J. Chem. Phys.* **143** (2015) 154707 - 154721. (2 цитата)

I.M. Dimitrova, R. I. Slavchov, T.I. Ivanov, and S. Moshbach, A spherical cavity model for quadrupolar dielectics, *J. Chem. Phys.* **144** (2016) 114502-114519.

R. I. Slavchov, I. M. Dimitrova, and T. I. Ivanov, Electrostatics of quadrupolarizable media, III-ти Национален конгрес по физически науки, 29 септември – 2 октомври 2016, София

R. I. Slavchov, I. M. Dimitrova, and B. P. Radoev, Contribution of the surface dipole moment to the stress balance at a three phase contact between insulators, *submitted to Colloid J.*

Други публикации:

Н.А. Грозев, Т.Г. Тошева, И.М. Димитрова, Р.И. Славчов, Адсорбция и разпределение на нейоногенни повърхностноактивни вещества на междуфазовата граница вода масло. *Българско списание за химия*, **2** (2013) 25-35.

R.I. Slavchov, I.M. Dimitrova, I.B. Ivanov, Cohesive and non-cohesive adsorption of surfactants at liquid interfaces. In: Without bounds: a scientific canvas of nonlinearity and complex dynamics, Ed. RG Rubio, YS Ryazantsev, VM Starov, GX Huang, AP

Chetverikov, P Arena, AA Nepomnyashchy, A Ferrús, EG Morozov, Springer-Verlag, 2013, Ch. III, 199-225. (3 цитата)

V. Atanasov, S. Russev, L. Lyutov, Y. Zagraniarsky, I. Dimitrova, G. Avdeev, I. Avramova, E. Vulcheva, K. Kirilov, A. Tzonev, M. Abrashev, G. Tsutsumanova, Two dimensional polymerization of graphene oxide: Bottom-up approach, *Mater. Chem. Phys.* **163** (2015) 172-181.

Участия в конференции:

XIII-та Национална конференция по химия за студенти и докторанти, 21-23 май 2014 във Факултет по химия и фармация на СУ

Заряд в квадруполни среди – Борнова енергия и Дебай-Хюкелов потенциал (доклад)

IV-ти Научен семинар по физикохимия за млади учени и докторанти, 15-17 април 2015 в Институт по физикохимия, БАН

Модел на квадруполни течности (доклад)

XIV-та Национална конференция по химия за студенти и докторанти, 20-22 май 2015 във Факултет по химия и фармация на СУ

Структура и електрични свойства на междуфазовата граница между диелектрици

(доклад)

SGI-FunD Symposium 29th – 31st October 2015 Sofia, Bulgaria

Quadrupolar terms in the Maxwell equations (oral presentation)

Отбелязване на 90 години катедра Физикохимя във Факултет по химия и фармация на СУ

Електростатика на квадруполни среди (постер)

V-ти Научен семинар по физикохимия за млади учени и докторанти, 19-21 април 2016 в Институт по физикохимия, БАН

Модел на Онзагер за квадруполни диелектрици (доклад)

XV-та Национална конференция по химия за студенти и докторанти, 18-20 май 2016 във Факултет по химия и фармация на СУ

Заглаждане на потенциала и сила на изображението в квадруполни среди (доклад)

Ninth National Conference on Chemistry, 29th September – 1st October 2016, Sofia, Bulgaria

Electrostatic equations in quadrupolar media (oral presentation)

III-ти Национален конгрес по физически науки, 29 септември – 2 октомври 2016, София

Електростатика на квадруполяризуеми среди (поканен доклад)

6. Литература

- 1. J. N. Israelachvili, *Intermolecular and Surface Forces*, 3rd ed. (MA: Academic Press, Burlington, 2011).
- 2. M. Born, Z. Phys. 1, 45 (1920).
- 3. W. M. Latimer, K. S. Pitzer, and C. M. Slansky, J. Chem. Phys. 7, 108 (1939).
- 4. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
- 5. P. Debye and E. Hückel, *Phys. Z.* 24, 185 (1923).
- 6. L.G. Gouy, J. Phys.-Paris 9, 457 (1910).
- 7. D.L. Chapman, Phil. Mag. 25, 475 (1913).
- 8. J.T. Davies, Proc. R. Soc. London, Ser A 245, 417 (1958).
- 9. J.T. Davies and E. Rideal, *Interfacial Phenomena* (Academic, New York, 1963).
- 10. L. Onsager, N.N.T. Samaras, J. Chem. Phys. 2, 528 (1934).
- 11. B. Derjaguin and L. Landau, Acta Physico Chemica URSS 14, 633 (1941).
- 12. E.J.W. Verwey and J.Th.G. Overbeek, *Theory of the stability of lyophobic colloids*, (Elsevier, Amsterdam, 1948).
- 13. M. von Smoluchowski, Bull. Int. Acad. Sci. Cracovie, 184 (1903).
- 14. J.J. Bikerman, Philos. Magn. 33, 384 (1942).
- 15. B.W. Ninham and V. Yaminsky, Langmuir 13, 2097 (1997).
- 16. I.B. Ivanov, R.I. Slavchov, E.S. Basheva, D. Sidzhakova, and S.I. Karakashev, *Adv. Colloid Interface Sci.* **168**, 93 (2011).
- 17. D. Frydel, J. Chem. Phys. 134, 234704 (2011).
- 18. Y. Levin, A.P. dos Santos, and A. Diehl, Phys. Rev. Lett. 103, 257802 (2009).
- 19. D.D. Eley and M.G. Evans, Trans. Faraday Soc. 34, 1093 (1938).
- 20. S. Levine, K. Robinson, G.M. Bell, and J. Mingins, J. Electroanal. Chem. 38, 253 (1972).
- 21. A. Levy, D. Andelman, and H. Orland, Phys. Rev. Lett. 108, 227801 (2012).
- 22. J. M. G. Barthel, H. Krienke, and W. Kunz, *Physical Chemistry of Electrolyte Solutions Modern Aspects*, edited by Deutsche Bunsen-Gesellschaft für Physicalische Chemie e.V. (Steinkopff, Darmstadt, 1998).

- 23. R.R. Dogonadze and A.A. Kornyshev, J. Chem. Soc., Faraday Trans. 270, 1121 (1974).
- 24. S. Buyukdagli and T. Ala-Nissila, Phys. Rev. E 87, 063201 (2013).
- 25. M.V. Basilevsky and D.F. Parsons, J. Chem. Phys. 108, 9107 (1998).
- 26. K. J. Laidler and C. Pegis, Proc. R. Soc. London, Ser. A 241, 80 (1957).
- 27. V.N. Paunov, R.I. Dimova, P.A. Kralchevsky, G. Broze, and A. Mehreteab, J. *Colloid Interface Sci.* **182**, 239 (1996).
- 28. P. J. Stiles, Aust. J. Chem. 33, 1389 (1980).
- 29. T. Abe, J. Phys. Chem. 90, 713 (1986).
- 30. V. Vlachy, Annu. Rev. Phys. Chem. 50, 145 (1999).
- M. Quesada-Pérez, E. González-Tovar, A. Martín-Molina, M. Lozada-Cassou, and R. Hidalgo-Álvarez, *Chem. Phys. Chem.* 4, 234 (2003).
- 32. P. Grochoeski, J. Trylska, Biopolymers 89, 93 (2007).
- 33. G. Lamm, The Poisson-Boltzmann Equation, In: *Reviews in Computational Chemistry*, Vol. 19, eds K. B. Lipkowitz, R. Larter and T. R. Cundari, (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2003) Ch. IV, 147-365.
- 34. J.D. Jackson, *Classical electrodynamics*, 1st ed. (John Wiley & Sons, Inc., New York, 1962); 3rd ed. (John Wiley & Sons, Inc., New York, 1999).
- 35. R.E. Raab and O.L. de Lange, *Multipole theory in electromagnetism* (Clarendon Press, Oxford, 2005).
- 36. В.В. Батыгин и И.Н. Топтыгин, Сборник задач по электродинамике и специальной теории относительности, 4-то изд. (Лань, 2010).
- 37. J. Jeon and H.J. Kim, J. Chem. Phys. 119, 8606 (2003).
- 38. S.M. Chitanvis, J. Chem. Phys. 104, 9065 (1996).
- Y. Marcus, *The properties of solvents*, Wiley series in solution chemistry: Vol 4 (John Wiley&Sons Ltd, Chichester, 1998).
- 40. D.S. Arnold, C.A. Plank, E.E. Erickson, and F.P. Pike, *Ind. Eng. Chem. Chem. Eng. Data Series* **3**, 253 (1958).
- 41. S. Goldman, Can. J. Chem. 52, 1668 (1974).
- 42. J. Jeon and H. J. Kim, J. Chem. Phys. 119, 8626 (2003).
- 43. I.E. Craven, M.R. Hesling, D.R. Laver, P.B. Lukins, G.L.D. Ritchie, and J. Vrbancich, J. Phys. Chem. 93, 627 (1989).
- 44. D. Bedeaux and J. Vlieger, *Optical properties of surfaces*, 2nd ed. (Imperial College Press, London, 2002).
- 45. E.B. Graham and R.E. Raab, Proc. R. Soc. Lond. A 456, 1193 (2000).
- 46. S. Shen and S. Hu, J. Mech. Phys. Solids 58, 665 (2010).
- 47. Р.И. Славчов и И.М. Димитрова, Българско списание за химия **3**, 51 (2014).
- 48. R.I. Slavchov, I.M. Dimitrova, and T.I. Ivanov, J. Chem. Phys. 143, 154707 (2015).

- 49. I.M. Dimitrova, R.I. Slavchov, and T.I. Ivanov, J. Chem. Phys. 144, 114502 (2016).
- 50. D. Adu-Gyamfi, Physica A 108, 205 (1981).
- 51. D. E. Logan, Mol. Phys. 46, 271 (1982).
- 52. O. L. de Lange and R. E. Raab, Phys. Rev. E 71, 036620 (2005).
- 53. H. Bethe, Ann. Phys. 87, 55 (1928).
- 54. S.M. Kathmann, I.W. Kuo, and C.J. Mundy, J. Am. Chem. Soc. 130, 16556 (2008).
- 55. M.A. Wilson, A. Pohorille, and L.R. Pratt, J. Phys. Chem. 91, 4873 (1987).
- 56. D.V. Matyushov and G.A. Voth, J. Chem. Phys. 111, 3630 (1999).
- 57. A.A. Milischuk, D. V. Matyushov, J. Chem. Phys. 123, 044501 (2005).
- 58. A.A. Milischuk and D.V. Matyushov, J. Chem. Phys. 124, 204502 (2006).
- 59. W. Greiner, *Classical electrodynamics*, 1st ed. (Springer-Verlag, Inc., New York, 1998).
- 60. L.D. Landau and E.M. Lifshitz, *Electrodynamics of continuous media*, 2nd ed. (Nauka, Moscow, 1982, in Russian; Pergamon Press, 1984, in English).
- 61. M.A. Wilson, A. Pohorille, and L.R. Pratt, J. Chem. Phys. 88, 3281 (1988).
- 62. B. Sellner and S.M. Kathmann, J. Chem. Phys. 141, 18C534 (2014).
- 63. L.D. Landau and E.M. Lifshitz, *Quantum mechanics*, 3rd ed. (Pergamon Press, 1977, in English).
- 64. R.I. Slavchov and T.I. Ivanov, J. Chem. Phys. 140, 074503 (2014).
- 65. H. Fröhlich, Theory of dielectrics (Clarendon Press, Oxford, 1958).
- 66. A. D. Buckingham, J. Chem. Phys. 30, 1580 (1959).
- 67. E. R. Batista, S. S. Xantheas, and H. Jónsson, J. Chem. Phys. 109, 4546 (1998).
- 68. I. Ivanov and B. Radoev, Colloids and Surfaces A 244, 19 (2004).
- 69. И.Е. Тамм, Основы теории электричества, (10-то изд. Наука, Москва. 1989 г. на руски; 9th ed., Mir Publishers, 1979, in English), гл. 2.
- 70. D.J. Griffiths, *Introduction to electrodynamics*, 3rd ed. (Prentice Hall, Inc., New Jersey, 1999).
- 71. A.G. Petrov, Biochim. Biophys. Acta Biomembranes 1561, 1 (2002).
- 72. S.R. de Groot and P. Mazur, *Non-equilibrium thermodynamics* (Dover publications, New York, 1984).
- 73. R.I. Slavchov, J. Chem. Phys. 140, 164510 (2014).
- 74. A.V. Gubskaya and P.G. Kusalik, Mol. Phys. 99, 1107 (2001).
- 75. P. Debye, Physik. Z. 13, 97 (1912).
- 76. J.H. Van Vleck, *The theory of electric and magnetic susceptibilities* (Clarendon Press, Oxford, 1932).
- 77. J.K. Vij and W.G.S. Scaife, J. Chem. Phys. 64, 2226 (1976).

- 78. G. I. Skanavi, *Physics of Dielectrics (Weak Field Region)* (GITTL, Moscow, 1949, in Russian).
- 79. H. Kashiwagi, T. Fukunaga, Y. Tanaka, H. Kubota, and T. Makita, *The Rev.* of *Phys. Chem. of Japan* **49**, 70 (1979).
- 80. Y. OOshika, J. Phys. Soc. Jpn. 9, 594 (1954).
- 81. J.B. Foresman, T.A. Keith, K.B. Wiberg, J. Snoonian, and M. J. Frisch, J. *Phys. Chem.* **100**, 16098 (1996).
- 82. N. Gee, K. Shinsaka, J-P. Dodelet, and G. R. Freeman, J. Chem. *Thermodynamics* 18, 221 (1986).
- 83. A. Passinsky, Acta Physicochim. URSS 8, 385 (1938).
- 84. J. Padova, J. Chem. Phys. 40, 691 (1964).
- 85. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).
- 86. C.-G. Zhan and D. M. Chipman, J. Chem. Phys. 109, 10543 (1998).
- 87. C. J. F. Böttcher, *Physica (Amsterdam)* 9, 945 (1942).
- 88. G. Maroulis and D. M. Bishop, J. Phys. B: At. Mol. Phys. 18, 4675 (1985).
- 89. G. Maroulis and A. J. Thakkar, J. Chem. Phys. 89, 7320 (1988).
- 90. G. Maroulis, Chem. Phys. Lett. 226, 420 (1994).
- 91. G. Maroulis and A. J. Thakkar, J. Chem. Phys. 88, 7623 (1988).
- 92. G. Maroulis, Chem. Phys. 291, 81 (2003).
- 93. G. Maroulis, Chem. Phys Lett. 199, 250 (1992).
- 94. C. Huiszoon, Mol. Phys. 58, 865 (1986).
- 95. A. Michels, C. A. Ten Seldam, and S. D. J. Overdijk, Physica 17, 781 (1951).
- 96. M. Lallemand and D. Vidal, J. Chem. Phys. 66, 4776 (1977).
- 97. R. L. Amey and R. H. Cole, J. Chem. Phys. 40, 146 (1964).
- 98. N. E. Hill, W. E. Vaughan, A. H. Price, and M. Davies, *Dielectric Properties and Molecular Behaviour* (Van Nostrand Reinhold, London, 1969).
- 99. CRC Handbook of Chemistry and Physics, Ed. W. M. Haynes (CRC, New York, 2011).
- 100. G. C. Straty and R. D. Goodwin, Cryogenics 13, 712 (1973).
- 101. J. F. Ely and G. C. Straty, J. Chem. Phys. 61, 1480 (1974).
- 102. F. I. Mopsik, J. Chem. Phys. 50, 2559 (1969).
- 103. H. Hartmann, A. Neumann, and G. Rinck, Z. Phys. Chem. 44, 204 (1965).
- 104. J. K. Vij and W. G. S. Scaife, J. Chem. Phys. 64, 2226 (1976).
- 105. D. P. Fernández, Y. Mulev, A. R. H. Goodwin, and J. M. H. Levelt Sengers, J. Phys. Chem. Ref. Data 24, 33 (1995).
- 106. G. S. Kell, J. Chem. Eng. Data 20, 97 (1975).
- 107. T. Grindley and J. E. Lind Jr, J. Chem. Phys. 54, 3983 (1971).
- 108. P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999).
- 109. J. Kongsted, A. Osted, K. V. Mikkelsen, and O. Christiansen, *Chem. Phys. Lett.* **364**, 379 (2002).

- 110. G. Åkerlöf, J. Am. Chem. Soc. 54, 4125 (1932).
- 111. V. A. Rana, H. Chaube and D. H. Gadani, J. Mol. Liq. 164, 191 (2011).
- 112. R. D. Bezman, E. F. Casassa, and R. L. Kay, J. Mol. Liq. 73-74, 397 (1997).
- 113. E. Schadow and R. Steiner, Z. Phys. Chem. 66, 105 (1969).
- 114. T. Sun, S. N. Biswas, N. J. Trappeniers, and C. A. Ten Seldam, *J. Chem. Eng. Data* **33**, 395 (1988).
- 115. R.I. Slavchov, J.K. Novev, T.V. Peshkova, and N.A. Grozev, J. Colloid Interface Sci. 403, 113 (2013).
- 116. J. Frenkel, *Kinetic theory of liquids* (Dover Publications, New York, 1955).
- 117. F.H. Stillinger and A. Ben-Naim, J. Chem. Phys. 47, 4431 (1967).
- 118. A.I. Rusanov and F.M. Kuni, J. Colloid Interface Sci. 100, 264 (1984).
- 119. V.I. Parfenyuk, *Colloid J.* **64**, 588 (2002).
- 120. L.R. Pratt and A. Pohorille, Chem. Rev. 102, 2671 (2002).
- 121. C.A. Croxton, *Physica* **106A**, 239 (1981).
- 122. W.C. Duncan-Hewitt, *Langmuir* 7, 1229 (1991).
- 123. T.V. Peshkova, I.L. Minkov, R. Tsekov, and R.I. Slavchov, *Langmuir* **35** 8858 (2016).
- 124. R.I. Slavchov, T.I. Ivanov, and B.P. Radoev, *J. Phys.*: *Condens. Matter* **19**, 226005 (2007).
- G. Bakker, "Kapillarität und Oberflächenspannung," in *Handbuch der Experimentalphysik*, Band 6 (Akademische Verlagsgesellschaft, Leipzig, 1928).
- 126. P.A. Kralchevsky and K Nagayama, *Particles at fluid interfaces and membranes* (Elsevier, Amsterdam, 2001).
- 127. C. Vega and J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).
- 128. D.M. Taylor and G.F. Bayes, *Phys. Rev.* E 49, 1439 (1994).
- 129. J.R. Macdonald and C.A. Barlow, J. Chem. Phys. 39, 412 (1963).
- 130. M. Paluch, Adv. Colloid Interface Sci. 84, 27 (2000).
- 131. N.N. Kochurova and A.I. Rusanov, J. Colloid Interface Sci. 81, 297 (1981).
- 132. P. Leroy, A. Lassin, M. Azaroual, and L. André, *Geochim. Cosmochim.* Acta 74, 5427 (2010).
- 133. G.P. Brandino, G. Cicero, B. Bonferroni, A. Ferretti, A. Calzolari, C. M. Bertoni, and A. Catellani, *Phys. Rev.* B **76**, 085322 (2007).
- 134. R. I. Slavchov, I. M. Dimitrova, and B. P. Radoev, Contribution of the surface dipole moment to the stress balance at a three phase contact between insulators, *submitted to Colloid J*.